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ABSTRACT                                  
Polymeric graphitic phase carbon nitride 

(g-C3N4) photocatalysts offer significant potential 
for CO2 photoreduction into solar fuels despite their 
efficiency restricted due to poor light response and 
recombination of photo-generated charges. This study 
focused on the modification of g-C3N4 by single-layered 
graphene oxide (GO) for enhancing photocatalytic 
CO2 reduction activity to form CH4. Well-designed 
2D/2D GO-g-C3N4 was fabricated using facile thermal 
strategy. 

The hybrid photocatalyst exhibited improved 
CO2 photoreduction performance to produce CH4. The 
maximum CH4 yield of 25.61 µmol g-1 was achieved 
after 4 h of visible light illumination which represents 
about 25% enhancement compared to pristine g-C3N4.

The incorporation of GO co-catalyst not only facilitates charge transfer but also offers 
an ample number of catalytic sites for CO2 adsorption. This work showcased the fabrication of 
g-C3N4-based binary photocatalyst with high CO2 photoreduction efficiency by coupling with 
metal-free co-catalyst.
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مركب الــ g-C3N4 النانوي ثنائي الأبعاد والُمعدل بواسطة الـ GO لتحويل ثاني أكسيد 
الكربون إلى CH4 بكفاءة عن طريق التحفيز الضوئي تحت الضوء المرئي

رياض رمضان كريديغ، محمد عريف، محمد طاهر .

ملخ��ص: توف��ر مُُحف��زات نيتري��د الكرب��ون الضوئي��ة ذات الط��ور الجرافي��ي البوليم��ري )g-C3N4( إمكان��ات كب��رة لإخت��زال وتحويل 
ثان��ي أكس��يد الكرب��ون ضوئيً��ا إلى وق��ود الطاق��ة الشمس��ية عل��ى الرغ��م م��ن تقيي��د كفاءته��ا بس��بب ضع��ف الاس��تجابة للض��وء وإع��ادة 
تركي��ب الش��حنات المول��دة ضوئي��اً. رك��زت ه��ذه الدراس��ة عل��ى تعدي��ل ال���� g-C3N4 بواس��طة أكس��يد الجرافين )GO( أح��ادي الطبقة 
لتحسين كفاءة تحويل ثاني أكسيد الكربون بالتحفيز الضوئي إلى غاز الميثان )CH4(. تم تصنيع مركب ال�� g-C3N4/GO ثنائي 
الأبع��اد ذو التصمي��م الجي��د باس��تخدام إس��تراتيجية حراري��ة بس��يطة. أظه��ر الُمُحف��ز الضوئ��ي الهج��ين أداءً مُحس��نًا في التحويل الضوئي 
لثاني أكسيد الكربون إلى غاز الميثان. تم تحقيق أعلى إنتاج من الميثان والبالغ 25.61 ميكرومول/جم بعد تسليط الضوء المرئي لمدة 
4 س��اعات وال��ذي يمث��ل زي��ادة بنس��بة %30 تقريبً��ا مقارن��ة ب����ال�� g-C3N4 النق��ي. دمج مُحفز ال�� GO المس��اعد لا يؤدي إلى تس��هيل نقل 
الشحنات فحسب، بل يوفر أيضًا عددًا كبرًا من المواقع الُمُحفزة لإمتزاز غاز ثاني أكسيد الكربون. أظهر هذا العمل التطوير الجديد 
للمُحفزات الضوئية الثنائية والُمعتمدة على ال�� g-C3N4 وذات الكفاءة العالية في التحويل الضوئي لثاني أكس��يد الكربون من خلال 

الدم��ج مع مُُحفزات مس��اعدة خالية من المعادن.

الكلم��ات المفتاحي��ة - الم��واد النانوي��ة القائمة على الكربون, البُنية النانوية ثنائية الأبعاد, تخفيض ثاني أكس��يد الكرب��ون بالتحفيز الضوئي, إنتاج الميثان, وقود 
الطاقة الشمسية.

