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ABSTRACT                                  
Accurate forecasting of energy consumption is 

crucial for the efficient management and control of 
modern energy grids, particularly amid the escalating 
integration of renewable energy sources. This study 
proposes a hybrid approach that combines the 
Autoregressive Integrated Moving Average (ARIMA) 
and the Gated Recurrent Unit neural network (GRU) 
to predict energy consumption in a microgrid 
setting. The proposed hybrid ARIMA-GRU model 
integrates ARIMA’s residuals with GRU’s non-linear 
modeling capabilities, enabling enhanced prediction 
accuracy while capturing both linear and non-linear 
dependencies in microgrid energy data. The model’s 
performance is evaluated using real-world energy 
consumption data, achieving an RMSE of 38.28 kWh, 
MAE of 31.24 kWh, and MAPE of 10.29%. These 
results highlight the model’s effectiveness in improving 
energy forecasting and providing practical insights for 
better energy management in microgrids.
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    التنبؤ باستهلاك الطاقة في الشبكة الكهربائية الصغيرة باستخدام نموذج
ARIMA-GRU

الحسين اوميكيل، علي نجمي.

ملخ��ص: يُع��د التنب��ؤ الدقي��ق باس��تهلاك الطاق��ة أم��رًا بال��غ الأهمي��ة لإدارة ش��بكات الطاق��ة الحديث��ة والتحكم فيه��ا بكفاءة، لا س��يما في 
ظل تصاعد تكامل مصادر الطاقة المتجددة. تقترح هذه الدراسة نهجًا هجينًا يجمع بين المتوسط المتحرك المتكامل الانحداري الذاتي 
الانح��داري )ARIMA( والش��بكة العصبي��ة للوح��دة المتج��ددة المس��ندة )GRU( للتنب��ؤ باس��تهلاك الطاق��ة في بيئ��ة الش��بكات الصغ�يرة. 
يدم��ج نم��وذج GRU-ARIMA الهج�ني المق�رتح بين المتبقي من المتوس��ط المتحرك الانح��داري التلقائي المتكامل )ARIMA( وقدرات 
النمذج��ة غ�ير الخطي��ة لوح��دة GRU. يتي��ح ه��ذا النم��وذج دق��ة تنب��ؤ محسّ��نة م��ع التق��اط الترابطات الخطي��ة وغير الخطي��ة في بيانات 
طاق��ة الش��بكة المصغ��رة. تم تقيي��م أداء النم��وذج باس��تخدام بيان��ات اس��تهلاك الطاق��ة في الع��الم الحقيق��ي، محققً��ا متوس��ط خط��أ ج��ذر 
متوس��ط المربع )RMSE( قدره38 .28 كيلوواط س��اعة، ومتوس��ط خطأ مطلق )MAE( قدره31 .24 كيلوواط س��اعة، ومتوس��ط 
خط��أ النس��بة المئوي��ة المطلق��ة )MAPE( ق��دره 10.29 %. تس��لط ه��ذه النتائ��ج الض��وء عل��ى فعالي��ة النموذج في تحس�ني التنب��ؤ بالطاقة 

وتوف�ير رؤى عملي��ة لتحس�ني إدارة الطاقة في الش��بكات الصغيرة.

الكلمات المفتاحية -الكلمات المفتاحية: ARIMA ؛ GRU؛ التعلم العميق؛ استهلاك الطاقة؛ الشبكة الكهربائية الصغيرة.

