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with renewable technologies in a region traditionally

reliant on fossil fuels.
Furthermore, the study addresses the practical implications for local energy policy,

suggesting that such hybrid systems can significantly enhance energy security and support
sustainable urban development. The authors studied five scenarios using HOMER. The results
reveals that the annual total costs and payback periods are as follows: for Scenario 1 (wind/utility
grid), the expenditure totals US$1,554,416 and payback period of 4.8/5.8 years; for Scenario 2
(solar/wind/Utility grid), the amount is US$1,554,506 and payback period of 4.8/5.8 years; and
for Scenario 3(solar/wind/storage/utility grid), it escalates slightly to US$1,554,731, all predicated
on the utility grid tariffs and payback period of 4.8/5.8 years. Furthermore, in Scenario 4 (solar/
utility grid), the annual total cost is significantly reduced to US$30,589 and a payback period of

8.1/14.3 years, while Scenario 5 (solar/storage/utility grid) incurs an even lower expenditure of
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US$28,572, again based on the utility grid tariffs and a payback period of 14.0 years.

The findings contribute valuable insights into the scalability and adaptability of renewable
energy solutions, providing a robust framework for policymakers and planners considering
similar implementations in other regions. Overall, the research underscores the potential of
integrated renewable energy systems to transform urban energy infrastructures, promoting a
sustainable and resilient energy future. The HOMER Grid analysis shows that configurations
with energy storage are more cost-effective in the long run, even though they require higher
initial costs. It also offers important insights into the economic viability and optimization of
hybrid renewable energy systems for an EV charging station in Tripoli, Libya. These results
highlight the significance of making calculated investments in renewable energy infrastructure

and supporting policies for the development of sustainable energy.
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1. INTRODUCTION

Because they are abundant and ecologically benign, renewable energy sources like solar, bio, and
wind are gradually replacing fossil fuels. These environmentally friendly energy options play a
major role in the global transition to cleaner energy sources because they drastically lower carbon
emissions and environmental degradation. Renewable energy sources can be used singly or in
combination with other energy sources to create hybrid systems that are more dependable and
efficient. These systems are adaptable; they can operate off the grid, offering energy independence
in isolated locations or for purposes, or on the grid, integrating with current electrical networks
[1-5]. Renewable power capacity is projected to expand significantly over the next five years,
with solar photovoltaic (PV) and wind energy anticipated to comprise a record-breaking 96%
of this increase [6-8]. This dominance is primarily due to the lower generation costs associated
with solar PV and wind compared to both fossil fuel and non-fossil fuel energy sources in the
majority of countries. Additionally, continued policy support is bolstering this growth trajectory.
It is forecasted that by 2028, the additions of solar PV and wind capacity will more than double
compared to their levels in 2022, setting new records annually and culminating in a combined
capacity nearing 710 GW by the end of the forecast period [9,10]. This trend underscores the
accelerating shift towards renewable energy as a cornerstone of global efforts to achieve sustainable
energy futures. In 2022, wind power generation achieved a record increase of 265 TWh, a 14%
rise, bringing the total to over 2,100 TWh. This growth ranked second among all renewable
power technologies, trailing only solar PV [10]. However, to align with the Net Zero Emissions
by 2050 Scenario, which projects wind power generation to reach approximately 7,400 TWh by
2030, it is necessary to elevate the average annual growth rate to around 17% [11]. To meet this
ambitious target, annual capacity additions must surge from about 75 GW in 2022 to 350 GW by
2030. Achieving such a significant expansion will demand considerably enhanced efforts from
both policymakers and the private sector [12,13]. Key focus areas must include streamlining
permitting processes for onshore wind developments and reducing the costs associated with
offshore wind projects, both critical to accelerating capacity growth and fulfilling the ambitious
2030 targets. In 2023, battery storage emerged as the fastest-growing commercially available
energy technology, with its deployment more than doubling on a year-on-year basis [14,15].
This robust expansion was evident across various applications, including utility-scale battery
projects, behind-the-meter batteries, mini-grids, and solar home systems for electricity access,
collectively contributing an additional 42 GW of battery storage capacity worldwide [15,16].
Moreover, the deployment of electric vehicle (EV) batteries increased by 40%, with 14 million
new EVs introduced, representing the majority of batteries utilized in the energy sector [17-
20]. It is important to highlights that, battery storage systems are gaining increasing significance
in both utility-scale and behind-the-meter applications. This trend is driven by declining costs
and the growing proportion of electricity generated from solar and wind sources. The projected
increase in EV sales to approximately 17 million units by 2024, making up over 20% of global
automotive sales, has significant implications for climate change mitigation [21-23]. This surge in
EV adoption can lead to substantial reductions in greenhouse gas emissions by replacing internal
combustion engines with more energy-efficient alternatives and fostering greater integration of
renewable energy sources. This trend underscores the transition of EVs towards a ubiquitous
presence in an increasing array of national markets [24-27]. Despite the confluence of challenges
such as narrow profit margins, the fluctuating costs of battery metals, elevated inflation rates,
and the gradual withdrawal of purchase incentives in certain jurisdictions, the sector’s expansion
remains robust. In the initial quarter of 2024, EV sales experienced an approximate 25% surge
from the same period in the preceding year, mirroring growth rates observed in 2022 [24].
Predictions for 2024 suggest that EV market penetration could escalate to 45% in China, 25%
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in Europe, and surpass 11% in the United States. This anticipated growth is supported by
competitive dynamics among manufacturers, reductions in the prices of batteries and vehicles,
and sustained policy initiatives [24]. In addition to the substantial initial costs associated with
EVs, owners often face significant additional expenses related to establishing necessary charging
infrastructure at their residences or workplaces. One of the most substantial hurdles to more rapid
EV adoption is the high cost associated with establishing grid connections for parking facilities
within buildings. Introducing initiatives where charging stations are considered assets of the
building could reduce the financial burden on individuals by decreasing the upfront investment
required for home or office EV charging setups [25-31]. Furthermore, the implementation of
smart charging technologies, including Vehicle-to-Grid (V2G) and Vehicle-to-Building (V2B),
offers the potential to transform EV's into valuable energy assets. These technologies enable new
business models, such as aggregation, that could significantly lower the total cost of ownership
(TCO) for EV users by optimizing energy usage and potentially generating revenue [32-34]. To
maximize the impact of transport electrification, EVs should be viewed as distributed energy
resources. The batteries within EVs present an opportunity to enhance the penetration of
renewable energy sources by synchronizing energy production and demand, and by leveraging
their flexibility through grid services such as V2G or through aggregation policies. This approach
requires rethinking traditional business models and necessitates accompanying regulatory
adjustments and adaptations in the electricity market. For EVs to be effectively designated as
distributed energy resources, integration of the charging infrastructure into the building’s energy
management system is essential. This integration facilitates the effective participation of EVs in
energy management strategies, ensuring they contribute positively to grid stability and energy
efficiency. In Libya, the nominal capacity of power generation facilities in 2019 was estimated at
approximately 14,500 MW. However, due to ongoing political and security instability, the effective
available generating capacity was substantially reduced to around 44% of the nominal, equivalent
to 6,320 MW. In 2019, the peak electrical demand in Libya reached 7,500 MW, surpassing
the available power generation capacity by 1,200 MW [35-39]. Consequently, various regions
within Libya experienced prolonged power outages throughout the day. Figure 1 illustrates the
distribution of Libyan electricity demand across different utility sectors in 2023, based on the
most recently published and recorded data [40]. The residential sector accounted for 51.1% of
the electrical demand, marking it as the largest consumer, followed by commercial and public
services of 11.2% of the demand.

