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ABSTRACT                                  
Accurate solar radiation prediction is pivotal 

for optimizing solar energy systems, as it allows for 
better energy storage, grid integration, and renewable 
energy planning. This study compares the predictive 
accuracy of three machine learning models—Random 
Forest, XGBoost, and Multilayer Perceptron (MLP)- in 
forecasting solar radiation based on a meteorological 
and temporal features dataset. The dataset, 
encompassing Temperature, humidity, wind speed, 
and sunrise/sunset times, was preprocessed through 
transformations (Box-Cox, logarithmic scaling) and 
feature selection methods (SelectKBest, Extra Trees 
Classifier) to enhance model performance.

XGBoost demonstrated superior performance, achieving an R² of 0.93 and RMSE of 81.87, 
effectively capturing complex nonlinear relationships within the data. MLP, while slightly lower in 
R², yielded the lowest mean absolute error (MAE = 41.74), underscoring its precision in individual 
predictions. SelectKBest identified set Hour (sunset hour), Month, and Wind Direction as critical 
features, while Extra Trees prioritized Wind Direction, Minute, and Humidity, reflecting model-
specific feature importance. Collectively, these models illustrate the benefits of integrating feature 
engineering with advanced machine learning for renewable energy optimization, with XGBoost 
and MLP demonstrating particular efficacy for accurate solar radiation forecasting. This study 
underscores the potential of machine learning in enhancing solar energy management, facilitating 
a more efficient transition to sustainable energy sources.
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تحسين توقعات الإشعاع الشمسي لأنظمة الطاقة المتجددة: تحليل مقارن لتقنيات التعلم 
الآلي وهندسة الميزات

أجيب ساغر، فينوثكومار كولّورو، شرياس راجيندرا هولي.

ملخ��ص: التنب��ؤ الدقي��ق بالإش��عاع الشمس��ي ض��روري لتحس��ن أنظم��ة الطاقة الشمس��ية، حيث يتي��ح تخزينً��ا أفضل للطاق��ة، وتكاملًًا 
أكثر كفاءة مع الشبكة الكهربائية، وتخطيطًا مستدامًا لمصادر الطاقة المتجددة. تهدف هذه الدراسة إلى مقارنة دقة التنبؤ لثلًاثة 
نماذج تعلم آلي: الغابة العشوائية )عشوائية الغابة(، إكس جي بوست، والشبكة العصبية متعددة الطبقات في توقع الإشعاع الشمسي 
بالاعتماد على مجموعة بيانات تحتوي على ميزات أرصادية وزمنية. شملت البيانات متغيرات مثل درجة الحرارة، الرطوبة، سرعة 
الري��اح، وأوق��ات الش��روق والغ��روب، وخضع��ت لمعالج��ة مس��بقة م��ن خ��لًال تحوي��لًات مث��ل بوكس-كوك��س والت��درج اللوغاريتم��ي، 
بالإضاف��ة إلى اس��تخدام أس��اليب اختي��ار المي��زات مث��ل اختي��ار كأفض��ل ومُصن��ف الأش��جار الإضافية لتعزي��ز أداء النم��اذج. أظهر نموذج 
إك��س ج��ي بوس��ت أداءً متفوقً��ا، حي��ث حق��ق معام��ل تحدي��د )R2( 0.93 وخط��أً جذريً��ا متوس��طًا )RMSE( ق��دره 81.87، مم��ا يعك��س 
قدرت��ه العالي��ة عل��ى التق��اط العلًاق��ات غ��ير الخطي��ة المعقدة في البيانات. بينما جاء نموذج الش��بكة العصبية متع��ددة الطبقات في المرتبة 
الثاني��ة م��ن حي��ث أر تربي��ع، إلا أن��ه حق��ق أق��ل متوس��ط خط��أ مطلق )MAE = 41.47(، مما يش��ير إلى دقته في التنب��ؤات الفردية. حدّد 
اختي��ار كأفض��ل أن س��اعة الغ��روب، والش��هر، واتج��اه الري��اح ه��ي الميزات الأكثر أهمي��ة، بينما صنّف مُصنف الأش��جار الإضافية اتجاه 
الرياح، والدقيقة، والرطوبة كعوامل رئيس��ية، مما يعكس تباين أهمية الميزات بن النماذج المختلفة. توضح هذه النماذج فوائد دمج 
هندس��ة الميزات مع التعلم الآلي المتقدم لتحس��ن الطاقة المتجددة، حيث أظهر إكس جي بوس��ت والش��بكة العصبية متعددة الطبقات 
فعالية خاصة في التنبؤ الدقيق بالإشعاع الشمسي. تؤكد هذه الدراسة على إمكانيات التعلم الآلي في تحسن إدارة الطاقة الشمسية، 

مما يس��هم في تس��ريع الانتقال إلى مصادر طاقة مس��تدامة وأكثر كفاءة. 

1. INTRODUCTION

The increasing need for renewable energy sources has driven significant interest in optimizing 
solar power generation. Solar energy systems, particularly photovoltaic (PV) panels, rely on 
accurate predictions of solar radiation to maximize their efficiency and output. Understanding 
solar radiation patterns allows for better energy storage management, grid integration, and 
supply planning, ultimately reducing reliance on non-renewable energy sources [1],[2]. While 
meteorological models have traditionally been used for solar radiation forecasting, recent 
advancements in machine learning have opened new avenues for enhancing prediction accuracy 
and managing complex datasets [1].
Machine learning models excel at uncovering nonlinear patterns in data, making them ideal 
for tasks like solar radiation forecasting, where meteorological variables interact in complex, 
dynamic ways. However, selecting the appropriate Model and input features is essential to 
optimize accuracy. Practical feature engineering can enhance model performance by extracting 
meaningful temporal features and transforming data distributions. This study examines the 
application of machine learning models combined with feature selection and engineering 
techniques to predict solar radiation levels. Specifically, we compare the performance of three 
machine learning models, Random Forest, XGBoost, and Multilayer Perceptron (MLP), to 
determine which Model most effectively predicts solar radiation levels and to assess the impact 
of different preprocessing strategies. As the demand for renewable energy grows, accurately 
forecasting solar radiation has become essential for optimizing solar power systems. Photovoltaic 
(PV) panels, a core technology for solar energy production, depend heavily on predictions of 
incoming solar radiation to achieve high efficiency and maximum energy output. Understanding 
solar radiation patterns helps energy managers better plan for energy storage, grid integration, 
and supply needs, reducing reliance on fossil fuels and improving sustainability[1], [2].
Machine learning presents promising advancements in solar forecasting. Unlike traditional 
meteorological models, machine learning algorithms can capture complex, nonlinear relationships 
among various meteorological variables, such as Temperature, humidity, and time of day. This 
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capability makes them suitable for solar radiation prediction, where variables interact dynamically. 
However, the choice of Model, alongside practical feature engineering and selection, is crucial 
to maximize prediction accuracy. This study explores a structured, comparative approach to 
determine which machine learning model is most effective in predicting solar radiation and how 
preprocessing strategies impact model performance.

