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phosphorus (P) substitution.

P was chosen for its potential to modify the electronic structure due to its smaller atomic
radius and different valence orbital energies compared to As. Our results reveal a systematic
narrowing of the band gap with increasing P content, from 0.749 eV for the undoped compound
t0 0.587 eV for K;AgAso.sPo..Brs and 0.424 eV for K;AgAso.cPo.4Brs. This trend is attributed to the
upward shift of the valence band maximum due to the higher energy of P 3p orbitals compared
to As 4p orbitals. Analysis of the density of states confirms increased hybridization between P-p
and As-p states at the valence band edge. Optical properties, including absorption coefficient,
dielectric function, refractive index, and extinction coeflicient, demonstrate a consistent red-shift
and broadening of spectral features with P doping. Notably, P-substituted compounds exhibit
enhanced absorption in the visible light region, with up to a 20% increase in the absorption

coefficient at 550 nm for K,AgAs,.cPo.4Brs compared to the undoped compound.
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This study reveals that elemental substitution offers a viable route to tailor optical and
electronic properties of double perovskites, paving the way for the design of novel materials

for next-generation photovoltaic and photoelectric devices.
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1. INTRODUCTION

Halide perovskites have gained significant attention due to their outstanding optoelectronic
characteristics and potential use in solar cells and other electronic devices [1]. Among these,
double perovskites have emerged as an intriguing class of materials, offering enhanced stability
and tunable properties. K,AgAsBrs [2], a lead-free double perovskite, has shown promise as a
stable compound with an indirect band gap. However, its wide band gap limits its effectiveness
in absorbing sunlight, hindering its application in solar energy conversion [3]. In this study, we
employ first-principles calculations grounded in DFT to address several key objectives aimed
at enhancing the material’s performance. Our primary goals are to investigate phosphorus
doping as a strategic approach for band gap engineering in K,AgAsBrs, leveraging P’s smaller
atomic radius and different valence orbital energies compared to arsenic [4]; to elucidate the
fundamental mechanisms by which P substitution influences the electronic structure and band
properties of the host material; to quantitatively assess the enhancement in optical properties
and solar absorption capabilities through systematic characterization of P-doped variants; and
to establish design principles for the development of improved perovskite-based photovoltaic
materials[5]. Through comprehensive investigation of K,AgAsBrs and its phosphorus-doped
variants (K;AgAse.sPo.2Brs and K;AgAso.cPo.4Brs), we examine key parameters including band
structure, density of states, absorption coefficient, dielectric function, refractive index, and
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extinction coefficient to understand how progressive P substitution affects these properties [6].
The inherent tunability of perovskites through elemental substitution makes this investigation
particularly relevant for advancing our understanding of band gap engineering strategies [7].
This study employs first-principles calculations grounded in DFT to explore the electronic and
optical characteristics of K,AgAsBrs and its phosphorus-doped variants, K,AgAso.sPo.,Brs
and K;AgAso.cPo.4Brs. Through examining aspects such as band structure, density of states,
absorption coeflicient, dielectric function, refractive index, and extinction coeflicient, this study
seeks to comprehensively investigate the influence of phosphorus doping on the optoelectronic
characteristics of K,AgAsBrs. this research investigates the impact of progressive P substitution
on these properties, seeking to elucidate the potential of P doping for enhancing the performance
of K,AgAsBrs in optoelectronic applications [8], particularly for efficient solar energy conversion
[9]. This research provides valuable insights for the development and refinement of advanced
materials for use in next-generation photovoltaic and optoelectronic devices, potentially paving
the way for more efficient and stable lead-free perovskite materials.

2. METHOD OF CALCULATIONS

The electronic and optical properties of K,AgAsBrs perovskite were modeled using density
functional theory (DFT) calculations using the CASTEP code [10], The PBE exchange-
correlation functional was used in our calculations since it serves within the generalized gradient
approximation (GGA) framework for determining the exchange-correlation energy of the system
[11]. Representations of the contributions of core and valence electrons were performed with
ultrasoft pseudopotentials. Electron-ion interactions were described using on-the-fly generated
(OTEG) pseudopotentials as described in [12].