Industry Residential 51.1% Commercial & Agriculture Non-specified
5.2% public servicesl 1,.2% 7.4% 25.1%

Figure 1. Electricity consumption by sector in Libya for 2023 [40].

In Libya, demographic and economic expansion have been driving annual increases in electricity
demand. Data from the annual reports of the Libyan General Electricity Company (GECOL)
indicate that from 2003 to 2010, electricity demand in Libya grew at an annual rate of 12%. Should
this trend persist, it is projected that by 2030, electricity demand will escalate to approximately 14
GW, representing a doubling, or 100% increase, in demand relative to the levels recorded in 2019
[40]. Anticipated surge in electricity demand by 2030 will necessitate substantial development of
Libya’s electrical infrastructure, alongside significant investments in renewable energy sources
(RES) and EV charging station infrastructure. This expansion aims to ensure uninterrupted
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power generation to meet the growing demand. Consequently, there is a pressing need for
comprehensive research in Libya to examine the implications of integrating RES and EV charging
stations into the power network, specifically focusing on power quality and the stability of the
power-protection system. In the current landscape, RES and EV charging stations are increasingly
adopted due to their cost-effectiveness, the abundance of natural resources, and the benefits of
clean energy [41,42]. There exists a limited corpus of academic research focused on the feasibility
assessment of hybrid renewable energy-based EV charging stations within select urban centers in
Libya. Several studies have been conducted in various cities globally. According to [43], the article
explored the advancements, challenges, and opportunities associated with EV development in
Sub-Saharan Africa (SSA). It proposes strategies to accelerate the region’s transition to EVs.
Despite noteworthy progress, the shift towards EVs in SSA continues to confront substantial
obstacles that require urgent attention. In [44], this article investigated the operational potential
of a hybrid energy system with battery storage in Bizerte, the northernmost city in Africa, located
in Tunisia. Following this, the article utilized the HOMER simulation software to simulate and
optimize the technical-economic feasibility of the system. Various system configurations, both
with and without battery storage components, were explored and analyzed. In this study [45],
the optimal configuration of a hybrid energy system was analyzed using meteorological data
and HOMER software. The chosen system exhibited the most favorable economic parameters,
including the lowest Levelized Cost of Energy (LCOE) at $0.6208 per kg, LCOE at $9.34 per kg.
These figures confirm the system as the most cost-effective solution for the proposed hydrogen
project in Al-Kharj. Moreover, recent research [34] focused on the modeling and analysis of
integrating renewable energy sources and EVs into a microgrid configuration. This microgrid
includes four critical components: a diesel generator serving as the primary power source, a
combination of a photovoltaic (PV) farm and a wind farm for electricity generation, and a V2G
system strategically situated near the microgrid’s load center. A potent software program called
HOMER (Hybrid Optimization of Multiple Energy Resources) is used to plan and improve
hybrid energy systems. To identify the most dependable and affordable energy solutions, it assists
in modeling and assessing the performance of various combinations of storage, conventional
systems, and renewable energy sources. Because of its adaptability, HOMER can be used to assess
both off-grid and on-grid systems, which makes it a crucial tool for planning and implementing
renewable energy projects. Several researchers used HOMER in their energy system simulations
for hybrid modes [46-51].

This study aims to:

1. Create and present a cutting-edge integration approach that boosts the dependability and
effectiveness of urban energy systems by integrating solar, wind, and battery storage.

2. Highlight the advantages of combining solar and wind energy to encourage the adoption
of renewable technologies in areas that have historically relied on fossil fuels.

3. Implement inventive energy management and storage techniques to guarantee a steady
and dependable energy source for electric vehicle (EV) charging.

4. Investigate how renewable energy sources can help support sustainable urban energy
systems and lower carbon emissions.

2. THE DIFFICULTIES AND CHALLENGES FACED BY THE ELECTRICAL ENERGY
SECTORS AND POWER GRIDS IN LIBYA

GECOL holds the responsibility for managing the entirety of Libya’s electrical sector, which
encompasses generation, transmission, and distribution activities. Libya’s power generation
primarily depends on thermal electricity produced from fossil fuels, notably oil and gas. The
key facilities for power generation within the Libyan electricity network are strategically located:
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east of Tripoli, with a capacity of 1,400 MW; Tobruk, with a capacity of 740 MW; and west of
Tripoli and Misratah, each with a capacity of 600 MW. However, the ongoing civil conflict has
restricted the current operational power generation capacity to merely 44% of the total installed
capacity. In this context, the installed power generators comprise 19 power-generation units that
are currently out of service. In 2019, the power generated was sufficient to meet only 25% of the
electrical energy demand. The political and security instability in the region has led to a rapid
increase in power shortages and outages. For instance, in 2019, the average duration of power
blackouts in the western region of Libya amounted to six hours per day.

As the population grows, the demand for electrical energy, an essential component of human
life, has surged in Libya. This increase is particularly evident over the last three years, marked
by a significant rise in construction projects which have contributed to a dramatic escalation in
electrical demand. GECOL projects that the peak electrical demand will reach approximately
14,834 MW by 2030, up from 10,795 MW in 2020. The electrical infrastructure grid in Libya
has not been sufficiently upgraded to accommodate future demand and is beset by numerous
challenges. Firstly, significant power losses occur due to the absence of a regular maintenance
schedule for power plants. Secondly, there is an elevated risk of power outages due to a shortage
of spare parts. Additionally, environmental challenges arise from the emissions produced by
thermal power plants. Clearly, in 2018, Libya ranked 55th globally in greenhouse gas emissions,
with 54 million metric tons of CO, emitted. Consequently, the implementation of renewable
energy systems, such as photovoltaic (PV) and wind power plants, has been identified as a
primary objective of GECOL to simultaneously enhance the power producing capacity and
mitigate emissions of greenhouse gases.

The article makes several noteworthy contributions to the field of renewable energy applications in
infrastructure development, particularly in regions like Libya where traditional energy resources
are predominantly relied upon. Below are the key contributions of this research:

« Innovative Integration of Renewable Energy Sources:

This study pioneers the practical integration of multiple renewable energy sources—solar and
wind—with energy storage systems to power an EV charging station. This approach not only
diversifies the energy mix but also enhances the reliability and efficiency of energy supply,
particularly in an urban residential setting.