1.1. Case Studies

1.1.1. Grid Integration in Renewable Energy Networks: Enhancing Stability 
with Solar Radiation Forecasting

In regions with significant contributions of solar energy to the power grid, such as Germany and 
Australia, integrating solar power effectively is both a challenge and a necessity. Solar power, 
while renewable and environmentally friendly, is naturally intermittent due to its dependency on 
sunlight, which can be affected by factors like cloud cover, time of day, and seasonal variations. This 
inherent variability can lead to sudden fluctuations in solar radiation levels, impacting the energy 
output from solar systems. For power grids relying heavily on solar energy, these fluctuations can 
create imbalances in supply and demand, potentially compromising grid stability.

1.2. The Role of Solar Radiation Forecasting in Grid Stability

Accurate solar radiation forecasting is essential to mitigate these imbalances and maintain grid 
stability. By predicting incoming solar radiation precisely, grid operators can better anticipate 
the expected energy generation from solar sources over specific timeframes (e.g., hours, days, or 
even weeks in advance). This predictive capability enables several critical operational strategies:
1. Backup Power Coordination: With accurate forecasts, grid operators can proactively manage 
backup power sources, such as natural gas or hydroelectric plants, to compensate for expected 
dips in solar power. For example, forecast models can alert operators to potential drops in solar 
generation during overcast days or periods of high cloud cover. As a result, alternative energy 
sources can be ramped up to fill the gap, preventing sudden power shortages or blackouts.
2. Energy Storage Optimization: Forecasting allows for better planning and utilization of energy 
storage systems, such as batteries. Excess solar energy can be stored in batteries during high 
solar radiation, while during low-radiation periods, stored energy can be dispatched to meet 
demand. Precise forecasting enables operators to optimize battery charge and discharge cycles, 
maximizing the utility of stored energy and reducing unnecessary stress on storage systems.
3. Demand Response and Load Shifting: In response to anticipated solar output changes, grid 
operators can implement demand response programs, incentivizing consumers to reduce or shift 
their electricity usage during low-solar-output periods. This proactive approach helps manage 
demand in line with available supply, reducing the risk of power shortages and enhancing overall 
grid resilience.
4. Reduction in Fossil Fuel Dependence: Grids can decrease their reliance on fossil fuel-based 
backup systems with improved predictability of solar output. By scheduling renewable sources 
and storage effectively, operators can limit the need for quick-ramping fossil fuel plants, which are 
traditionally used to stabilize the grid during sudden solar drops. This shift reduces operational 
costs and carbon emissions, aligning with sustainability goals.
5. Grid Frequency and Voltage Stability: Variations in solar output can impact the frequency 
and voltage levels within the grid. Sudden drops in solar generation can cause frequency dips, 
which, if not managed, can lead to grid instability. Accurate solar forecasting enables smoother 
management of these frequency variations by allowing time for corrective actions, such as 
adjusting the output of other generators or deploying fast-acting storage systems to stabilize 
frequency and voltage levels.
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1.2.1. Case Studies in High-Solar-Integration Regions

Germany: Germany has one of the highest shares of renewable energy in its grid mix, with solar 
power contributing significantly. By leveraging advanced forecasting models, German grid 
operators can better anticipate fluctuations and coordinate responses across multiple renewable 
sources, such as wind and solar, ensuring a reliable energy supply despite the variability in solar 
radiation.
Australia: As a country with high solar irradiance and vast solar farms, Australia also relies on 
precise forecasting to maintain grid stability. In regions like South Australia, where solar power 
constitutes a significant portion of the energy mix, accurate solar forecasting has been essential to 
manage periods of low sunlight and maintain balance with other energy sources. Australian grid 
operators use forecasts to optimize battery storage facilities and coordinate with neighbouring 
grids to prevent disruptions.
1.2.2. Advancements in Forecasting Technology for Grid Integration

Machine learning and advanced analytics have enhanced the precision of solar radiation forecasts, 
improving grid reliability. Deep learning and time-series analysis allow for the modelling of 
complex relationships between meteorological variables and solar radiation, providing highly 
accurate predictions. Additionally, real-time data inputs from satellites, weather stations, and solar 
panel sensors enable adaptive forecasts that adjust to changing conditions, further supporting 
grid stability. Effective integration of solar power into the grid hinges on the ability to predict 
solar radiation with high accuracy. This forecasting empowers grid operators to manage backup 
power sources, optimize energy storage, implement demand response strategies, reduce fossil 
fuel dependency, and maintain grid frequency and voltage stability. As solar energy becomes a 
larger share of the global energy mix, advanced solar radiation forecasting will be increasingly 
vital in enabling a reliable, sustainable energy future.

2. LITERATURE SURVEY

Table 1 presents an array of studies which incorporates the study’s title, year of publication, the 
primary objective of the study, machine learning techniques used, and the key performance 
measures (for example, RMSE, MAE, R²). It indicates the variation in performance evaluation of 
different studies.

      Table 1. Overview of Solar Radiation Forecasting Studies. 
Ref. 
No.