Figure 1. Crystal structure of K,AgAsBrs (a), K2AgAso.sPo.2Brs(b), and K;AgAs,.sPo.4Brs (c)

The calculations were carried out with a plane wave basis set with an energy cutoff of 500 eV. The
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primary unit cell was sampled with a 2 x 2 x 2 k-point grid, providing sufficient convergence for
the analysis of the electronic structure. In the self-consistent field operations, the Pulay density
mixing method was used, and the convergence criterion was set at 2 x 107° eV/atom [13]. The
maximum stress was defined to be 0.1 GPa [14]. Valence electron configurations were as follows:
K: 3s?3p°4s', Ag: 4d'%5s', As: 4s*4p®, Br: 4s°4p°, and P: 3s?3p°. The geometry of the K,AgAsBrs
structure was optimized before calculating electronic and optical properties. A supercell of cubic
K,AgAsBr, structure with Fm3m symmetry with lattice parametersa=b = ¢ = 10.95 A and a =
B =y = 90° was studied. Different P doping concentrations were investigated by systematically
replacing specific As atoms with P atoms in the supercell (see Figure 1).

3. RESULTS AND DISCUSSION

3.1. Electronic Properties
3.1.1. Band Gap

The calculated electronic band structures of K,AgAsBrs, K2AgAs,.sPo..Brs, and K, AgAs.sPo.4Brs
(Figure 2) reveal a clear trend in electronic properties with increasing phosphorus content. All
three compounds exhibit semiconducting behavior with indirect band gaps located at the high-
symmetry point. Notably, a systematic narrowing of the band gap is observed as phosphorus
substitution increases. The band gap of the undoped K,AgAsBrs is calculated to be 0.749 eV [15],
decreasing to 0.584 eV and 0.424 eV for K;AgAs.sPo.oBrs and K;AgAso.cPo.4Brs, respectively.
This reduction in band gap is attributed to the higher energy of P 3p orbitals compared to As 4p
orbitals, leading to an upward shift of the valence band maximum. The reduced band gap (0.424
eV for K;AgAs,.cPo.4Brs) and enhanced visible light absorption make these materials particularly
suitable for single-junction and tandem solar cells. Despite the band gap narrowing, the overall
features of the band structure, including the dispersion of conduction and valence bands, remain
qualitatively similar across the three compositions.
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Figure 2. Band structures of K,AgAsBrs (a), KyAgAso.sPo..Brs(b), and K, AgAso.sPo.4Brs (¢).
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3.1.2. Density of States

The Total Density of States (TDOS) for K,AgAsBrs, KyAgAso.sPo.2Brs, and KyAgAse.sPo.4Brs is
shown in (Figure 3), highlighting the electronic structure variations resulting from phosphorus
doping. These TDOS graphs exhibit a uniform trend across the three compositions, with the
Fermi level (Ef) positioned at 0 eV [16]. As the phosphorus content increases, we observe a
notable increase in the density of states near the Fermi level, particularly in the valence band
region. This trend is evident from the heightened peaks and increased complexity of features in
the TDOS plots of the phosphorus-doped compounds compared to the undoped K,AgAsBrs.
The enhanced DOS near the Fermi level for K;AgAso.sPo.2Brs and KsAgAse.sPo.4Brs suggests an
increase in the number of available electronic states, which could contribute to improved charge
carrier transport properties. Furthermore, the gradual reduction of the band gap, as indicated by
the narrowing of the zero-state region around the Fermi level, corroborates the band structure
analysis.
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Figure 3. TDOS of K,AgAsBrs, K;AgAso.sPo.2Brs, and K, AgAso.sPo.4Brs.