1.	  INTRODUCTION

The growing complexity of power systems, driven by factors such as the integration of renewable 
energy sources, the rise of electric vehicles, and the need for flexible distribution grids, has made 
accurate energy consumption forecasting more critical than ever before[1]. Recent advancements 
in machine learning and deep learning techniques have exhibited encouraging outcomes 
in enhancing the precision of energy forecasting models, with techniques like Long Short-
Term Memory (LSTM) and Gated Recurrent Unit networks (GRU) demonstrating superior 
performance with traditional statistical approaches[2].
Traditional statistical methods such as Autoregressive Integrated Moving Average (ARIMA) have 
been widely used for time series forecasting due to their simplicity and effectiveness in modeling 
linear relationships[3]. ARIMA has demonstrated notable success in various applications, 
including energy demand prediction[4]. However, its inability to capture non-linear patterns 
and its reliance on stationary data limit its effectiveness for more complex energy datasets[5]. In 
contrast, machine learning approaches, particularly Support Vector Machines (SVM) and neural 
networks, have gained traction for their ability to model non-linear dynamics and adapt to diverse 
data patterns[6]. Among these, deep learning algorithms such as LSTM and GRU have shown 
superior performance in capturing temporal dependencies and handling sequence data[7], [8].
The integration of traditional statistical techniques and modern machine learning approaches has 
emerged as a promising solution for energy forecasting challenges. Hybrid models that combine 
statistical and deep learning techniques, such as ARIMA-GRU or ARIMA-LSTM, leverage the 
strengths of both methodologies[9,10]. This synergistic approach leverages ARIMA’s capability 
to capture linear trends and temporal patterns, while simultaneously harnessing the non-linear 
modeling capacity of deep learning models[11]. This hybrid framework has been demonstrated 
to enhance the accuracy of energy forecasts[12], particularly for complex and volatile energy 
consumption datasets, making it a highly suitable technique for microgrid energy forecasting 
applications[13].
Recent studies have highlighted the potential of hybrid models in addressing the challenges 
of energy forecasting[14]. For example, ARIMA-LSTM models have demonstrated improved 
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performance over standalone models in predicting renewable energy outputs[15], while ARIMA-
GRU hybrids have been noted for their computational efficiency and accuracy[16]. However, 
research specifically focused on using the ARIMA-GRU hybrid approach for energy consumption 
forecasting in microgrids remains limited, creating a gap that this study aims to address[17].
This paper proposes an ARIMA-GRU hybrid model for forecasting energy consumption in a 
microgrid. By combining ARIMA’s ability to model linear trends with GRU’s capacity to capture 
non-linear dependencies, the model aims to enhance prediction accuracy and reliability. The 
approach is validated using real-world energy consumption data and benchmarked against 
standalone models such as ARIMA, SVM, GRU, and LSTM, as well as other hybrid techniques 
like ARIMA-LSTM. The findings contribute to the growing knowledge on energy forecasting and 
provide practical insights for improving energy management in microgrids.

2.	  MATERIALS & METHODS

This study employs a hybrid ARIMA-GRU model to forecast energy consumption, leveraging the 
strengths of both linear statistical models and deep learning techniques. The ARIMA model is 
first applied to identify and predict the linear trends and temporal patterns in the time series data. 
The residuals, representing the nonlinear components not captured by ARIMA, are then modeled 
using a GRU neural network. The GRU model is trained on lagged sequences of the ARIMA 
residuals to learn complex temporal dependencies. Finally, The forecasts from the ARIMA and 
GRU models are integrated to produce the final prediction. This approach harnesses ARIMA’s 
ability to model linear relationships and GRU’s capacity to handle nonlinear patterns, providing 
a robust solution for energy consumption prediction. The model performance is evaluated using 
standard metrics, including Mean Absolute Error, Root Mean Squared Error, and Mean Absolute 
Percentage Error, which validate the reliability of the results. The methodology is illustrated in 
Figure 1 as a series of sequential phases. Table 1 encompasses the different abbreviations used in 
this paper.

Figure 1. architecture of proposed method.

Table 1. Abbreviations meaning.
Abbreviations Definition
ARIMA Autoregressive Integrated Moving Average
GRU Convolutional Neural Network
LSTM Long-Short Term Memory
SVM Support vector machine
RMSE Root Mean Square Error
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
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2.1.	Long-Short Term Memory (LSTM)

Long short-term memory is a type of recurrent neural network that is well-suited for modeling 
sequential data. LSTM models are capable of learning long-term dependencies in the data and 
effectively capturing the temporal dynamics of energy consumption[18]. The architecture of the 
LSTM is illustrated in Figure 2.

Figure 2. The architecture of LSTM.