Year Study Title Focus ML Models 
Used

Performance 
Metrics 
(Values)

[1] 2020 Solar Radiation 
Forecasting Using 
Machine Learning 

Techniques

Prediction of solar 
radiation using machine 

learning methods

Random Forest, 
SVM, ANN

RMSE = 87.65, 
MAE = 51.32

[2] 2018 Comparison of Machine 
Learning Models 

for Solar Radiation 
Prediction

Comparison of ML 
models for solar 

radiation prediction

Random Forest, 
XGBoost, MLP

R² = 0.91, 
RMSE = 72.4

[3] 2021 A Hybrid Model for 
Short-Term Solar 

Radiation Forecasting

Hybrid Model 
combining statistical 
and ML techniques

Random Forest, 
MLP

MAE = 43.5, 
R² = 0.89

[4] 2022 Solar Energy Prediction 
using XGBoost 

Algorithm

Predicting solar energy 
production using 

weather data

XGBoost, SVM, 
MLP

R² = 0.93, 
RMSE = 76.5
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[5] 2017 Deep Learning in Solar 
Radiation Forecasting

Deep learning approach 
to solar radiation 

prediction

CNN, MLP, 
LSTM

RMSE = 68.9, 
MAE = 39.2

[6] 2019 Feature Selection 
for Solar Radiation 

Prediction

Study on the impact of 
feature selection in solar 

radiation forecasting

Random Forest, 
XGBoost

R² = 0.94, 
MAE = 45.6

[7] 2023 A Comparative Study 
on Solar Radiation 
Forecasting Models

Comparing traditional 
and machine learning 

models for solar 
radiation

Random Forest, 
XGBoost, MLP

RMSE = 84.7, 
MAE = 41.3

[8] 2016 Prediction of Solar 
Radiation using Artificial 

Neural Networks

Use of neural networks 
for solar radiation 

prediction

ANN, SVM, 
Random Forest

R² = 0.85, 
RMSE = 95.3

[9] 2020 Ensemble Learning for 
Solar Energy Prediction

Using ensemble 
methods to predict solar 

energy

XGBoost, 
Random Forest, 

MLP

R² = 0.91, 
RMSE = 83.1

[10] 2022 Comparative Analysis 
of Machine Learning 
Algorithms for Solar 

Radiation

Evaluation of various 
ML algorithms for solar 

radiation forecasting

Random Forest, 
XGBoost, ANN

R² = 0.92, 
MAE = 49.3

[11] 2021 Predicting Solar Power 
Output Using Machine 
Learning Techniques

Solar power prediction 
with a focus on 

temperature and 
weather data

XGBoost, MLP, 
Random Forest

RMSE = 80.5, 
MAE = 44.9

[12] 2020 Solar Radiation 
Prediction Using Hybrid 

ML Model

Hybrid approach 
for solar radiation 

prediction

XGBoost, 
Random Forest, 

ANN

R² = 0.88, 
RMSE = 91.3

[13] 2021 Feature Engineering 
for Solar Radiation 

Forecasting

Impact of feature 
engineering on solar 
radiation prediction

XGBoost, 
Random Forest

RMSE = 84.9, 
MAE = 42.1

[14] 2019 Short-Term Solar 
Radiation Prediction 

with Machine Learning

Short-term prediction 
of solar radiation using 

meteorological data

SVM, MLP, 
XGBoost

RMSE = 90.2, 
MAE = 49.5

[15] 2023 Machine Learning for 
Renewable Energy: Solar 

Radiation Forecasting

Using ML to predict 
solar radiation for 
renewable energy 

applications

XGBoost, 
Random Forest, 

ANN

R² = 0.92, 
MAE = 40.2

Figure 1 shows how different solar radiation forecasting models performed economically at other 
times. The red line with circular dots represents RMSE values, which depict the changes in error 
magnitude for the different years of study [16], [17], [18], and [19]. The blue line, represented 
by square markers, corresponds to MAE values and shows the prediction error from another 
perspective with a different trend. On the other hand, the green line marked by diamonds denotes 
the R2 values, indicating the amount of variance the models account for. All of the colored lines 
are labelled, connected, and readable so that there is a juxtaposed visual comparison of these 
metrics for graphical analysis over time, which is further simplified by grid lines and excellent 
distinctive markings in [20], [21], and [22].
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Figure 1. Evaluation of Studies Performance Metrics Trends.

3. RURAL ELECTRIFICATION PROJECTS: ENHANCING OFF-GRID SOLAR SYSTEMS 
WITH ACCURATE SOLAR FORECASTING

Access to centralized power grids is limited or absent in many remote or rural areas, particularly 
in Africa and South Asia. For these underserved regions, off-grid solar energy systems provide a 
crucial source of electricity, especially for essential services like healthcare facilities, schools, and 
community centers. Given the lack of traditional power infrastructure, these standalone solar 
systems support community development, improve quality of life, and foster economic growth. 
However, the reliable operation of these systems depends heavily on accurate solar forecasting.

3.1. Importance of Solar Forecasting in Off-Grid Systems

Off-grid solar installations must contend with the intermittent nature of solar energy. Variability 
in sunlight due to seasonal changes, cloud cover, and unpredictable weather conditions can lead 
to fluctuations in energy generation. Without backup from a centralized grid, these systems 
depend entirely on the energy they produce and store locally. Therefore, accurate solar radiation 
forecasting is essential for ensuring a steady electricity supply to meet local demand. Here’s how 
solar forecasting enhances the reliability and efficiency of off-grid solar systems:
• Optimizing Energy Storage for Consistent Power Supply: Solar forecasting helps operators 
predict periods of high or low solar generation, enabling them to manage battery storage more 
effectively. During periods of high sunlight, excess energy can be stored in batteries for use 
during overcast or low-sunlight periods. This proactive management reduces the risk of energy 
shortages, ensuring that critical services, like hospitals and clinics, have uninterrupted power, 
even during cloudy days or the rainy season.
• Enhanced Resource Allocation and Energy Efficiency: For many rural communities, energy 
resources are limited, and efficient use is essential. With reliable solar forecasts, operators can 
decide when to conserve or allocate energy. For instance, if forecasts indicate low solar output in 
the coming days, non-essential activities can be scheduled for later, and energy can be prioritized 
for critical uses like lighting, refrigeration for vaccines, or powering medical equipment. This 
ability to plan energy use based on forecasted availability helps optimize limited resources.
• Supporting Educational and Economic Activities: Consistent access to electricity is fundamental 
for educational facilities, where power supports lighting, electronic devices, and learning tools. 
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Schools can better plan and prioritize their energy needs with accurate solar forecasts, ensuring 
that critical functions are maintained. Moreover, consistent energy access enables evening classes 
and other community activities, contributing to long-term educational and economic benefits.
• Maintenance and Operational Efficiency: Predictive solar forecasting can also support 
maintenance planning and operational efficiency for off-grid solar installations. By anticipating 
high or low production periods, operators can schedule necessary maintenance during low 
demand or when solar output is expected to be lower. This reduces the chance of interruptions 
during high-demand periods and ensures that the system operates optimally during peak usage 
times.
• Seasonal Adaptability and Long-Term Sustainability: Many remote regions experience seasonal 
weather patterns that can affect solar radiation levels. For example, the monsoon season in South 
Asia brings extended periods of cloud cover, while some African regions may experience long 
dry seasons with intense sunlight. Solar forecasting enables off-grid systems to prepare for these 
seasonal variations by adjusting storage and energy usage strategies in advance. This adaptability 
increases the system’s long-term sustainability, allowing it to withstand the demands of varying 
seasonal conditions better and ensuring a dependable energy supply year-round.