The Partial Density of States (PDOS) calculations, presented in (Figure 4), elucidate the
orbital-specific contributions to the electronic structure. Analysis reveals that the valence band
maximum is primarily composed of Br-p and As-p states, with minor contributions from Ag-d
states. The conduction band minimum is dominated by Ag-s and Ag-p states. With increasing
phosphorus content, P-p states emerge and intensify near Ef, particularly in the valence band
region, indicating enhanced hybridization between P-p and As-p orbitals. This hybridization
likely contributes to the observed band gap narrowing. The K states remain largely unchanged
and contribute minimally near the Fermi level, suggesting their limited role in determining the
compounds’ electronic properties.
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Figure 4. PDOS of K,AgAsBrs, K2 AgAso.sPo.2Brs, and K, AgAse.sPo.4Brs.

3.2. Optical Properties

3.2.1. Absorption Coefficient

The absorption coefficient (a) quantifies the depth to which light can penetrate a material before
being significantly absorbed [17]. This parameter is crucial for understanding and optimizing the
efficiency of solar energy conversion systems. The absorption coeflicient can be calculated using:

(), J(el(w»z e (o))
2 2

a(w)=2w (1)

where &;(w) and &,(w) are the real and imaginary parts of the dielectric function, respectively [18].
Analysis of optical absorption spectra reveals a systematic bathochromic shift of the absorption
edge with increasing phosphorus substitution in the K,AgAs; _4PyBrg system. Optical absorption
coefficients were determined for three compositions: the parent compound K,AgAsBrs and two
phosphorus-substituted derivatives, K,AgAso.sPo..Brs and K,AgAso.¢Po.4Brs (Figure 5). The
spectroscopic data demonstrate that increasing phosphorus content directly correlates with
enhanced visible-light absorption capabilities. The parent compound K,AgAsBrs exhibits strong
absorption predominantly in the ultraviolet region (A < 400 nm), whereas the phosphorus-
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substituted compounds display progressively red-shifted absorption edges extending into the
visible spectrum. This systematic shift corresponds to the band gap narrowing observed in
electronic structure calculations. The expanded spectral response of K,AgAs,.sPo..Brs and
K,AgAs,.6Po.4Brs in the visible region indicates that these materials are particularly promising
for photovoltaic applications, where broad-spectrum solar absorption is essential for optimal
device efliciency.
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Figure 5. Absorption coefficients of K,AgAsBrs, K;AgAso.sPo.2Brs, and K;AgAso.sPo.4Brs.

3.2.2. Dielectric Function

The dielectric function, g(w), characterizes the material’s response to electromagnetic radiation
[19]. and can be expressed as:

glw)=¢(w)+ig,(w) (2)

The real part €,(w) represents the polarization response, while the imaginary part €,(w) describes
energy absorption through electronic transitions [20]. Our calculations demonstrate that the
static dielectric constant &;(0) increases with P content, suggesting enhanced polarizability. The
imaginary component exhibits a systematic red-shift of the main peak with increasing P content,
consistent with the observed absorption spectra trends.

Thedielectric function graphs presented in (Figure 6) illustrate the optical properties of K,AgAsBrs
and its P-doped variants (K;AgAso.sPo.2Brs and K;AgAse.sPo.4Brs) across a wavelength range
of 0-1000 nm [21]. The real part (Figure 6 a) exhibits characteristic oscillator behavior with
an initial peak at approximately 200 nm, followed by a negative dip around 300-400 nm, and
subsequently a steep rise beginning at 400 nm before plateauing at higher wavelengths, consistent
with observations in related double perovskite Cs2AgBiBr6 [22]. The imaginary part (Figure 6
b) reveals distinct absorption peaks, with the pure K,AgAsBrs displaying the sharpest peak near
500 nm. The incorporation of P-doping induces systematic shifts in peak positions and results
in broader spectral features compared to the pure compound, analogous to effects observed in
Cs2AgBiCl6 doped halide double perovskites [23]. This broadening and shifting of peaks with
increased P content indicates significant modification of the material’s electronic structure and
optical properties. These spectral features are characteristic of semiconductor materials, where the
peaks correspond to electronic transitions, and the overall shape reflects the material’s response
to electromagnetic radiation across different wavelengths.
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Figure 6. Real (a) and imaginary (b) parts of the dielectric function of K,AgAsBrs, K;AgAs,.sPo.,Brs, and
KzAgASO.5P0.4Br6.

