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ABSTRACT                                  
With the increasing adoption of solar photovoltaic 

(PV) systems, ensuring their reliability and efficiency 
is crucial for sustainable energy production. However, 
traditional fault detection methods rely on expensive 
manual inspections or sensor-based monitoring, often 
slow and inefficient. This study aims to bridge this gap 
by leveraging machine learning techniques to enhance 
fault detection and maintenance optimization in PV 
systems. We evaluate five advanced machine learning 
models—Random Forest, XGBoost, Artificial Neural 
Networks (ANN), Convolutional Neural Networks 
(CNN), and Support Vector Machines (SVM)—using 
accurate operational data from a 250-kW PV power 
station.

The dataset includes key operational parameters such as current, voltage, power output, 
temperature, and irradiance. Data preprocessing included outlier removal, feature selection via 
Pearson correlation, and normalization to improve model performance. The models were trained 
and tested using an 80-20 data split and evaluated based on classification accuracy, precision, 
recall, and F1-score. Our results show that XGBoost achieved the highest accuracy (88%), making 
it the best candidate for real-time predictive maintenance. Random Forest also performed well 
(87% accuracy), particularly in handling noisy data. 
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تحليل مقارن لنماذج التعلم الآلي المعتمدة على الذكاء الاصطناعي لاكتشاف الأعطال 
وتحسين الصيانة في الأنظمة الكهروضوئية

عبد الله مولاي ارشيد، موسى عطية، محمد المامي محمد محمود،                                                                                     
فاطمة الفالي، زوبير عولمي، عبد القادر ولد محمود.

ملخ��ص: م��ع تزايد اعتماد أنظمة الطاقة الشمس��ية الكهروضوئية، فإن ضم��ان موثوقيتها وكفاءتها أمر بالغ الأهمية لإنتاج الطاقة 
المس��تدامة. وم��ع ذل��ك، تعتم��د ط��رق الكش��ف ع��ن الأخط��اء التقليدي��ة عل��ى عمليات التفتي��ش اليدوية باهظ��ة الثمن أو المراقب��ة القائمة 
عل��ى المستش��عر، وال��ي غالبً��ا م��ا تك��ون بطيئ��ة وغ��ر فعال��ة. ته��دف ه��ذه الدراس��ة إلى س��د ه��ذه الفج��وة من خلال الاس��تفادة م��ن تقنيات 
التعل��م الآل��ي لتعزي��ز اكتش��اف الأخط��اء وتحس��ن الصيان��ة في أنظم��ة الطاق��ة الكهروضوئي��ة. نق��وم بتقيي��م خمس��ة نم��اذج متقدم��ة 
 ،)CNN( والشبكات العصبية التلافيفية ،)ANN( والشبكات العصبية الاصطناعية ،XGBoost للتعلم الآلي - الغابات العشوائية، و
وآلات الدع��م المتجه��ة )SVM( - باس��تخدام بيان��ات تش��غيلية دقيق��ة من محطة طاقة كهروضوئية بق��درة 250 كيلو وات. تتضمن 
مجموع��ة البيان��ات معلم��ات تش��غيلية رئيس��ية مث��ل التي��ار والجهد ونات��ج الطاقة ودرجة الحرارة والإش��عاع. تضمن��ت خطوات معالجة 
البيانات المسبقة إزالة القيم المتطرفة واختيار الميزة عبر ارتباط برسون والتطبيع لتحسن أداء النموذج. تم تدريب النماذج واختبارها 
 XGBoost تظه��ر نتائجنا أن .F1 باس��تخدام تقس��يم البيان��ات 20-80 وتقييمه��ا بن��اءً عل��ى دق��ة التصنيف والدقة والاس��تدعاء ودرجة
حق��ق أعل��ى دق��ة )88٪(، مم��ا يجعل��ه المرش��ح الأفض��ل للصيان��ة التنبؤي��ة في الوق��ت الفعل��ي. كم��ا حق��ق Random Forest أداءً جي��دًا 
)دق��ة 87٪(، خاص��ة في التعام��ل م��ع البيان��ات المشوش��ة. اكتش��فت نم��اذج ANN و CNN بفعالي��ة أنم��اط التده��ور طويل��ة الأج��ل، مم��ا 
 Random Forest و XGBoost :يدعم اس��راتيجيات الصيانة الوقائية. بناءً على هذه النتائج، نقرح اس��راتيجية صيانة مزدوجة
للكش��ف ع��ن الأعط��ال في الوق��ت الفعل��ي، بينم��ا تراقب ANN و CNN التدهور التدريجي للنظ��ام. يوفر هذا البحث إطارًا عمليًا لدمج 
تقني��ات التعل��م الآل��ي في إدارة نظ��ام الطاق��ة الكهروضوئي��ة، مم��ا يوف��ر ح��لًا قاب��لًا للتطوي��ر لتعزي��ز الموثوقي��ة وتقليل تكالي��ف الصيانة 