3.2. Case Studies and Regional Impacts

• Healthcare Facilities in Sub-Saharan Africa: In rural parts of Sub-Saharan Africa, healthcare 
facilities rely on solar power for essential services, including lighting, refrigeration for medical 
supplies, and operating diagnostic equipment. Accurate solar forecasting helps these facilities 
manage energy storage, ensuring that even during low-sunlight periods, power is available for 
critical needs like vaccine refrigeration. For instance, in regions where vaccine distribution is 
crucial for controlling diseases, reliable power access supports essential cold chain management, 
safeguarding public health.
• Education and Community Centers in South Asia: In regions like rural India, off-grid solar 
systems are widely used to power community and educational centres, which serve as hubs for 
learning, communication, and development. Accurate solar radiation forecasts enable schools 
to plan around predicted sunlight availability, ensuring that classrooms have adequate lighting 
and power for educational devices. Community centers with forecasted power stability can 
also support economic activities, such as internet access for small business development and 
agricultural training programs, promoting economic growth.
• Agricultural Applications in Latin America: In parts of Latin America, small farms and 
agricultural businesses depend on solar power for irrigation systems, water pumps, and storage for 
perishable goods. Reliable solar radiation forecasts help these communities plan irrigation cycles, 
manage water resources more effectively, and support post-harvest storage and preservation. This 
stability is especially beneficial in regions with distinct dry and rainy seasons, allowing farmers to 
maximize productivity while conserving energy and resources.

3.3. Advantages of Accurate Solar Forecasting for Economic Development

By improving the reliability and efficiency of off-grid solar systems, accurate solar forecasting 
contributes to broader economic and social development goals. Reliable electricity supports 
the functioning of essential services, which in turn promotes healthier, more educated, and 
economically stable communities. Some specific benefits include:
• Improved Public Health: Consistent electricity for healthcare services means better access to 

emergency care, reliable vaccine storage, and better equipment for diagnostics and treatment, 
leading to improved public health outcomes.

• Educational Empowerment: Reliable electricity enables consistent school operation, supporting 
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literacy and skill-building that can lead to more significant economic opportunities. Evening 
classes and vocational training become possible, providing new pathways for community 
members.

• Increased Economic Productivity: Access to reliable electricity allows local businesses to 
operate more consistently and efficiently, leading to economic growth. Small businesses can 
rely on predictable power for tasks like refrigeration, food processing, or even small-scale 
manufacturing, boosting economic resilience in rural areas.

Accurate solar radiation forecasting is crucial in ensuring the reliability and efficiency of off-grid 
solar systems in remote or rural areas. By enabling efficient energy storage, prioritizing critical 
services, optimizing resource allocation, and supporting community and economic development, 
solar forecasting helps unlock the full potential of solar energy in underserved regions. As off-
grid solar installations become increasingly vital for rural electrification, integrating advanced 
forecasting methods will continue to be essential for building resilient, self-sustaining communities 
and promoting long-term economic growth.

3.4. Utility-Scale Solar Farms: Enhancing Efficiency and Reliability with 
Accurate Solar Radiation Forecasting

Utility-scale solar farms, often spanning hundreds or even thousands of acres, are among the 
most substantial contributors to renewable energy generation in regions like California, the 
Middle East, and other high-irradiance areas worldwide. These large installations are typically 
connected directly to the power grid, supplying substantial electricity to meet the demands of 
both urban and industrial users. For these farms to operate cost-effectively and reliably, accurate 
solar radiation forecasting is critical. By predicting solar radiation levels, operators can optimize 
energy generation, improve energy storage planning, and enhance the timing of electricity 
dispatch to the grid. Here’s how accurate solar forecasting significantly benefits utility-scale solar 
farms:

3.5. Benefits of Solar Radiation Forecasting for Utility-Scale Solar Farms

• Optimizing Energy Storage: Solar radiation forecasts allow solar farm operators to maximize 
the efficiency of battery storage systems. Excess energy generated by the farm can be stored in 
batteries during high solar radiation. Accurate forecasts inform operators of these peak periods, 
allowing them to charge batteries efficiently. Conversely, during anticipated low-sunlight periods, 
operators can plan to release stored energy to maintain consistent power output. This ensures that 
energy is available even when direct sunlight is minimal, such as during cloudy days or at night.
• Efficient Electricity Dispatch to the Grid: When dispatching electricity, timing is essential for 
large solar farms. Forecasting allows operators to align energy dispatch with grid demand cycles. 
During peak demand periods, such as late afternoon and early evening, stored energy can be 
released to meet higher electricity needs. This timed dispatch reduces strain on the grid and 
decreases the likelihood of grid instability. Solar farms stabilize grid supply by aligning dispatch 
with demand and benefit financially from higher electricity rates during peak times.
• Reducing Fossil Fuel Dependence: One of the primary goals of utility-scale solar farms is 
to replace or reduce reliance on traditional fossil-fuel-based power plants. With precise solar 
radiation forecasting, solar farms can deliver a more predictable energy output, allowing grid 
operators to rely less on fossil fuel backup systems. This reduces the frequency of “peaker plants”—
typically natural gas plants brought online only during high-demand periods—thus lowering 
carbon emissions and operational costs. The ability to rely on solar power for predictable baseload 
energy directly supports climate goals and contributes to cleaner energy sources.
• Enhancing Grid Reliability: Large solar farms are vital in maintaining grid reliability, especially 
as renewable energy becomes a larger share of the overall energy mix. Accurate forecasting 
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enables grid operators to anticipate high and low solar production periods and prepare the grid 
accordingly. For instance, if a significant drop in solar output is forecasted due to incoming weather 
patterns, grid operators can arrange for other renewable sources (e.g., wind or hydropower) to 
step in or prepare to activate reserves from battery storage systems. This planning helps prevent 
sudden imbalances and ensures a consistent energy supply, thus enhancing overall grid stability.
• Economic Efficiency and Cost Savings: Utility-scale solar farms face financial pressures to 
maximize return on investment and keep operating costs low. Precise forecasting reduces the 
need for costly energy balancing measures, such as bringing additional power plants online, thus 
saving money. Additionally, reliable energy forecasting minimizes waste from overproduction, 
as energy storage and dispatch can be better aligned with actual grid demand. This optimized 
production approach leads to more efficient use of generated power, maximizing revenue while 
minimizing unnecessary expenses.
• Supporting Renewable Energy Integration and Grid Transition: As more utility-scale solar farms 
come online, transitioning to a grid that can effectively integrate high levels of renewable energy 
is essential. Solar radiation forecasting plays a key role in this transition by helping operators plan 
for solar generation fluctuations, allowing for smoother integration with other renewable sources, 
such as wind and hydroelectric power. By combining different renewable energy sources with 
accurate forecasting, the grid can accommodate fluctuations more effectively, reducing reliance 
on fossil fuels and supporting a gradual shift towards a more sustainable energy infrastructure.

3.6. Practical Examples of Forecasting Benefits for Utility-Scale Solar Farms

California: with its abundant sunshine, California is a leader in solar energy generation. Utility-
scale solar farms in California contribute significantly to the state’s renewable energy portfolio, 
supplying power to millions of homes. By leveraging accurate solar radiation forecasting, 
California’s solar farms can plan for both peak summer demand and periods of lower sunlight, 
such as during winter months or wildfire-related haze. Forecasting enables these farms to optimize 
energy storage and release stored power at peak demand times, reducing the need for fossil-fuel 
peaker plants and helping California achieve its ambitious carbon reduction goals.
• The Middle East: Countries in the Middle East, including the United Arab Emirates and Saudi 
Arabia, have invested heavily in utility-scale solar farms, such as the Mohammed bin Rashid Al 
Maktoum Solar Park in Dubai. With high solar irradiance levels, the region’s solar farms benefit 
immensely from accurate radiation forecasting, which allows them to maintain steady production 
even in challenging desert conditions, such as dust storms. By predicting fluctuations in sunlight, 
these farms can adjust energy dispatch and storage, ensuring consistent power availability for 
residential and industrial consumers, thus supporting regional energy diversification and 
sustainability goals.
• Australia’s Solar Farms: Australia has substantial solar resources, and several large-scale solar 
farms are in Queensland and New South Wales. These farms often deal with unpredictable 
weather patterns, which affect sunlight availability. Accurate solar forecasts help Australian solar 
operators maintain grid reliability by planning battery discharge cycles during cloud cover or 
rain periods. Moreover, forecasts allow these farms to schedule maintenance during expected 
low-output days, ensuring maximum generation during high-demand periods and supporting 
the stability of Australia’s renewable energy grid.

3.7. Impact on Sustainability and Environmental Goals

By enabling utility-scale solar farms to operate more efficiently and predictably, solar radiation 
forecasting directly supports environmental sustainability goals. It allows for higher integration 
of renewable energy sources into the grid, reducing greenhouse gas emissions and contributing 
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to climate change mitigation efforts. Every kilowatt-hour of solar energy that displaces fossil-
fuel-based power reduces carbon emissions and lowers the environmental impact of energy 
production. Accurate solar forecasting thus plays an essential role in scaling renewable energy 
to meet global energy demands while aligning with carbon reduction targets. Solar radiation 
forecasting is vital for optimizing energy generation, storage, and dispatch for utility-scale solar 
farms. It enables these large installations to maximize efficiency, reduce dependency on fossil fuel 
backups, and deliver a stable, cost-effective energy supply to the grid. As global energy systems 
increasingly embrace renewable sources, the role of accurate solar forecasting will only grow, 
helping to ensure that utility-scale solar farms contribute to a more sustainable and resilient 
energy future. This transition to greener energy sources, backed by precise solar forecasting, 
is essential for meeting the world’s energy demands in an environmentally responsible and 
economically viable way.

3.8. Data and Methods

3.8.1. Dataset Description

                            Table 2. Various Feature Description Unit.
Feature Description Unit

Radiation Solar radiation target 
variable W/m²

Temperature Atmospheric Temperature °F
Pressure Barometric pressure inHg
Humidity Relative humidity %
Wind Direction(Degrees) Wind direction Degrees
Speed Wind speed mph
Time Time of observation hh:mm: ss
Date Date of observation MM/DD/YYYY
Time Sunrise Sunrise time hh:mm: ss

The dataset used in this study, Table 2 to Show That Solar Prediction, comprises 32,686 records 
of environmental variables collected hourly at a solar observation site. The dataset includes both 
temporal and meteorological attributes:
• Radiation: The target variable representing solar radiation in W/m².
• Temperature, Pressure, Humidity, Wind Direction, Wind Speed: Weather-related variables 

influencing solar radiation.
• Time, Date, Sunrise, Sunset: Temporal attributes used to extract additional features related to 

daily and seasonal sunlight variations.
Each observation provides detailed information on the atmospheric conditions that impact 
solar radiation levels. The dataset has no missing values, ensuring model training and evaluation 
without the need for imputation. The wide range of features allows for a comprehensive analysis 
of factors influencing solar radiation, making it an ideal dataset for machine learning applications 
in solar energy forecasting.
Raw Data: Figure 2 shows what is used for raw data Implementation.
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Figure 2. Raw data used for implementation.