« Advancement in Localized Energy Solutions:

By conducting this feasibility assessment at a strategically selected location in Tripoli, the study
demonstrates the potential for localized renewable energy solutions to meet specific community
needs. This is particularly significant in Libya, where the energy demand is rising and the
infrastructure needs diversification to include more sustainable options.

« Utilization of Cutting-edge Simulation Tools:

Employing HOMER Grid software represents a significant methodological advancement in the
design and optimization of microgrids. This tool allows for detailed and accurate simulations of
complex scenarios involving renewable energy, storage, and utility grids, providing insights into
their operational feasibility and economic viability.

« Economic and Environmental Impact Analysis:

The research provides a comprehensive analysis of the economic and environmental impacts of
each energy scenario. It not only assesses direct financial benefits like cost savings and payback
periods but also evaluates broader impacts such as CO, emissions reduction. This dual focus aids
policymakers and investors in making informed decisions that align with economic goals and
sustainability objectives.

« Practical Implications for Policy and Planning:

The findings from this study offer practical insights for urban planners, energy policy makers,
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and private investors about the feasibility, scalability, and impact of hybrid renewable energy
systems in urban settings. The detailed scenario analysis informs future planning and investment
in infrastructure that supports sustainable urban development.

o Enhancement of Energy Security:

By integrating renewable energy sources with existing utility grids and incorporating storage
solutions, the proposed system significantly enhances energy security. This is crucial for Libya,
considering the potential fluctuations in energy supply and the need for stable energy access to
support growing urban populations and economic activities.

o Scalability and Adaptability:

The methodology and findings of this study are scalable and adaptable to other regions and
settings. The comprehensive data collection and parameter settings, along with the robust
simulation process, provide a blueprint that can be customized to assess other types of renewable
energy projects across different geographical and climatic conditions. Thus, this article makes
significant contributions to the field of renewable energy deployment in urban environments,
providing a viable model for the integration of diverse energy sources in a grid-connected setup.

3. OPPORTUNITY AND CHALLENGES OF INSTALLING SOLAR PV, WIND, AND EV
CHARGING STATION IN LIBYA

Libya is located in the Maghreb region of North Africa, positioned at a latitude of 26.3347° N and
a longitude of 17.2692° E. Around 90% of its territory is categorized as desert. Figures 2 and 3
illustrate photovoltaic and wind power potentials, respectively. The area of Libya is approximately
1,759,540 square kilometers, and the country is served by a highway network totaling 83,200
kilometers, of which 47,590 kilometers are paved. The latest estimates for 2023 indicate that the
number of cars has reached 5,483,760. The transportation sector is the largest consumer of fuel,
with fuel consumption reaching about 5,545 thousand tons. Additionally, the transportation
sector consumes about 17,262 terajoules of electricity annually. The amount of CO, emitted from
this sector is estimated at about 18,246 million tons annually [52].

PHOTOVOLTAIC POWER POTENTIAL
LIBYA ESMAP DD

@ WORLD BANKOROUP

Tripol

Misrala

Lang term average of PYOUT, pericd 1904-2018
Dalytotsts: &8 50 52 54 56

I
Yertprotsw W3 1826 W99 W2 245

Figure 2. Photovoltaic power potential in Libya [53].
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Figure 3. Wind power potential in Libya [54].

A. Opportunities:

« Resource Availability:

Libya is endowed with one of the highest levels of solar irradiance globally, averaging over 3,000
hours of sunshine per year, coupled with consistent wind currents particularly in the coastal
regions. This geographic advantage presents a prime opportunity for harnessing solar and wind
energy at a large scale.

« Reduction in Energy Import Costs:

By tapping into its renewable resources, Libya can reduce its reliance on imported fuels for power
generation, thereby saving substantial foreign exchange reserves and reducing vulnerability to
global oil price fluctuations.

 Sustainable Energy Development:

Transitioning to renewable energy aligns with global sustainability goals and can position Libya
as a leader in renewable energy in the region. This shift can attract international grants and
funding aimed at environmental sustainability.

+ Technological Advancement:

The development of solar, wind, and EV infrastructure can stimulate the local technology sector,
encouraging innovation and modernization across related industries, such as manufacturing and
services.

+ Tourism and Image Boost:

Implementing green initiatives can improve Libya’s international image, potentially boosting
tourism and attracting environmentally conscious tourists and investors.

B. Challenges:

The installation of PV systems, wind farms, and EV charging stations in Libya faces several distinct

challenges, largely due to a combination of technical, economic, and socio-political factors:

 Political and Security Instability: Libya’s ongoing political turmoil and security issues pose
significant risks to the implementation and maintenance of renewable energy infrastructure.
These conditions can deter investment and disrupt project development, management, and
operation.

o Economic Constraints: Despite its vast oil reserves, Libyas economy has suffered due to
prolonged conflict, affecting its financial capability to invest in new technologies. Funding
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renewable energy projects is particularly challenging given the current economic instability.

« Infrastructure Limitations: The existing electrical grid in Libya is outdated and has been
damaged by conflict, leading to frequent outages and reduced capacity. Integrating renewable
energy sources and EV charging infrastructure requires substantial upgrades to the existing
grid to handle new types of loads and to ensure stability.

o Technical Expertise and Workforce Training: There is a shortage of local technical expertise in
renewable energy technologies. Developing a skilled workforce is essential for the installation,
maintenance, and troubleshooting of advanced technologies like solar PV, wind turbines, and
EV charging stations.

« Regulatory and Policy Framework: Libya lacks a comprehensive regulatory framework that
supports renewable energy projects. Without incentives, clear guidelines, or governmental
support, it can be difficult for these projects to get off the ground.

« Environmental and Geographical Considerations: While Libya has significant solar and wind
resources, the harsh desert environment can be detrimental to the equipment. Sand and dust
can reduce the efficiency of solar panels and increase the wear and tear on wind turbine
components.

« Logistical Challenges: The large geographic spread of potential sites for wind and solar farms,
coupled with the current state of roads and transportation infrastructure, complicates the
logistics of moving materials and workers to installation sites.

 Cultural and Social Acceptance: Transitioning to renewable energy sources and introducing
technologies like EV charging stations require public acceptance and behavioral changes.
Building awareness and gaining the support of local communities are crucial for the successful
adoption of these technologies.

Addressing these challenges requires coordinated efforts between the government, private sector,

international partners, and local communities to create a conducive environment for renewable

energy and EV infrastructure development in Libya.