1. INTRODUCTION

Since the beginning of the current century and owing to the booming industrial sector, energy 
shortage and atmospheric pollution issues have become progressively prominent. Hence, 
applying green technology to capture and transform CO2 into solar fuels can reduce reliance on 
fossil fuels while simultaneously lowering the atmospheric amounts of CO2 gas and solving the 
issue of environmental pollution [1–3]. The photocatalytic (PC) CO2 reduction approach has 
been regarded as one of the most promising CO2 utilization technologies among the other CO2 
utilization strategies [4–8]. However, the rapid recombination of photo-excited charge carriers, 
limited CO2 adsorption capacity, sluggish rate of electrons transfer, and inadequate surface-active 
sites have greatly hindered the entire photoconversion efficiency [9–11]. Researchers are striving 
to find an efficient and suitable strategy to improve the CO2 photoreduction rate. 
In the recent past, semiconductor photocatalysts have been extensively explored for enhancing the 
performance of CO2 photo-reduction. The class of metal-free polymers more specifically graphitic 
phase carbon nitride (g-C3N4) has captured stimulated attention for PC CO2 reduction because 
of its facile and affordable fabrication method, visible light response and diverse hierarchical 
structures [12–14]. However, the CO2 photo-reduction rate of pure g-C3N4 is usually limited 
to laboratory scale due to moderate bandgap energy (2.7 eV) and fast recombination of photo-
generated charge carriers. Recent studies reported enhanced CO2 photoreduction efficiency over 
modified g-C3N4 heterostructures. For instance, Guo et al. [15] modified g-C3N4 by porous ZnO 
to enhance PC CO2 reduction efficiency. The constructed ZnO@g-C3N4 hybrid photocatalysts 
exhibited 3.06 times higher CH4 production than bare g-C3N4. The incorporation of gold (Au) 
noble metal with ZnO and g-C3N4 by Li and coworkers [16] demonstrated 4.5 times higher 
CO production than pristine g-C3N4 owing to the localized surface plasmon resonance (LSPR) 
effect. Recently, modification of g-C3N4 by H3PO4 showed 4.38 times improved photoreduction 
performance to CO than that of bare g-C3N4 under the exposure of visible light [17]. 
Graphene oxide (GO) is a novel 2D nanomaterial with a single-layer carbon nanosheet of 
hexagonal structure, which offers great potential for anchoring the g-C3N4 with high stability. 
Furthermore, GO, which has a wide surface area and strong electron mobility, can act as a metal-
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free co-catalyst to improve the CO2 photo-reduction performance by providing more active sites 
and facilitating the charges transfer [12, 18, 19]. Motivated by this, and to enhance CO2 photo-
reduction efficiency even further, we presented a detailed procedure to fabricate a binary 2D/2D 
g-C3N4/GO photocatalyst that converts the CO2 gas into CH4. The newly constructed 2D/2D 
GO-g-C3N4 composite exhibited enhanced PC CO2 reduction performance, revealing its great 
potential as an efficient promising photocatalyst. Broadly, the findings of this study provide new 
insights for the development of low-cost and efficient hybrid nanomaterials for environmental 
remediation and energy production applications.

2. EXPERIMENTAL SECTION

2.1. Chemicals and Materials

The chemicals used for the synthesis of g-C3N4, GO and g-C3N4/GO composite were melamine 
(99.9%, Merck), graphite flakes (99.9%, Sigma Aldrich), potassium permanganate (99%, Merck), 
sulphuric acid (97 %, Merck), phosphoric acid (99%, Sigma Aldrich), methanol (99.9%, Merck) 
and deionized water. All chemicals and materials were used as purchased without any further 
purification.

2.2. Preparation of g-C3N4

The g-C3N4 was synthesized through the direct heating of melamine powder (10 g) in a muffle 
furnace at 550 °C for 2 h as reported in previous works [13]. The melamine powder is placed in 
a covered porcelain crucible and then pyrolyzed until a yellowish bulk material is obtained. The 
obtained material is then left to cool down to room temperature and crushed into fine powder 
using a mortar and pestle.

2.3. Preparation of GO

A modified Tour’s method was used for preparing the GO nanosheets. Briefly, a small amount of 
graphite flakes (3 g) was dispersed into a mixture of H2SO4 (360 mL) and H3PO4 (40 mL) using 
a magnetic stirrer operating at 300 rpm. An ice bath was employed for keeping the temperature 
below 10 °C during the oxidation of graphite flakes. A specific amount of KMnO4 (18 g) was then 
introduced gradually in which the mixture temperature is maintained less than 50 °C. After 24 h 
of continuous stirring, a yellowish suspension is obtained to be then cooled and altered by adding 
H2O2 (5 mL) dropwise till a brownish suspension is obtained. Finally, the brownish suspension is 
filtered, rinsed with distilled water, exfoliated using ultrasonic treatment and dried for 12 h at 50 
°C so that GO nanosheets with single layered structure are obtained.