3.8.2. Data Preprocessing and Feature Engineering

These hexbin plots illustrate in Figure 3 the relationship between various meteorological variables 
and time (captured in UNIXTime format), providing insights into their distributions and patterns 
over time.
Figure 3 (b) shows the Wind Direction plot with UNIXTTime; we observe that wind direction 
predominantly clusters between 100° and 200°, showing some periodic variation but remaining 
within this range most of the time. Figure 3 (a) shows that the humidity plot with UNIXTTime 
reveals higher humidity levels near the top (close to 100%), though we see intermittent dips. 
These dips could correspond to specific times of the day or seasons where atmospheric dryness 
increases. Figure 3 (c) shows the pressure plot wrt UNIXTTime, which shows pressure values 
mostly clustered around 30.40 to 30.50 inHg, with a slight downward trend at specific intervals. 
This consistent high-pressure range could indicate the particular climate conditions of the 
observed region.
Figure 3 (e) shows the Temperature plot with UNIXTTime; the temperatures are primarily between 
45°F and 60°F, with minor fluctuations. Figure 3 (d) shows The Radiation plot wrt UNIXTTime 
highlights a pattern where most radiation values are concentrated at lower levels (below 200 W/
m²), suggesting a low average solar radiation level during the dataset period. Finally, the Speed 
plot indicates that wind speeds are generally between 5 and 10 mph, with occasional peaks 
reaching higher values, demonstrating relatively stable wind conditions with periodic increases. 
Overall, these hexbin plots provide a high-level view of each variable’s distribution over time, 
helping identify regular patterns, extremes, and potential trends.

(B)(A)



Ajeeb Sagar et. al.

306 Solar Energy and Sustainable Development, Volume (14) - No (1) . June 2025

(D)(C)

(E)
Figure 3. Hexbin plot for Raw data Parameter.

(A): Humidity plot wrt. UNIXTime; (B): Wind Direction plot wrt. UNIXTime; (C): Pressure plot wrt. UNIXTime; 
(D): Radiation plot wrt. UNIXTime; (E): Temperature plot wrt. UNIXTime.

This heatmap In Figure 4 shows that the Configural Matrix visualizes the correlation coefficients 
between various weather-related variables. Each cell represents the correlation between two 
variables, ranging from -1 to 1. A positive correlation (closer to 1) indicates that as one variable 
increases, the other also tends to increase. Conversely, a negative correlation (closer to -1) suggests 
that the other decreases as one variable increases. For example, “Radiation” shows a strong positive 
correlation with “Temperature” (0.73), suggesting that higher radiation levels are associated with 
higher temperatures. However, “UNIXTime” and “Pressure” show a negative correlation with 
“Temperature,” indicating that Temperature decreases as these variables increase.
Regarding colour intensity, darker colours represent stronger negative correlations, while lighter 
colours denote stronger positive correlations. The colour gradient from dark red/black to light 
tan helps visualize the strength and direction of these relationships. For instance, “Pressure” and 
“Humidity” show a slight negative correlation, whereas “Speed” and “WindDirection(Degrees)” 
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display a very low positive correlation. This heatmap provides a quick, intuitive way to observe 
how these weather metrics are interrelated, which could help predict one variable based on 
changes in another.

Figure 4. Configural Matric.

Data preprocessing in Table 3 shows that Various Features are a critical component of the machine 
learning pipeline, especially in time-series data like solar radiation. Preprocessing steps included 
handling date-time features, extracting specific time-related attributes, and transforming 
meteorological variables to enhance model interpretability and improve training efficiency.

Table 3. Various Feature & Transformation Methods with Purpose.
Feature Transformation Method Purpose
Temperature Logarithmic Transformation Reduce skewness
Pressure Box-Cox Transformation Stabilize variance
Humidity Box-Cox Transformation Improve normality
Wind Direction Min-Max Scaling Standardize scale (0-1)
Speed Logarithmic Transformation Mitigate skewness

 
• Temporal Feature Extraction: 
The Time and Date columns were decomposed into individual components, including hours, 
minutes, and seconds, allowing the models to capture the fine-grained temporal details essential 
for solar radiation prediction. Extracting these granular details was crucial because solar radiation 
varies significantly throughout the day due to changes in the sun’s position.
• Sunrise and Sunset Times:
The sunrise and sunset columns were processed to isolate the hour and Minute of each event. 
These values helped indicate periods of solar availability and inactivity, offering a foundational 
reference for the cyclical nature of sunlight exposure over the day. Including sunrise and sunset 
times allowed the Model to capture daily patterns in solar radiation more effectively.
• Feature Transformation:
To improve data distribution and reduce skewness, we applied several transformations to key 
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features:
a) Logarithmic transformation was applied to the Temperature and Speed features to mitigate 
skewness and bring the distributions closer to normal.
b) Box-Cox transformation was used for Pressure and Humidity to stabilize variance and improve 
normality.
c) Min-Max Scaling was applied to Wind Direction to standardize it between 0 and 1, making the 
feature values comparable across models.
These transformations aimed to reduce the impact of extreme values, improve model 
performance, and facilitate faster convergence during training. The transformed dataset enabled 
more consistent and accurate model predictions.
3.8.3. Feature Selection

Feature selection is a valuable step in the model-building process, as it helps reduce dimensionality, 
improves model interpretability, and can increase prediction accuracy by focusing on the most 
relevant data. For this study, we applied two feature selection techniques: SelectKBest with 
Chi-square scoring and the Extra Trees Classifier, which ranks feature importance by impurity 
reduction.
• Select K_Best with Chi-Square Scoring:
This technique was applied to select the top features with the highest Chi-square scores concerning 
the target variable. SelectKBest identified setHour (sunset hour), Month, riseMinute (sunrise 
minute), WindDirection, and Temperature as key predictors. These features were closely related 
to solar radiation, reflecting daily and seasonal patterns in sunlight exposure. Table 4 shows 
mentation for Temporal Feature Extraction.

Table 4. Temporal Feature Extraction.
Result        Result      Result
1 Set Hour 12207.53
2 Month 4684.58
3 Rise Minute 4015.06
4 Wind Direction(Degrees) 3271.83
5 Temperature 1651.69

• Extra Trees Classifier:
Extra Trees Classifier, an ensemble method that builds multiple decision trees, was used to 
rank feature importance based on impurity reduction. The top features identified by this Model 
included Wind Direction, Minute, Speed, and Humidity. Table 5 shows the Feature and their 
Importance.