4. METHODOLOGY

In this study, researcher employed a detailed and methodology to evaluate the feasibility of
establishing a hybrid renewable energy-powered EV charging station at a residential building in
Tripoli, Libya. HOMER advanced capabilities is used to simulate various energy configurations
to assess their economic viability and environmental impact. The methodology incorporates
the analysis of multiple scenarios involving different combinations of renewable energy sources
and storage options integrated with the utility grid. This process is underpinned by a thorough
collection of site-specific data, technical specifications, and environmental conditions to ensure
the accuracy and relevance of our feasibility assessments. Through this methodology, we aim to
identify the most efficient and sustainable energy solution for the proposed EV charging station.
The selection of specific types of solar cells, wind turbines, frequency converters, and batteries
was based on the outcomes of local studies [55,56]. A table detailing the technical and electrical
characteristics of these components is provided in the appendices.

A. Study Location and Context

The feasibility assessment of a hybrid renewable energy-based EV charging station is conducted
at a strategically chosen site—an apartment building in Tripoli, Libya. Figure 4 demonstrates the
precise location of the selected residential area. This location is pinpointed at latitude 32°51.7’N
and longitude 13°10.3’E, encompassing four floors and serviced by the General Electric Company
of Libya (GECOL). The proximity to the power grid and urban infrastructure makes this an ideal
site for deploying a hybrid renewable energy system.
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Figure 4. Location of the selected residential area.

B. Solar energy (P»v)
The real PV panel power according to real operation conditions of surface cell’s temperature
(Ter) and global tilted solar irradiation (Hy) is correlated by [57]:
H
Ppy = Py |:l+ﬂp,T(]::ell _TSTC):IX q £
Where Ppyis the real PV power (W); Psrc is the PV power under Standard Test Condition STC;

Py is the temperature coeflicient (%/°C); Tsrc and Hsre denote the STC temperature (°C) and
solar radiation (W/m?), respectively. The cell’s temperature (Te) is estimated as [58]:

T, =T,+0.07H, (2)

Ca

(1)

STC

Where: T.. is hourly ambient air temperature (°C).

C. Wind energy

Three requirements must be met by the wind turbine to maximise energy output: low cut-in
speed, rated wind speed that is equal to or greater than wind speed, and high cut-oft speed. The
power of wind turbine as a function of wind speed are expressed using equation 3 [59, 60].

Z.t cut—in
Prat{[/ i 7 ) J cht—in—<VZ,t—<cht—oﬁ”
E, = rat  cut—in (3)

< >
0 ’ VZ,t_cht—in OR VZ,t_cht—oﬁ

Where: P, is the rated power of the wind turbine at rated wind speed Vi, Vicut.in and Vo are
the cut-in and cut-off wind speeds, and V7, is the wind speed at the wind turbine hub height ()
and it is calculated from:

h a
v, =V, | -~
aeo [ hy J , where, Vy, is the wind speed at a certain elevation (o) and « is the wind

shear coefhicient [61].

D. Economic and Environmental Analysis
The LCOE of electrical energy generated by the proposed hybrid renewable energy system with
considering the CO; social cost Cco, may be calculated as [62]:

e CHRS +OM HRS C002

LOCE =+ - (4)

Where:
Cuzrs represent the average capital costs of the proposed HRES in US$, and OM s is the operation
and maintenance cost of HRES. E indicates the annual energy yields of HRES in kWh/year, i is
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the interest rate and is assumed to be equal to 2%, and n is the plant’s lifespan and is assumed to
be 30 years [63]. And Cco: represent the CO; social cost, which estimated from:

Cco2 = EF, co, X G e X ¢c02 (5)

EF,, is the emission factor of CO; [978 kg CO,/MWHh], G_elec is the annual energy generated
by the HRES [MWh], and ¢coz indicates to the international price of CO.. The average carbon
price has been set at least $75 per ton CO, by the end of the decade to succeed the global climate
goals, and would rise to $85 a ton in 2030 [64].

The amount of CO; saved (Qcoz) may be estimated as follows [65]:

Qco2 = EFC()2 [EHRE _EGrid] (6)
Where Eure and Egna are the energy generated by the HRES and the utility grid in MWh,
respectively.
The payback time money (PT) can be estimated by [66]:
C
PT = —HRS 7
IR (7)

Where AR Is the average annual return

E.Software and Analytical Tools

The study employs HOMER Grid to obtain the best suggested scenario. Figure 5, illustrates a
hybrid renewable energy-powered EV charging station integrated with utility grid. This tool is
crucial for assessing economic viability and operational feasibility, providing detailed outputs on
cost-effectiveness, energy efliciency, and system sustainability.

DC
UTILITY GRID | Midrise Appartme PV

~ 1 | e

—= L o
¥ = -
N

70551 KWh/d
7018 kW peak

Highway CONVERTER STORAGE
s

1500 kKW max
WT [100KW]

—

Figure 5. A hybrid renewable energy-powered EV charging station integrated with utility grid.

F. Energy Scenarios

The research explores five distinct scenarios to identify the most effective configuration for the

hybrid renewable energy-powered EV charging station:

« Scenario 1: Integration of wind energy with utility grid.

» Scenario 2: Hybrid energy system consists of solar energy/wind energy/utility grid.

o Scenario 3: Hybrid energy system consists of solar energy/wind energy/energy storage/
connected to the utility grid.

 Scenario 4: Integration of solar energy system with utility grid.

» Scenario 5: Hybrid energy system consists of solar energy/energy storage/connected to the
utility grid.

Each scenario is modeled to assess its performance under local environmental conditions and

utility rates, thereby determining the optimal setup for maximum efficiency and reliability.

G. Data Collection and Parameter Settings

Data on the technical specifications of the proposed hybrid renewable energy systems and EV
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integration are detailed in Table 1 [65-67]. This includes the capacity of each energy system, and
storage capabilities. Moreover, Geographic and meteorological data specific to Tripoli, including
solar irradiance, wind speed, and utility rate structures, are incorporated into the HOMER Grid
simulations. Table 2 indicates essential meteorological data for multiple cities in Libya [65].

Table 1. The parameter and technical specification of a hybrid renewable energy-powered EV integrated with

utility grid.
Parameter Technical Specification
Utility grid 415V, 50Hz
Wind turbine 100.0 kW
PV 30.0 kW
Converter 33.0kW
Battery storage 118.0 Ah

The utility grid is configured to operate at a voltage of 415 V with a frequency of 50 Hz, ensuring
compatibility with standard industrial and commercial equipment requirements. The renewable
energy generation system includes a wind turbine with a substantial capacity of 100.0 kW,
designed to harness wind energy efficiently. Complementing this, a photovoltaic (PV) system is
installed with a capacity of 30.0 kW, which converts solar radiation into electrical energy through
solar panels. For energy conversion and regulation, the system is equipped with a converter of
33.0 kW. This converter is crucial for matching the output from the renewable sources—both
wind and solar—to the specifications of the utility grid, as well as managing voltage and current
to optimize the energy transfer process. Lastly, the energy storage component of the system
consists of a battery with a capacity of 118.0 Ah. This battery storage is integral for maintaining
energy supply stability, allowing for energy accumulation during peak production periods and
its subsequent release during times of low production or high demand, thereby enhancing the
overall efficiency and reliability of the energy system.