وتحس��ن كفاءة الطاقة. 

1. INTRODUCTION

Photovoltaic (PV) systems are increasingly recognized as a pivotal renewable energy technology 
that significantly reduces greenhouse gas emissions and enhances energy sustainability [1]. 
Their ability to efficiently convert solar energy into electricity makes them essential for global 
transitions from fossil fuels to cleaner energy sources [2]. These systems offer scalability, making 
them suitable for small-scale residential installations and large-scale energy grids.
Despite the significant advantages of solar energy, PV systems are susceptible to various 
operational challenges and faults that can adversely affect their efficiency and overall performance 
[3]. These issues range from minor complications, such as reduced energy output due to shading 
or dust accumulation, to more complex mechanical and electrical failures, including inverter 
malfunctions and degradation of system components. If these faults are not promptly identified 
and addressed, they can result in substantial energy losses, increased maintenance costs, and 
shortened system lifespan. Effective fault detection mechanisms are thus critical to maintaining 
the operational integrity of PV systems [4].
Historically, PV fault detection has relied on manual inspections and traditional sensor-

ANN and CNN models effectively detected long-term degradation patterns, supporting 
preventive maintenance strategies. Based on these findings, we propose a dual maintenance 
strategy: XGBoost and Random Forest for real-time fault detection, while ANN and CNN 
monitor gradual system deterioration. This research provides a practical framework for 
integrating machine learning techniques into PV system management, offering a scalable 
solution to enhance reliability, reduce maintenance costs, and optimize energy efficiency.
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based monitoring systems. However, these approaches are costly, time-consuming, and often 
impractical for large-scale installations due to scalability limitations. The increasing complexity 
of PV systems and the dynamic nature of environmental conditions necessitate the development 
of automated, intelligent fault detection solutions that can provide real-time diagnostics and 
predictive maintenance capabilities [5].
Machine learning (ML) and artificial intelligence (AI) techniques have emerged as powerful tools 
for improving fault detection and diagnostics in PV systems. These advanced methodologies 
can process large volumes of operational data, detect subtle patterns, and predict potential faults 
before they lead to system failures. By leveraging ML-driven predictive maintenance strategies, 
PV system operators can minimize downtime, optimize maintenance schedules, and reduce 
reliance on expensive manual inspections. Consequently, integrating machine learning-based 
fault detection can significantly enhance the reliability and sustainability of solar energy systems 
[6].
The need for robust automated fault detection methods has grown exponentially with the 
increasing reliance on solar power. Existing fault detection approaches often fail to balance 
accuracy, computational efficiency, and real-time applicability, making them impractical for 
large-scale PV deployments. While numerous ML models have been explored for PV system fault 
detection, prior research has often focused on a single model or a limited comparative analysis, 
lacking a systematic evaluation under real-world operational conditions [7].
Furthermore, previous studies have primarily emphasized classification accuracy without 
assessing the practical implications of these models for predictive and preventive maintenance 
workflows [8]. The impact of real-world environmental variability, data noise, and system aging 
on ML model performance remains an underexplored area [7]. This study aims to bridge these 
gaps by conducting a comprehensive comparative analysis of multiple machine learning models, 
evaluating their fault detection capabilities, and integrating them into a structured maintenance 
framework.
The primary objectives of this study are:
1. To compare the performance of five state-of-the-art ML models—Random Forest, XGBoost, 
Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), and Support Vector 
Machines (SVM)—for PV fault detection.
2. To evaluate these models using real-world operational data from a 250-kW PV power station, 
assessing their accuracy, precision, recall, and F1-score.
3. To propose an optimized predictive and preventive maintenance strategy informed by the 
most effective ML models.
4. To analyze the feasibility of deploying high-performing models in real-time PV monitoring 
systems.
Unlike previous studies focusing solely on classification performance, this research provides a 
holistic evaluation of ML-based fault detection, integrating technical performance analysis with 
practical maintenance implications. By utilizing accurate operational data, this study enhances 
the applicability of ML models in real-world PV deployments, offering insights that can guide the 
development of automated, cost-effective maintenance systems.
The findings are expected to assist PV operators in optimizing maintenance schedules, reducing 
operational costs, and extending the lifespan of solar energy infrastructure through intelligent, 
data-driven decision-making.