Table 5. Feature And Their Importance.
Rank Feature Importance
1 Wind Direction(Degrees) 0.1567
2 Minute 0.1484
3 Speed 0.1243
4        Second 0.1236
5 Humidity 0.1062

These results differed slightly from SelectKBest, indicating that certain features may impact 
different models differently. For instance, WindDirection emerged as a consistent predictor, while 
temporal variables like setHour and Minute were more relevant in specific models, underscoring 
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the complex relationships between meteorological variables and solar radiation.
3.8.4. Model Training and Evaluation

To test in Table 6 the predictive capabilities of the selected features, we implemented three 
machine learning models: Random Forest, XGBoost, and MLP. Each Model was trained on the 
preprocessed dataset and evaluated based on its predictive performance.

Table 6. Model Training and Evaluation.
Model Hyperparameter Value
Random Forest Max Depth 25
XGBoost Learning Rate 0.1
XGBoost Max Depth 8
MLP Layer 1 Neurons 128
MLP Dropout Rate 0.33
MLP Activation Function ReLU

• Random Forest Regressor:
Random Forest, a robust ensemble learning method, was configured with a maximum depth of 
25 to prevent overfitting. The Model achieved a strong baseline performance with an R² score 
of 0.94 on the test set. Random Forest’s capability to capture feature interactions and reduce 
variance made it a reliable predictor for this dataset, even without extensive parameter tuning.
• XGBoost Regressor:
XGBoost, known for its efficient gradient boosting technique, was tuned with a learning rate of 
0.1 and a max depth of 8. It achieved the highest performance among the models, with an R² 
score of 0.93 and an RMSE of 81.87. XGBoost excelled at capturing nonlinear relationships in the 
data, making it particularly effective for complex time-series patterns like solar radiation.
• Multilayer Perceptron (MLP):
The MLP model, structured with multiple dense layers and dropout layers to reduce overfitting, 
was trained to learn the complex patterns in the dataset. The MLP achieved an R² of 0.90 and 
the lowest MAE of 41.74, suggesting its effectiveness in learning highly nonlinear patterns in the 
data. The Model’s performance demonstrates the potential of deep learning methods for solar 
radiation forecasting, though it requires more computational resources and tuning.
3.8.5. Solar Radiation Prediction Formula

To predict solar radiation (S) using a machine learning model  f (·) based on various meteorological 
and temporal features via equation (1):

1  ,  ,  , ....)                                                  ( )( , , , ,a s TS ime Sunrise Sunsetf T H W W=

 Where:
• S =solar radiation (W/m²)
• T =temperature (°F or °C)
• H =humidity (%)
• Wa =wind direction (°)
• Ws=wind speed (mph)
• Time, Sunrise, Sunset = temporal features
 In machine learning, f (·) is typically approximated by a model such as Random Forest, XGBoost, 
or a Multilayer Perceptron (MLP).
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3.8.6. Data Preprocessing and Feature Engineering 

3.8.6.1 Logarithmic Transformation:
The logarithmic transformation helps reduce skewness in data via equation (2):

1 2                                                                                                           ( )log( )x x′ = =

where x′ is the transformed value of x.

3.8.6.2 Min-Max Scaling:
Min-Max scaling normalizes a feature x to a range [0,1] from equation (3):

3                                                                                          ( )min( )
max( ) min( )

x xx
x x
−′ =

−

Where:
• x =original value
• x′ = scaled value
• min(x) and max(x) are the minimum and maximum values in the data for that feature.

3.8.6.3 Feature Selection- Chi-Square Statistic
The Chi-square (χ2) test is used for feature selection, quantifying how closely observed frequencies 
O align with expected frequencies E in equation (4):

2
2 4                                                                                                       ( )( )O E

E
χ −

=∑
Where: 
• O = observed frequency of the feature in each class. 
• E = expected frequency under the null hypothesis.
3.8.7. Feature Importance with Gini Index in Random Forest

In Random Forest, feature importance can be derived from the Gini Index (or impurity reduction). 
For a feature xj  from equation (5) : 

1
5                                                                                             ( )( ) . ( )

T

J t t j
t

I x w G x
=

= ∆∑
Where:
• T =total number of nodes in the trees where   it is used.
• wt = weight (e.g., proportion of samples) in node t.
• ∆Gt(xj ) = decrease in Gini impurity due to   at node t.
3.8.8. Model Training and Prediction Formulas

3.8.7.1 Random Forest Prediction Formula:
     Random Forest combines predictions from multiple decision trees. The final prediction ˆ

iy  for 
target variable Y is given by averaging over N trees in equation (6):

1
61                                                                                                                    ( )ˆ ˆ

N

i
i

Y y
N =

= ∑
Where:
• N = number of decision trees.
• ˆ

iy  = prediction from the i -th tree.

3.8.7.2 Gradient Boosting Prediction Formula (XGBoost):
XGBoost uses a weighted sum of weak learners (e.g., decision trees) to make predictions from 
equation (7):
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1
7                                                                                                            ( )ˆ . ( )

M

i i
i

Y h xα
=

=∑
Where:
• M =total number of trees.
• αi = learning rate or weight for tree i.
• hi(x)= prediction from the i -th  tree.
3.8.9. Model Evaluation Metrics 

3.8.8.1  Coefficient of Determination: 
Table 7 shows the evaluation of the Feature for Three Model.
The coefficient of determination R2  assesses how well a model explains the variance in the data 
in the equation (8):

2

2 1

2

1

81                                                                                                  ( )
ˆ( )

( )

n

i i
i

n

i
i

y y
R

y Y

=

=

−
= −

−

∑

∑
Where:
•   yi = actual value
•  ˆ

iy = predicted value
• Y  = mean of actual values
• n = number of observations

Table 7. Evaluate Of Feature for Three Model.
Feature Importance 

(Random Forest)
Importance 
(XGBoost)

Importance 
(MLP)

Wind Direction 
(Degrees) High High Moderate

Temperature Moderate Moderate High
Minute Moderate High Low
Speed Low Moderate Moderate
Humidity Low Low Moderate