The key components of an LSTM model are the memory cell, the forget gate, the input gate, 
and the output gate. The memory cell holds the state of the LSTM, which is updated at each 
time step based on the current input, the previous hidden state, and the previous cell state. The 
forget gate determines what information from the previous cell state should be retained, the input 
gate controls what new information from the current input and previous hidden state should be 
added to the cell state, and the output gate decides what parts of the cell state should be used to 
generate the current output. Equations (1, 2, 3, 4, 5, and 6) define the mathematical formulation 
of the LSTM model[19]:

1                                          (1)( )t i t i t ii W x U h bσ −= + +

t f t f t f                                     ( )f (W x U h b )σ −= + +1 2

t o t o t o                                       ( )o (W x U h b )σ −= + +1 3

t c t c t - c                                   ( )Ĉ tanh(W x U h b )= + +1 4

t t t t t                                            ( )ˆC f C i C−= + 1 5

t t t                                                    ( )h o tanh( C )=  6

In the equations above, it , ft and ot are the three gates, input, output and forget gates, respectively 
at the time t, The Wi , Wf  and Wo : denotes the weight matrices from the input, forget and output 
gates to the input, respectively. The bi , bf and bo are the bias of input, forget and output gate, 
respectively. The Ui , Uf  and Uo denote the weight matrices from the input, forget and output 
gates to the hidden, respectively. σ is a logistic sigmoid function and ⊙ denotes the Hadamard 
product of two vectors. xt is a vector that is located in the input layer of the LSTM. ht is an output 
vector of the hidden layer and is located in the LSTM unit at the time, t. Ct denotes the current 
cell state and Ĉt denotes the new candidate value for the next cell state. ht-1 denotes the previous 
state and is determined by the forget gate, ft , by how much is passed to the next state. Ct-1 denotes 
the update of the old cell state to the new cell state Ct .

2.2.	Gated Recurrent Unit (GRU)

The Gated Recurrent Unit represents a type of recurrent neural network architecture that is a 
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simplified version of the LSTM cell, as proposed by Chung et al[20]. The architecture of the GRU 
is depicted in Figure 3. 

Figure 3. The architecture of GRU.

The GRU architecture includes two key gates that regulate the flow of information through the 
network. The reset gate determines the amount of past information to be retained, while the 
update gate controls the incorporation of new information into the cell state. The following 
equations (7, 8, 9, and 10) represent the formula of the GRU model[19]:

[ ]t z t t                                             ( )Z (W h ,z )σ −=  1 7

[ ]t r t t                                              ( )r (W h ,x )σ −=  1 8

[ ]t t t t                                     ( )h tanh(W r h ,x−=   1 9

t t t t t                                      ( )h ( z ) h z h−= − + 

 11 10

The equations in the Gated Recurrent Unit model involve several mathematical components. The 
sigmoid activation function is represented by σ, while Wr and Wz denote the weight coefficients 
for the reset gate and update gate, respectively. The hidden state at the previous time step t-1 is 
given by ht-1 , and xt represents the input at the current time t. The candidate hidden state at time t 
is denoted by , and the tanh activation function is represented by tanh. The weight coefficients 
are denoted by W, the Hadamard product is represented by ⊙ , and ht is the hidden state at the 
current time t.

2.3.	 Autoregressive Integrated Moving Average (ARIMA)

The ARIMA model is a well-established time series forecasting technique commonly employed 
for predicting electrical load, which represents the amount of electrical energy demanded by 
consumers within a power system[21]. Accurate forecasting of electrical load is crucial for the 
efficient planning and operation of power systems. The ARIMA model integrates autoregressive 
and moving average components, enabling the capture of key temporal characteristics. The 
Autoregressive (AR) component leverages the dependence between an observed value and its 
past counterparts to generate predictions, which is particularly useful for forecasting upcoming 
energy consumption or potential demand peaks. The Integrated (I) component accounts 
for the necessary degree of differentiation required to achieve stationarity in the time series. 
Furthermore, the 	 Moving Average (MA) component allows the model error to be defined as 
a linear combination of past error values, capturing the dependencies between observations and 
residual errors. The ARIMA (p,d,q) model, which utilizes the lag polynomial L is represented by 
the equation (11).
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p a
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1 1
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where the lag operator Lk  represents past values in the series, φk denotes the parameters of the 
autoregressive (AR) component, and θj signifies the parameters of the moving average (MA) 
component, while εt represents the error terms. To determine the optimal parameters for the 
model, the Akaike Information Criterion (AIC) is commonly employed.
The Akaike Information Criterion (AIC) is a widely used metric for selecting the optimal 
parameters of an ARIMA model[21]. It balances model fit and complexity by maximizing the 
likelihood function while imposing a penalty for the number of estimated parameters. The 
mathematical expression for the AIC is as follows:

AIC log k m                                             ( )= − +2 2 12

where the number of estimated model parameters is denoted by m, and k represents the 
maximized likelihood function for the model.