Table 2. An essential meteorological data for multiple cities in Libya [65].

Gobal .
horizontal Wind Relative
Daylight Temperatue Hummidity | Rainfall
. h solar °C speed % mm
City irradiation m/s
W/m’
Avg. | max | Avg. | Max | Min | Avg. [ Max | Avg. [ Max | Min. | Avg. | Avg. | Max
Tripoli 12:10 | 14:18 | 437 | 1030 | 1 21 39 4 17 16 62 0.03 6
Ajdabiya 12:10 | 14:06 | 471 | 1057 | 2 21 | 40 5 15 15 64 0.02 3
Tubroq 12:10 | 14:12 | 464 | 1041 | 1 21 | 40 5 16 | 22 70 | 0014 [ 2
Benghazi 12:07 | 13:48 | 450 | 1047 | 2 19 | 37 5 18 19 68 10.025]| 5
Al-Kufra 12:09 | 13:54 | 517 | 1207 | -1 22 | 47 4 11 2 27 10.001 | 2
Ghat 12:09 | 13.42 | 503 | 1200 | 1 23 | 46 4 14 4 26 0003 | 2
Murzuq 12:09 | 13:42 | 533 | 1224 | 1 23 | 46 5 13 2 27 10001 | 4
Sebha 12:09 | 13:48 | 510 | 1161 | -1 23 | 46 4 15 4 31 | 0.003 | 3
Al-Jufra 12:09 | 14:00 | 485 | 1180 | 1 21 | 46 4 16 3 41 ] 0.007 [ 3
Sirte 12:10 | 14:06 | 453 | 1203 | 1 21 | 45 4 17 5 56 | 0.013 | 5
Ghadamis | 12:10 | 14:06 | 475 | 1151 | -3 | 22 | 48 4 16 4 33 10007 [ 2
Gharyan 12:10 | 14:12 | 480 | 1195 | -4 19 | 45 4 18 6 45 0.02 3
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It is important to highlight that the city of Tripoli experiences significant sunlight exposure with
an average daily daylight duration of approximately 12:10h, peaking at 14:18h minutes during
the longest days. Additionally, Tripoli is characterized by robust solar energy potential, evidenced
by the average global horizontal solar irradiation of 437 W/m?, which can reach up to 1030 W/
m?” under optimal conditions. In terms of temperature, Tripoli showcases a wide range with a
minimum recorded temperature of 1°C, an average temperature around 21°C, and a maximum
that can soar up to 39°C. This variation indicates a climate that can support diverse energy
management and agricultural strategies. Wind conditions in Tripoli are moderate yet consistent,
with average wind speeds around 4 m/s and occasionally peaking at 7 m/s. This provides a decent
opportunity for wind energy exploitation, although it is less prominent compared to solar energy
potential due to the higher irradiation levels. Furthermore, the relative humidity in Tripoli is
remarkably low, averaging at 0.03% and reaching a maximum of 6%. This exceptionally dry
climate underscores the need for efficient water management and irrigation strategies in both
urban planning and agriculture.

H. Simulation Process

Using HOMER Grid, each scenario is simulated over a projected operational period to evaluate
several key performance indicators such as net present cost, cost of energy, system efficiency, and
greenhouse gas emissions. The simulation process includes varying load demands typical for an
EV charging station and considers potential grid outages and fluctuations to ensure robustness
and reliability.

I. Evaluation and Optimization

The outputs from HOMER Grid provide a comparative analysis of each scenario, highlighting
their economic and environmental impacts. The study prioritizes scenarios that offer the lowest
cost of energy and highest reliability while minimizing CO, emissions. Sensitivity analyses are
also conducted to understand the impact of changes in fuel prices, solar and wind availability,
and government incentives on the feasibility of each scenario.

J. Assumptions, limitations and uncertainties

In order to make the analysis not complicate, the authors adopted the following assumptions:
There is a large and reliable grid capable of providing and absorbing any shortage or excess of
energy; Fixed operating cost which includes maintenance, insurance and labor costs; Constant
efficiencies for all the instruments; The land and land preparing costs are not included; The CO,
emission factor is considered 0.978 kg/kWh for the electricity generation system in Libya [68].
The main limitation of the present study is that it does not provide a sensitivity analysis of the
effect of various design and operating parameters and their weights on the investment decision.
The major sources of uncertainty are the data availability, model selection and parameter
estimation. It reported that the uncertainty in solar irradiation reaches 5% [69]. The price of
renewable energy facilities is also considered as a source of uncertainty; it remarked that the
variance in the prices of the PV modules exceeded 360% [70]. Also, the currency exchange rate
is considered as one of the uncertainty sources in the results.

5. RESULT AND DISCUSSION

This section presents the findings from the simulation of five distinct energy scenarios using
the HOMER Grid software, a sophisticated tool developed by HOMER Energy for optimizing
grid-connected power systems and designing microgrids. Each scenario was carefully designed
to test the integration of various combinations of renewable energy sources and storage solutions
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with the utility grid, aiming to determine the most economically viable and environmentally

sustainable option for a hybrid renewable energy-based EV charging station located in Tripoli,

Libya.

« Scenario 1: Wind/Utility Grid investigates the feasibility of integrating wind turbines with the
existing utility infrastructure.

« Scenario 2: Solar/Wind/Utility Grid evaluates the combined impact of solar photovoltaics
and wind energy in conjunction with the utility grid.

« Scenario 3: Solar/Wind/Storage/Utility Grid; explores the benefits of adding storage to the
mix of solar and wind energy, providing insights into the enhanced reliability and efficiency
of the system.

« Scenario 4: Solar/Utility Grid focuses solely on the implications of deploying solar energy
systems integrated with the utility grid.

« Scenario 5: Solar/Storage/Utility Grid assesses the effectiveness of solar panels paired with
energy storage systems, highlighting their potential to stabilize energy supply and reduce
reliance on grid electricity.

Through the simulations, each scenario was assessed for its performance metrics including net

present cost, energy reliability, carbon footprint reduction, and overall system efficiency. The

results are analyzed in light of current energy policies, economic conditions, and technological
advancements in Libya. This discussion is not only synthesizes the comparative advantages and
limitations of each scenario but also contextualizes the findings within the broader goals of
sustainable development and energy security in the region. The use of HOMER Grid enables

a comprehensive evaluation by modeling the interactions between multiple technologies and

variable utility rates, ensuring that the conclusions drawn are robust and applicable to real-world

settings.

A. Scenario 1: Wind/Utility Grid

Scenario 1 utilizes wind turbines in conjunction with the utility grid to provide a reliable power
supply while reducing dependence on conventional energy sources. This system is particularly
effective in regions with high wind resources, offering significant cost savings and environmental
benefits by lowering carbon emissions. It is a robust solution for areas looking to leverage local
wind patterns to decrease energy costs and enhance sustainability. Table 3 presents comprehensive
financial analysis of Wind/Utility Grid system implementation. The annual total cost amounts
to US$1,554,416 based on the tarift (Utility Grid) for Scenario 1, as outlined in the appendixes
Table Al.