2.4. Preparation of g-C3N4/GO nanocomposite

The g-C3N4/GO nanocomposite was prepared through a facile thermal approach. Specific 
amounts of the as-synthesized g-C3N4 powder were dispersed in methanol solution (50 mL). 
Then, the GO powder with different contents (0.25, 0.5, 1 and 2 wt.%) was mixed with the g-C3N4/
methanol solution under magnetic stirring for 6 h. Finally, the solution was sonicated for 1 h and 
dried at 100 °C for 12 h. Figure 1 demonstrates the whole synthesis procedure of the g-C3N4/GO 
nanocomposite.
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Figure 1. A schematic illustration for photo-reactor set-up used for converting the CO2 into CH4 under visible 
light.

2.5. Photocatalyst Characterizations

The crystalline phases and the crystal structure of the synthesized samples were investigated 
using X-ray diffraction (XRD) on D8 Bruker diffractometer operated at 40 kV voltage and 40 mA 
current with Cu-Kα radiation. A Hitachi SU8020 Field Emission Scanning Electron Microscope 
(FESEM) was employed for studying the morphologies and surfaces of the samples. However, the 
optical properties of the samples were characterized using UV–vis spectrophotometer (Cary 100 
Agilent, Model G9821 A) while the photoluminescence (PL) analysis was conducted by Raman 
spectrometer (LabRAM HR Evolution, HORIBA) with a laser excitation source of 325 nm.

2.6. Photocatalytic CO2 reduction activity and reactor set-up

The performance of the synthesized samples for converting the CO2 gas into CH4 was investigated 
using the reactor set-up displayed in Fig 2. The system consists mainly of a stainless-steel chamber 
fitted with an inlet and outlet valves and quartz glass window on the top. After distributing the 
photocatalyst powder inside the reactor chamber, pure CO2 gas is fed into the reactor through the 
inlet valve after being passed through a water bubbler. The humidified CO2 gas flows through the 
whole system for purging and removing any gas traces. Both inlet and outlet valves are then closed 
after the gas pressure is built inside the chamber. Then, the light source (Xe lamp) is switched on 
for starting the reaction which converts the CO2 and water molecules into CH4 gas after a series 
of redox reactions. A gas product sample is drawn from the sampling point each hour using a 
tight gas syringe and analyzed using a gas chromatograph (Agilent GC 6890 N, USA). 
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Figure 2. A scheme illustrating the photo-reactor set-up used for converting the CO2 into CH4 under visible light 
[19–21].

3. RESULTS AND DISCUSSIONS

3.1. Characterizations Analyses

3.1.1. X-ray Diffraction (XRD)

The XRD patterns of GO, g-C3N4 and g-C3N4/GO are displayed in Figure 3. 

Figure 3. XRD patterns of pure of pure GO, pure g-C3N4 and g-C3N4/GO composite.

Obviously, the GO exhibited a significant peak at 2θ: 9.9° which is ascribed to the (001) GO plane 
of interlayer spacing [13, 22, 23]. Pure g-C3N4 exhibited two characteristic diffraction peaks, the 
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first peak at 2θ: 13° indexed to the (100) plane which belongs to the interlayer structural packing of 
g-C3N4 and the second peak at 2θ: 27.5° corresponding to the (002) diffraction plane of interlayer 
stacking of the aromatic system in the g-C3N4 [24, 25]. For the binary g-C3N4/GO composite, 
both g-C3N4 diffraction peaks displayed clearly while no GO peak was observed which can be 
ascribed to the low content of GO.
3.1.2. Field Emission Scanning Electron Microscopy (FESEM)

Figure 4 (a-c) displays the FESEM images of pristine g-C3N4, pure GO and g-C3N4/GO composite, 
respectively. Pure g-C3N4 exhibited a layered compact structure of nanosheets that are stacked 
together with irregular folding as shown Figure 4 (a). A large, corrugated GO nanosheet is clearly 
displayed in Figure 4 (b). Good interfacial contact between the nanosheets of g-C3N4 and GO 
was revealed from the FESEM images in Figure 4 (c-e). These observations have also confirmed 
that the synthesized photocatalysts have maintained their original 2D structure of material with 
no significant changes. 