3.2.3. Refractive Index

The refractive index, a key parameter quantifying how light propagates through a medium, was
calculated for both pristine K,AgAsBrs and its phosphorus-doped counterpart. The complex
refractive index n*(w) is expressed as [24]:

n*(o)=n(w)+ik(w) (3)
where n(w) is the refractive index and k(w) is the extinction coefficient [25]. These components
can be calculated using:

)20 Jel(zw)+ J(el(w)f;(ez(w»z "
Ho)—20 \/—812(@)+ \/(el(a»)f;(ez(w)f s

Figure 7 display the optical properties of K;AgAsBrs and its P-doped derivatives (K, AgAso.sPo.2Brs
and K,AgAso.cPo.4Brs) through their extinction coeflicient (Figure 7 b) and refractive index
(Figure 7 a) spectra across the 0-1000 nm wavelength range [26]. The refractive index patterns
exhibit oscillating features at lower wavelengths (100-300 nm), followed by a sharp increase
starting around 400 nm, ultimately reaching a plateau at higher wavelengths with values between
3.0-3.5, consistent with typical values observed in Cs2KBiCl6 double perovskite systems[27].
The extinction coeflicient (Figure 7 b) reveals distinctive absorption peaks, with the undoped
K,AgAsBrs displaying the most pronounced peak at approximately 500 nm. The incorporation
of phosphorus induces systematic changes in both optical parameters - the peaks broaden
and shift positions, particularly in the visible region (400-700 nm), like effects observed in
Cs2AgBiBr6 doped halide perovskites [28]. These spectral modifications indicate that P-doping
significantly influences the material’s electronic structure and optical response. The extended tail
in the extinction coeflicient at longer wavelengths for P-doped samples demonstrates modified
absorption characteristics, which could be particularly relevant for optoelectronic applications.
The correlation between these optical parameters provides valuable insights into the material’s
potential for various photonic and optoelectronic applications. The calculations reveal that both
the refractive index and extinction coefficient exhibit systematic changes with P doping. The
static refractive index increases with P content, suggesting a denser optical medium, while the
extinction coefficient demonstrates a red-shift and peak broadening, confirming enhanced visible
light absorption in P-substituted compounds.
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Figure 7. Refractive index (a) and extinction coefficient (b) of K;AgAsBrs, K;AgAs,.sPo.,Brs, and
KzAgASO.5P0.4Br6.

4. CONCLUSION

This comprehensive study provides compelling theoretical evidence for the effectiveness of
phosphorus doping in tuning the optoelectronic properties of K, AgAsBrs double perovskites. DET
calculations demonstrate that increasing phosphorus substitution systematically narrows the band
gap through an upward shift of the valence band maximum, attributed to the higher energy of P
3p orbitals compared to As 4p orbitals. This finding is supported by the observed hybridization of
P-p and As-p states at the valence band edge. The optical properties show consistent trends across
all investigated parameters, with a characteristic red-shift and broadening of spectral features as
P content increases. Notably, the P-substituted compounds demonstrate superior absorption in
the visible light region, with K;AgAs,.sPo.4Brs showing a remarkable 20% increase in absorption
coefficient at 550 nm compared to the undoped compound, which could improve photovoltaic
efficiency. These results suggest that phosphorus doping represents a promising strategy for
enhancing the performance of K,AgAsBrs-based solar cells and optoelectronic devices. Future
research directions should include experimental validation of these theoretical predictions,
investigation of various synthesis techniques and doping concentrations, and exploration of
alternative dopants such as halides or transition metals to further optimize the optoelectronic
properties of K;AgAsBrs.
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