Table 3. Comprehensive financial analysis of Wind and Utility Grid system implementation Scenario 1.

Factor Value
Average annual energy bill savings: US$1,586,077.39
Capital cost (CAPEX) US$6,300,000.00
Payback time (simple/discounted): 4.8/5.8 years
Internal Rate of Return (IRR): 20.44%
Project lifetime savings over 25 years: US$39,651,935
CO, savings 30,467 ton/year

Where capital cost (CAPEX) is fixed, one-time cost associated with the acquisition of land,
structures, building materials, and machinery used in the manufacturing of goods or the provision
of services. Internal Rate Return (IRR) is the anticipated annual rate of growth for an investment.
The average annual savings on energy expenditures amount to US$1,586,077.39. The capital
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expenditure required for implementation is quantified at US$6,300,000.00. The system exhibits a
payback period, calculated under simple and discounted cash flow methods, of 4.8 and 5.8 years
respectively. The Internal Rate of Return (IRR) for the project is calculated at 20.44%. Over the
projected operational lifespan of 25 years, the total savings accrued from the project are estimated
to be US$39,651,935. Figure 6 presents Cash Flow for Scenario 1.
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Figure 6. Cash Flow for Scenario 1.

The Cash Flow Summary for Scenario 1: Wind/Utility Grid provides a detailed visualization
of the financial transactions over the life of the project. This summary encapsulates all critical
financial metrics, including capital expenditures, operating expenses, and the resultant savings
over time. Figure 7 illustrates the plot of peak day wind and grid purchases during one year for
scenario 1.
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Figure 7. The plot of peak day wind and grid purchases during one year.

The Performance Summary for scenario 1: Wind/Utility Grid offers an insightful analysis
of how the integration of wind turbines with the existing utility grid impacts overall system
performance. This summary encompasses various performance metrics that illustrate the
efficiency, sustainability, and financial benefits of the system. Figure 7 shows that the dependency
on the grid decreases and reach its minimum in windy days. This means a reduction of burning
fossil fuel and decrease of CO, emission.

B. Scenario 2: Solar/Wind/Utility Grid
Scenario 2 represents a hybrid renewable energy system that combines solar photovoltaics (PV)
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and wind turbines with the existing utility grid to maximize energy production and minimize
reliance on conventional power sources. This integrated approach leverages the complementary
nature of solar and wind energy, ensuring a more consistent and reliable energy supply
throughout the day and across different weather conditions. Table 4 indicates comprehensive
financial analysis of solar/Wind/Utility Grid system implementation Scenario 2. The annual total
cost amounts to US$1,554,506 based on the tarift (Utility Grid) for Scenario 2, as illustrated in
the appendixes Table A2.

Table 4. Comprehensive financial analysis of Solar/Wind/Utility Grid system implementation Scenario 2.

Metric Value
Average annual energy bill savings: US$1,586,167.39
CAPEX: US$6,302,426.00
Payback time (simple/discounted): 4.8/5.8 years
Internal Rate of Return (IRR): 20.43%
Project lifetime savings over 25 years: US$39,654,185
CO: savings 30,469 ton/year

The average annual reduction in energy expenditures achieved through this project is
quantified at US$1,586,167.39. The total capital expenditure required for initiating this system
is US$6,302,426.00, which encompasses all necessary costs for the installation and integration
of the system components. The financial analysis of the investment reveals a straightforward
payback period of 4.8 years, with a discounted payback period, accounting for the time value of
money, extending slightly longer to 5.8 years. The project’s Internal Rate of Return, an indicator
of its profitability over time, is impressively calculated at 20.43%. Over the operational lifespan
of 25 years, the projected total savings accruing from this system amount to US$39,654,185,
substantiating a significant long-term financial benefit from the implementation. Figure 8
highlights Cash Flow for Scenario 2.
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Figure 8. Cash Flow for Scenario 2.
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This bar graph illustrates the nominal cash flow over a 25-year period, categorized into Capital,
Replacement, Salvage, and Operating costs. Initially, there is a significant capital expenditure in
Year 0, with a steep decline to nearly -7 m. Throughout Years 1 to 24, the graph shows consistent
annual operating costs, depicted by light blue bars indicating a slight positive cash flow each
year. In Year 24, there is also a substantial replacement cost represented by a large orange bar,
which dips to around -3 m. The final year, Year 25, marks a significant positive cash flow, as
shown by a tall red bar, suggesting a salvage value or a final revenue spike of approximately 4.5
m, highlighting the lifecycle costs and benefits of the investment with major expenditures at the
beginning and end, and steady, minor positive cash flows during the operational phase. Figure 9

illustrates the plot of peak day wind, PV and grid purchases during one year for scenario 2.
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Figure 9. The plot of peak day wind, PV and grid purchases during one year for scenario 2.

Scenario 2 is designed to offer considerable savings on energy bills, with an average annual saving
of $1,586,167.39. The initial capital expenditure required to set up this system is approximately
$6,302,426.00. Despite the substantial upfront cost, the system promises a rapid payback time
of 4.8 years on a simple basis and 5.8 years when discounted. Over the life of the project, which
spans 25 years, the total projected savings amount to $39,654,185. In addition, an attractive aspect
of Scenario 2 is its high Internal Rate of Return (IRR), which stands at 20.43%. This rate indicates
a strong profitability potential, making it an appealing investment for stakeholders considering
long-term benefits and financial returns from renewable energy installations.

Moreover, the system incorporates both solar photovoltaic (PV) panels and wind turbines. The PV
components are priced at $0.30 per watt, summing up to a capacity of 7.09 kW. Additionally, the
system includes 90 units of XANT M-21-ETR wind turbines, each rated at 100kW. The combined
installation and component costs align with the total capital expenditure, and the annual
operational expenses are estimated to be around $270,071. Figure 9 show that the dependency
of the fossil fuel is minimized except for August where the load is increasing dramatically due to
the hot weather.

Besides that, Monthly analysis of energy charges after the installation of Scenario 2 demonstrates
significant reductions in costs throughout the year. These reductions are pivotal in achieving the
high annual savings forecasted, which substantiate the system’ efficiency in cost management
and energy savings. Beyond the financial advantages, Scenario 2 significantly contributes to
environmental sustainability. It drastically reduces carbon dioxide emissions annually, with the
exact figures tailored to the specific generation sources of the grid. This reduction in greenhouse
gases is a critical factor in the system’s value proposition, emphasizing its role in promoting eco-
friendly energy solutions.

C. Scenario 3: Solar/Wind/Storage/Utility Grid

Scenario 3 represents a highly efficient and economically viable solution for energy management
and sustainability. By combining solar panels, wind turbines, and storage batteries, this system
effectively harnesses and balances renewable energy sources to maximize savings and minimize
environmental impact. Table 5 presents comprehensive financial analysis of Solar/Wind/Storage/
UTILITY GRID system implementation. The annual total cost amounts to US$1,554,731based
on the tariff (Utility Grid) for Scenario 3, as outlined in the appendixes Table A3.
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Table 5. Comprehensive financial analysis of Scenario 3 system implementation.