2.4.	 Support vector machine (SVM)

The Support Vector Machine (SVM) is a supervised machine learning algorithm widely used for 
classification and regression tasks. SVM works by finding the optimal hyperplane that separates 
data points of different classes with the maximum margin [22]. For linearly separable data, the 
algorithm constructs a hyperplane using support vectors, which are the closest data points to the 
hyperplane.
The decision boundary can be expressed as:

f ( x ) sign( .x b )                                            ( )ω= + 13

min                                                             ( )ω 21 14
2

subject to the constraint:

iy( .x b )                                                      ( )ω + ≥1 15

where yi represents the class label of a data point xi .

2.5.	 Proposed ARIMA-GRU Model

The proposed approach combines the strengths of the ARIMA model and the GRU neural 
network to capture the linear and non-linear patterns in energy consumption data. 
The ARIMA model is first used to fit the time series data and generate residuals, which represent 
the non-linear and seasonal components not captured by the linear ARIMA model. 
The GRU network is then trained on the residuals to learn the remaining non-linear patterns. The 
final forecast is obtained by combining the ARIMA and GRU predictions, as shown in Figure 4. 
Table 2 resume all various layers and parameters of proposed approach, which were determined 
using grid search.
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Figure 4. Proposed approach’s architecture.

Table 2. Configuration of the various layers and parameters of ARIMA-GRU model.
Algorithm Parameters Values
ARIMA P

d
q

12
1

21
GRU GRU

GRU
Dense

50, activation=’relu’
50, activation=’relu’

1

2.6.	 Data description

The dataset used in this study was gathered from residential households within an energy 
community in Ireland as part of the StoreNet project[23]. It includes local weather parameters 
and detailed per-household power and energy measurements, encompassing active power 
consumption, photovoltaic generation, grid import and export, energy storage charging and 
discharging, as well as the state of charge of energy storage systems. The weather data is available 
at a 1-minute temporal resolution for the year 2020, while the energy consumption data has been 
aggregated to a daily resolution for forecasting daily energy consumption.

2.7.	 Evaluation metrics

The forecasting performance is evaluated using accuracy metrics including Mean Absolute 
Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). 
These metrics quantitatively evaluate the discrepancy between the predicted and actual values, 
as defined below:

N

i i
i

MAE ( y f )                                         ( )
N =

= −∑
1

1 16



Lahoucine Oumiguil and Ali Nejmi.

22 Solar Energy and Sustainable Development, Special Issue (STR2E) , May  2025.

N

i i
i

RMSE ( y f )                                    ( )
N =

= −∑ 2

1

1 17

N
i i

i i

y fMAPE                                ( )
N y−

−
= ×∑

1

1 100 18

where N represents the number of values and yi is the actual value, and fi is the forecasted value.
MAE, RMSE, and MAPE are widely used in energy prediction due to their ability to capture 
prediction errors in various forms. RMSE is particularly sensitive to large errors, making it 
suitable for detecting peaks, while MAPE provides an intuitive percentage error that is easy to 
interpret. These metrics were chosen to reflect the challenges of energy data, including sudden 
peaks and seasonal variations[24]. The MAE is a commonly used statistical metric that calculates 
the average of the absolute differences between the predicted and actual values, offering 
insight into the model’s performance. In contrast, the RMSE reflects the standard deviation of 
these differences, placing greater emphasis on larger errors due to its mathematical structure. 
Additionally, the MAPE metric provides a measure of prediction accuracy as a percentage by 
calculating the average of the absolute percentage differences between the forecasted and actual 
values. In general, a model with lower MAE, RMSE, MAPE values, indicate a more accurate 
predictive model [25].