3.8.8.3 Mean Squared Error (MSE):
The Mean Squared Error (MSE) is a measure of the average squared difference between predicted 
and actual values by equation (9):

2

1
91                                                                                                ( )ˆ( )

n

i i
i

MSE y y
n =

= −∑
3.8.8.4  Root Mean Square Error (RMSE):
The Root Mean Square Error (RMSE) is the square root of the MSE, offering a direct interpretation 
in terms of prediction error magnitude via equation (10):

2

1
101                                                                                          ( )ˆ( )i i

i
RMSE y y

n =

= −∑

3.8.8.5  Mean Absolute Error (MAE)
The Mean Absolute Error (MAE) is the average of absolute errors, providing an interpretable 
measure of the average prediction error from equation (11):
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1
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3.8.8.6  Mean Absolute Percentage Error (MAPE):
The Mean Absolute Percentage Error (MAPE) expresses error as a percentage of actual values, 
making it helpful in understanding relative error from equation (12):

1

100 12                                                                                              ( )
ˆ% n

i i

i i

y y
MAE

n y=

−
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3.9. Advanced Feature Engineering- Polynomial Features

Polynomial features of degree d can be added to capture nonlinear relationships. For a feature x 
via equation (13):

2 3 13  ,  , ..........,                                                                                                   ( ), dx x xx x′ =

Where d is the degree of the polynomial transformation.
3.9.1. Regularization in Machine Learning Models

Regularization terms can be added to reduce overfitting. For example, L2 regularization (Ridge) 
and L1 regularization (Lasso) are given by equation (14) & (15):
3.9.2. L2 Regularization (Ridge)

2

1
14                                                                                           ( )

p

j
j

Ridge Loss MSE λ β
=

= + ∑

3.9.3. L1 Regularization (Lasso)

2

1
15                                                                                           ( )

p

j
j

Lass Loss MSE λ β
=

= + ∑

where:
 λ = regularization parameter.
βj = coefficient of feature.
j- p = total number of features.

The results from the three models revealed significant insights into the role of feature engineering 
and selection in predicting solar radiation. Both feature selection methods identified direction, 
Temperature, and temporal features like setHour and Minute as influential predictors, although 
each Model’s performance varied depending on the feature set.

4. Results and Discussion

The Select Best Sand Extra Trees Classifier identified Wind Direction and Temperature as 
significant predictors, with set Hour and Minute emerging as essential temporal variables. 
However, the differences in feature importance rankings highlight the unique requirements of 
each Model. For example, XGBoost prioritized minutes within the hour, while Random Forest 
relied more heavily on temperature and wind direction. This variation underscores the importance 
of model-specific feature selection for improving solar radiation predictions.

4.1. Model Performance Comparison:

In section 4.1, we test and compare the different machine-learning models used in this analysis. 
The models are evaluated using metrics like RMSE (Root Mean Squared Error), MAE (Mean 
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Absolute Error), and primarily, R². A better predictive result has a higher R² value, while the 
lower the RMSE and MAE values, the better the Model’s reliability. Table 8 below summarizes 
the performance of Random Forest, XGBoost, and Multilayer Perceptron (MLP) models. Every 
presented Model has a functioning predictive model with Random Forest registered the highest 
R² score of 0.94, followed by the highest fit on data. XGBoost, on the other hand, while has the 
highest R² score and the lowest RMSE correlation of 81.87 and MAE of 42.08, indicating the 
highest degree of fit and least generalization error. The MLP model, even though it recorded 
lower R², showed less MAE, which was much better than other models.

                                      Table 8. Evaluate the matrix of Their Model.
Model R² RMSE MAE
Random Forest 0.94 85.32 43.15
XGBoost 0.93 81.87 42.08
MLP 0.90 89.10 41.74

Among the Table 8 shows models, XGBoost achieved the highest R² and lowest RMSE, establishing 
itself as the best performer for predicting solar radiation. MLP, however, provided the lowest 
MAE, indicating high accuracy in individual predictions. Random Forest, though slightly less 
accurate, offered reliable baseline performance. Overall, the results suggest that while gradient 
boosting and neural networks can capture complex, nonlinear patterns in meteorological data, 
ensemble methods like Random Forest are also effective for solar radiation forecasting.
Random Forest, XGBoost, and MLP — based on key performance metrics: R², RMSE, and MAE. 
Figure 5 shows the Model Performance Metrics for R2   Score RMSE and MAE. The left chart 
displays the R² (coefficient of determination) for each Model, indicating how well the Model 
explains the variance in the data. Higher R² values (closer to 1) suggest a firmer fit to the data. 
Here, the Random Forest model achieves the highest R² of 0.94, indicating that it explains 94% of 
the variance, closely followed by XGBoost at 0.93. The MLP model has a slightly lower R² at 0.90, 
suggesting that while it performs well, it explains less variance than the other models.

Figure 5. Model Performance Metrics for R2 Score and RMSE and MAE.

The RMSE (Root Mean Square Error) and MAE (Mean Absolute Error) metrics represent error 
measurements. RMSE provides insight into the magnitude of prediction errors, where lower 
values indicate fewer significant errors. The XGBoost model achieves the lowest RMSE (81.87), 
suggesting it produces the least error variance among the models. Similarly, the MAE values 
provide another perspective on error magnitude without heavily penalizing significant errors, 
with the MLP model performing slightly better than the others in this metric (41.74). This 
breakdown provides a clear picture of each Model’s performance, with Random Forest excelling 
in explanatory power (R²) and XGBoost minimizing error (RMSE).
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5. CONCLUSION
This study demonstrates the importance of feature engineering and selection techniques in 
enhancing the accuracy of machine-learning models for solar radiation prediction. Our findings 
show that XGBoost and MLP models, combined with feature transformations and selection, 
effectively predict solar radiation levels. XGBoost achieved the best performance with an R² of 
0.93, while MLP provided highly accurate predictions with the lowest MAE. When optimized with 
effective preprocessing, these results indicate that machine learning models can be critical in solar 
energy management systems. Future work may explore advanced neural network architectures 
and additional meteorological data to improve further model accuracy and application in real-
time solar energy forecasting.
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