Metric Value
Average annual energy bill savings: US$1,586,392.39
CAPEX: US$6,310,952.00
Payback time (simple/discounted): 4.8/5.8 years
Internal Rate of Return (IRR): 20.40%
Project lifetime savings over 25 years: US$39,659,810
CO: savings 30,472 ton/year

With a capital expenditure of $6,310,952.00 and a compelling internal rate of return of 20.40%,
the system offers significant financial returns, boasting an average annual savings of $1,586,392.39
and total projected savings of $39,659,810 over 25 years. The quick payback period of 4.8 years
further underscores its cost-effectiveness. Additionally, the integration of storage capabilities
enhances the systems resilience, allowing for better energy management during peak and
off-peak times, thereby stabilizing the grid and providing more consistent energy availability.
This system not only aligns with financial goals but also with environmental sustainability by
significantly reducing CO, emissions, marking it as a forward-thinking solution for modern
energy challenges. Figure 10 illustrates cash flow for scenario 3.
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Figure 10. Cash flow for scenario 3.

This chart provides a visual representation of the cash flow dynamics of an energy system,
highlighting the typical financial lifecycle of initial investment, ongoing operational costs,
periodic large expenditures for replacements, and eventual recoupment of some value at the end.
It is a useful tool for understanding financial planning and the long-term financial commitments
involved in renewable energy projects. Figure 11 illustrates the plot of peak day for scenario 3
during one year.
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Figure 11. The plot of peak day for scenario 3 during one year.

Scenario 3 exemplifies a sophisticated integration of renewable energy technologies and storage
solutions, marking it as a highly effective system for modern energy needs. The combination
of solar panels, wind turbines, and storage units within this system not only maximizes energy
generation from renewable sources but also ensures consistent energy availability through
effective storage and management. Financially, the system is remarkably viable, featuring a rapid
payback period, high internal rate of return, and substantial long-term savings, thereby presenting
a compelling case for investment. Moreover, the environmental benefits associated with Scenario
3, primarily its significant reduction in CO, emissions, align well with global sustainability goals,
making it an essential model for future energy systems. Its ability to stabilize the grid and provide
reliable power supply further underscores its strategic importance in an evolving energy market.
Thus, Scenario 3 stands out as a forward-thinking solution that addresses both economic and
ecological aspects of energy production, offering a blueprint for the future of renewable energy
infrastructure.

D. Scenario 4: Solar/Utility Grid

The exploration of sustainable energy solutions has become a paramount concern in today’s rapidly
evolving energy landscape, marked by growing environmental awareness and the escalating
costs of traditional energy sources. In this context, the integration of renewable energy systems
presents a viable pathway toward reducing energy expenditures and minimizing ecological
footprints. This paper examines the financial viability and environmental benefits of a specific
energy system—referred to here as “ Scenario 4”. This system embodies a strategic combination
of renewable energy technologies and storage solutions, optimized to enhance energy efficiency
and stability. This article dissects the key financial metrics of this system, including its capital
expenditure, average annual energy bill savings, payback periods, internal rate of return, and
projected lifetime savings, to evaluate its potential as a sustainable investment in the face of
contemporary energy challenges. Table 6 presents comprehensive financial analysis of Scenario 4
system implementation. The annual total cost amounts to US$30,589 based on the tariff (Utility
Grid) for Scenario 4, as outlined in the appendixes Table A4.
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Table 6. Comprehensive financial analysis of Scenario 4 system implementation.

Metric Value
Average annual energy bill savings: US$1,072.87
CAPEX: US$7,713.85
Payback time (simple/discounted): 8.1/14.3 years
Internal Rate of Return (IRR): 9.62%
Project lifetime savings over 25 years: US$26,822
CO:z savings 20.608 ton/year

The financial metrics for the specified system reveal a modest yet consistent economic advantage
in terms of energy cost savings. In term of average annual energy bill savings. The system provides
annual savings amounting to approximately $1,072.87. This figure reflects the system’s ability
to reduce operational costs on a yearly basis. However, due to capital expenditure (CAPEX),
the initial investment required for this system is relatively low at $7,713.85. This initial outlay is
crucial for understanding the system’s financial feasibility and scale of deployment. Following to
this, the simple payback period is estimated at 8.1 years, while the discounted payback period
extends to 14.3 years. These durations indicate the time needed for the savings generated by the
system to cover the initial capital cost. The longer discounted payback period accounts for the
time value of money, suggesting a slower recovery of investment when considering the cost of
capital. In term of internal rate of return (IRR), an IRR of 9.62% suggests that the project has a
moderate rate of return. This percentage is critical for investors assessing the profitability of the
project relative to other potential investments with similar risk profiles. Moreover, over the span
of 25 years, the total savings accrued from the system are projected to be $26,822. This long-term
saving is indicative of the system’s overall financial benefit and underscores its capacity to provide
economic value over its operational life. Figure 12 demonstrated cash flow for scenario 4.
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Figure 12. Cash flow for scenario 4.

This type of cash flow visualization is crucial for assessing the financial viability of long-term
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investments like energy systems. It helps investors and decision-makers understand the timing
and scale of expenditures and returns, including ongoing costs and the impact of significant
investments or replacements during the system’s lifecycle. The presence of replacement costs and
salvage value also highlights the importance of considering end-of-life scenarios in the overall
economic planning of energy projects. Figure 13, illustrates the plot of peak day for scenario 4

during one year.
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Figure 13. The plot of peak day for scenario 5 during one year.

Scenario 4 as outlined in the HOMER Grid Report, emphasizes a streamlined integration of solar
panels with the existing utility grid, omitting additional renewable sources or storage components.
This system is designed for simplicity and effectiveness, relying solely on solar energy to offset
utility power usage. Moreover, this system benefits from relatively low operational demands
compared to more complex setups that include wind or storage elements. The maintenance of
solar panels is straightforward, which can contribute to lower ongoing costs and less technical
complexity in daily operations. In essence, Scenario 4’ provides an effective solution for harnessing
solar energy to decrease reliance on traditional power grids, promoting both economic savings
and environmental benefits. Its simplicity and cost-effectiveness make it particularly suitable for
scenarios where easy deployment and maintenance are crucial.

E. Scenario 5: Solar/Storage/Utility Grid

Scenario 5 is designed to integrate solar energy generation with battery storage and utility grid
connectivity. This configuration leverages the benefits of solar power while enhancing system
reliability and efficiency through energy storage. Table 7, highlights comprehensive financial
analysis of Scenario 5 system implementation. The annual total cost amounts to US$28,572 based
on the tariff (Utility Grid) for Scenario 5, as outlined in the appendixes Table A5.