3.	  RESULTS & DISCUSSION
Figure 5 provides a visual representation of the performance of different forecasting models, 
while Table 3 presents the numerical evaluation of their accuracy using RMSE, MAE, and MAPE.”
The results depicted in Figure 5 illustrate the comparative performance of the various models in 
predicting energy consumption. The standalone models, such as ARIMA and SVM, exhibited 
challenges in capturing the non-linear patterns in the data, leading to higher deviations from 
the actual trends. Conversely, the deep learning models, particularly the GRU, demonstrated 
a closer alignment with the observed data, outperforming the LSTM in tracking the rapid 
changes. The hybrid models, which combined the ARIMA and deep learning approaches, further 
improved the prediction accuracy by effectively integrating the strengths of linear and non-linear 
modeling. Notably, the ARIMA-GRU hybrid model provided the most accurate predictions, 
exhibiting minimal deviations and effectively capturing the variability in energy consumption, 
thus establishing it as the most robust approach for this forecasting task.
The comparisons shown in Table 3 reveal the performance of different models, as evaluated 
by RMSE, MAE, and MAPE. Among the standalone models, the ARIMA model exhibited the 
highest RMSE and MAE, along with a MAPE of 18.70%. This suggests that while the ARIMA 
approach is effective for modeling linear patterns, it struggled to capture the complex non-linear 
relationships inherent in the data. In contrast, the Support Vector Machine model demonstrated 
moderate performance, with an RMSE of 59.79kWh, MAE of 41.90kWh, and MAPE of 12.78%, 
but it was outperformed by the deep learning models.
The deep learning models, GRU and LSTM, displayed better adaptability to the complexities of 
the dataset. The GRU model achieved the lowest RMSE and MAE among the standalone models, 
along with a MAPE of 11.10%, outperforming the LSTM model, which reported an RMSE of 
49.91kWh, MAE of 42.05kWh, and MAPE of 13.74%. This highlights the superior ability of the 
GRU model to capture long-term dependencies and temporal dynamics compared to the LSTM 
model in this context.
The hybrid models, which combine the ARIMA approach with deep learning architectures, 
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provided notable improvements. The ARIMA-LSTM model achieved an RMSE of 44.30kWh, 
MAE of 33.59kWh, and MAPE of 12.35%, surpassing its standalone counterpart. However, The 
ARIMA-GRU model demonstrated the most favorable overall performance, as reflected in the 
lowest recorded values for RMSE, MAE, and MAPE. These results emphasize the effectiveness 
of hybrid models in leveraging the strengths of both statistical and deep learning techniques to 
enhance prediction accuracy.

Figure 5. Daily energy consumption predictions.

Table 3. Comparison of the proposed model’s performance with other models
Model RMSE 

(kWh)
MAE 

(kWh)
MAPE (%)

SVM 59.79 41.90 12.78
ARIMA 76.25 60.68 18.70
GRU 43.50 32.10 11.10
LSTM 49.91 42.05 13.74
ARIMA-LSTM 44.30 33.59 12.35
ARIMA-GRU 38.28 31.24 10.29

Although the ARIMA-GRU model demonstrates overall superior performance, it struggles 
to capture sharp peaks in energy consumption accurately. This limitation may arise from the 
smoothing effects of both ARIMA and GRU during forecasting. Future enhancements could 
include incorporating external features such as real-time weather data or using attention 
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mechanisms to prioritize peak prediction.
In summary, the ARIMA-GRU hybrid model emerged as the most accurate for the forecasting 
task, demonstrating the potential of combining traditional time series models with advanced 
machine learning architectures to address complex forecasting challenges.

4.	 CONCLUSION

This study investigated the performance of various forecasting models, including standalone 
ARIMA, SVM, GRU, and LSTM, as well as hybrid ARIMA-LSTM and ARIMA-GRU, for 
predicting energy consumption. The results reveal that traditional time series models like ARIMA 
struggle to capture complex non-linear patterns, while deep learning models, particularly GRU, 
exhibit superior performance in tracking temporal dynamics and abrupt changes.
The hybrid models that integrate the strengths of statistical and deep learning methods have 
demonstrated superior performance compared to their individual counterparts. Notably, the 
ARIMA-GRU hybrid model emerges as the most accurate and robust approach, demonstrating 
the lowest RMSE, MAE, and MAPE. 
These findings highlight the potential of integrating advanced machine learning architectures 
with traditional time series models to improve the precision and reliability of energy consumption 
forecasting. Future research should explore scalability across diverse datasets and environments. 
The integration of additional contextual variables, such as real-time weather and economic 
indicators, could further improve model accuracy. Additionally, optimizing computational 
efficiency without compromising accuracy remains a critical avenue for exploration.
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