Figure 4. FESEM images of (a) pure g-C3N4, (b) GO nanosheet, (c-e) g-C3N4/GO nanocomposite at different 
magnifications, respectively.

3.1.3. Ultraviolet-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS)

The ability of pure g-C3N4 and the GO-modified g-C3N4 samples for absorbing light in the UV 
and visible range were obtained using UV-vis spectroscopy. As illustrated in Figure 5 (a), the pure 
g-C3N4 exhibited an absorption peak near 400 nm, revealing its activity in the UV-visible range, 
which is identical to the g-C3N4 optical activity reported in literature [26]. However, a significant 
increase in the visible light absorption was observed after adding GO. This confirms that the GO 
addition plays a great role in improving the light harvesting in the visible range for maximum 
utilization of solar light energy. 
3.1.4. Photoluminescence (PL)

Generally, the photoluminescence (PL) emissions give an excellent indication for the charges 
recombination rate in semiconducting materials which is considered as the main challenge in 
the photocatalysis process [21, 27, 28]. Higher PL emissions indicate the presence of higher 
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recombination rate of photogenerated charges while lower emissions are more favorable for 
efficient charges separation and transfer. As shown in Figure 5 (b), pure g-C3N4 exhibited a 
PL spectrum with high intensity peak which is attributed to the fast charge recombination of 
g-C3N4. However, the peak was clearly reduced after coupling the g-C3N4 with GO, revealing the 
significant contribution of GO towards excellent separation efficiency of charge carriers and thus 
improved photocatalytic performance.

Figure 5. UV (a) and photoluminescence (PL) (b) analyses of pure g-C3N4 and g-C3N4/GO samples.

3.2. Performance of photocatalytic CO2 reduction

The effect of modifying g-C3N4 with different percentages of GO (0, 0.25, 0.5, 1 and 2 wt.%) 
on the performance of photocatalytic CO2 reduction to CH4 is shown in Figure 6. It is evident 
that production of CH4 was enhanced with the increase of GO content till 1%, beyond 1% GO 
incorporation the production of CH4 decreased even below pure g-C3N4. This could possibly 
be explained by the effect of shielding, which lowers the amount of light that strikes the 
photocatalyst surface by a substantial margin [20, 29]. This is consistent with the previous study 
for photocatalytic H2 evolution over GO/g-C3N4 composite [30]. 

Figure 6. The effect of GO addition on the g-C3N4 photocatalytic performance for CO2 reduction to CH4.
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The maximum CH4 yield of 25.61 µmol g-1 was attained after 4 h of visible light illumination 
over the g-C3N4/GO nanocomposite photocatalyst. When compared to pure g-C3N4, the CH4 
yield shows a roughly 30% increase in production. The incorporation of GO into the g-C3N4 
nanosheets contributed to the photocatalytic enhancement, as it improved the optical and 
structural characteristics of pure g-C3N4. Several other investigations supported the role of GO 
addition in boosting the photocatalytic performance of pure g-C3N4 [13, 31, 32].

4. CONCLUSION

In summary, we demonstrated the successful synthesis of 2D/2D g-C3N4/GO hybrid photocatalyst 
by applying a simple hydrothermal approach. The catalytic performance of the as constructed 
photocatalyst was evaluated by the CO2 photo-reduction. The improved structural and optical 
properties of the heterostructure photocatalysts directed the outstanding CO2 photo-reduction 
activity. The maximum CH4 production rate of 6.4 µmol g–1 h–1 was attained after employing 
0.5 wt. % GO into g-C3N4 nanosheets. This was substantially higher than that of pristine g-C3N4 
(4.9 µmol g–1 h–1). The improved photocatalytic performance of the g-C3N4/GO heterostructure 
photocatalyst is attributed to the successful coupling of GO co-catalyst, which acted as a solid 
electron mediator and consequently facilitates the electrons transfer rate and CO2 adsorption 
capability of the composite photocatalyst.
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