Table 7. Comprehensive financial analysis of Scenario 5 system implementation.

Metric Value
Average annual energy bill savings: US$3,089.11
CAPEX: US$28,389.65
Payback time (simple/discounted): 14.0/ years
Internal Rate of Return (IRR): 5.46%
Project lifetime savings over 25 years: US$77,228
CO: savings 59.337 ton/year

The financial specifics provided for “System #5: Solar + Storage: STORAGE + UTILITY GRID”
allow for a comprehensive analysis of its investment potential and cost-effectiveness. The initial
cost to establish this system is $28,389.65. This reflects a significant investment, typically due to
the integration of both high-capacity solar panels and advanced storage solutions. The system
provides an estimated annual savings of $3,089.11 on energy bills. These savings are facilitated
by the system’s ability to generate renewable energy and store excess power, reducing the need to
purchase electricity from the grid, especially during peak pricing periods. The payback period for
this system is calculated at 14.0 years. This timeline indicates how long it will take for the savings
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generated by the system to cover the initial capital costs.
A 14-year payback period is relatively long, which might be attributed to the higher upfront costs
associated with the storage components. Internal Rate of Return (IRR) of 5.46% is considered
modest in terms of investment returns. While it shows a positive return, it is relatively low,
suggesting that the financial risk may be higher or the financial gains less lucrative compared to
other investment opportunities. This rate might be acceptable depending on the specific financial
goals and risk tolerance of the investor. Over a projected operational lifespan of 25 years, the
system is anticipated to achieve total savings of $77,228.

This long-term saving showcases the systems ability to continue providing economic benefits
well beyond its payback period, contributing to its overall appeal as a sustainable investment.
The outlined financial metrics suggest that while “ scenario 5” offers significant long-term
savings and environmental benefits, the relatively high initial costs and modest IRR indicate
that it is a conservative investment. This system would be especially appealing in regions with
high electricity rates or for individuals prioritizing energy independence and sustainability over
immediate financial returns. Figure 14 shows cash flow for scenario 5.
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Figure 14. Cash flow for scenario 5.

Scenario 5: Solar + Storage: STORAGE + UTILITY GRID exemplifies a sophisticated approach
to integrating renewable energy solutions into residential or commercial infrastructures. The
system’s design incorporates advanced solar photovoltaic panels and a robust battery storage unit
to optimize energy usage and enhance self-sufficiency. Figure 15 presents the plot of peak day for
scenario 5 during one year.
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Figure 15. The plot of peak day for scenario 5 during one year.

Scenario 5: Solar/Storage/Utility Grid combines solar panels with battery storage to enhance
energy efficiency and independence from the grid. This system involves a considerable initial
investment of $28,389.65, justified by the integration of advanced technology for solar energy
collection and storage. Annually, it offers savings of approximately $3,089.11 on energy bills
by leveraging stored solar energy to reduce grid dependency during peak times. The financial
return includes a payback period of 14.0 years and an internal rate of return of 5.46%, reflecting
a moderate profitability that underscores the system’s long-term viability rather than immediate
returns. Over a projected 25-year lifespan, the total savings amount to $77,228, highlighting
the system’s capacity to provide substantial economic benefits over time while contributing to
environmental sustainability through reduced carbon emissions.

The authors results comply with other researchers who also use similar strategies. For example,
in study by Podder et al. [71], authors discussed the use of solar photovoltaic (PV) and biogas
energy solution for EV charging. With a net present cost of $93,530 and a 25-year lifespan, the
4.5 kW solar PV system is found to be the most efficient after a cost analysis using HOMER
software. System costs are covered in the first 12 years, and financial benefits are realized in the
next 13 years. The study finds that the system provides an environmentally and financially viable
solution for renewable energy-based EV charging and emphasizes the reduction of greenhouse
gas emissions. Though authors used smaller hybrid system, they end with similar results to the
current study.

The study of Appalanidu and Srinivasa [72] suggests a grid-connected photovoltaic-based
microgrid for EV charging to address concerns about the infrastructure needed for EV charging
as they gain popularity. Its goal is to study a fictitious EV population charging while designing
and modeling the microgrid. The simulations consider actual EV loads and assess supply-load
mismatches, energy mix, and solar plant power generation. The weather influences power
output, according to the results, and sensitivity analysis reveals how scaled EV sessions affect
microgrid power balances. All things considered, grid-connected microgrids guarantee smooth
EV charging even in the event of onsite solar energy generation uncertainties.

Al Wahedi and Bicer [73] suggests a standalone renewable energy-based charging station as a
solution to the problem of satisfying EV charging demand without taxing the electrical grid. The
study models and simulates, considering geographical and meteorological conditions, the ideal
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configuration in four cities of Qatar using HOMER software. The best approach, according to
the findings, is to combine battery storage, fuel cells, CPV/T systems, wind turbines, and bio-
generators. The method can be applied in a variety of locations because the net present cost varies
from $2.53M to $2.92M and the cost of electricity from $0.285 to $0.329 per kWh.

6. CONCLUSION

To sum up, the HOMER Grid analysis offers important new information about the viability
and best practices for hybrid renewable energy systems designed for an EV charging station
in Tripoli, Libya. Five different configurations were analyzed by the simulations, spanning
from standalone systems to integrated solar, wind, and energy storage systems. Despite higher
initial capital costs, the energy storage-incorporating scenarios (Scenarios 3 and 5) offer better
long-term cost-effectiveness, according to the economic analysis. Better use of excess energy
is made possible by storage systems, which also lessen reliance on the grid for power during
peak tariff periods. System reliability and operational efficiency are enhanced when renewable
energy is integrated with grid support. By balancing generation and storage, Scenario 3 (Solar/
Wind/Storage) effectively accommodated variability in renewable energy supply and demand,
demonstrating a particularly robust performance. The study emphasizes how hybrid systems,
especially those that combine solar and wind power, can greatly reduce carbon emissions and
support global sustainability initiatives.

The results support the use of increasingly sophisticated hybrid systems that integrate storage
technologies. These configurations are more cost-effective in the long run because of their
higher efficiency and lower operating costs, even though they are more expensive initially. These
findings highlight the significance of infrastructure investments and policies that encourage the
adoption of renewable energy technologies for Libya’s investors and policymakers. These kinds
of strategic choices serve not only the current energy needs but also the long-term economic
and environmental objectives. The HOMER Grid analysis is a good example of how advanced
modeling tools can be used to plan renewable energy systems strategically. The knowledge gained
will be crucial in determining Libyas future energy policies, especially regarding developing
sustainable energy development and growing the country’s EV infrastructure.
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APPENDIXES

Table A1: Tariff (Utility Grid) of Scenario 1
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Table A2: Tarift (Utility Grid) of Scenario 2
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io3

Tariff (Utility Grid) of Scenar

Table A3
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Table A4: Tariff (Utility Grid) of Scenario 4
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Table A5: Tariff (Utility Grid) of Scenario 5
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