2. LITERATURE REVIEW

Early PV system fault detection research relied primarily on manual inspections and simple 
sensor-based monitoring. While effective in small-scale installations, these conventional 



Abdellahi Moulaye Rchid et. al.

364 Solar Energy and Sustainable Development, Volume (14) - No (1) . June 2025

techniques lack scalability and real-time responsiveness, making them impractical for large PV 
farms. Thermal imaging, infrared analysis, and electrical parameter monitoring were among the 
earliest automated approaches, but these methods require specialized equipment and suffer from 
low detection precision in dynamic environmental conditions [9].
With advancements in computational technologies, data-driven methods have become the focal 
point of PV fault detection research. Statistical techniques such as Principal Component Analysis 
(PCA) and Time-Series Analysis were introduced to identify anomalies based on deviations from 
historical trends [10]. However, these methods rely heavily on predefined thresholds, limiting 
their adaptability to evolving system conditions. Integrating machine learning (ML) techniques 
has significantly improved fault detection accuracy and efficiency in PV systems. Supervised 
learning models, including Decision Trees (DT), Support Vector Machines (SVM), and Random 
Forests (RF), have been widely explored due to their ability to classify faults based on labeled 
datasets. Among these, SVM has demonstrated high accuracy in binary fault classification, 
particularly under controlled environments [11]. However, its performance degrades in complex 
multiclass fault scenarios where fault patterns overlap.
As ensemble learning models, Random Forest (RF) and XGBoost have gained attention for their 
robustness in handling high-dimensional and noisy PV data. RF has been found to effectively 
identify diverse fault types while minimizing overfitting, making it a strong candidate for real-
world applications. XGBoost, a gradient-boosting algorithm, has consistently outperformed 
traditional ML models by optimizing classification errors iteratively, achieving superior fault 
detection accuracy in multiple studies [12].
Deep learning (DL) techniques have emerged as powerful alternatives to conventional ML 
methods. Artificial Neural Networks (ANNs) have shown remarkable capability in detecting 
nonlinear fault patterns within PV datasets. While ANN models can extract hidden relationships 
between operational parameters, they require large datasets and significant computational 
resources for training and optimization [13].
Initially designed for image processing, convolutional Neural Networks (CNNs) have been 
adapted to analyze temporal patterns in PV system data. Studies have shown that CNN-based 
models outperform traditional methods in detecting gradual degradation trends, making them 
suitable for long-term preventive maintenance strategies. However, CNNs demand extensive 
labeled data and high computational power, limiting their real-time deployment feasibility [14].
Several comparative studies have evaluated the effectiveness of different ML models for PV system 
fault detection. SVM has demonstrated high accuracy in structured datasets with distinct class 
boundaries, whereas RF and XGBoost excel in noisy and imbalanced data environments. A recent 
study comparing ANN and CNN models found that ANNs perform well in fault detection tasks 
but require extensive fine-tuning. At the same time, CNNs provide superior feature extraction 
capabilities for time-series PV data [15].
Despite these advancements, existing research primarily focuses on fault classification accuracy, 
with limited attention given to the practical integration of ML models into predictive and 
preventive maintenance frameworks [16]. Additionally, standardized benchmarks are lacking for 
evaluating model performance under real-world PV operating conditions.
While extensive research has been conducted on ML-based fault detection, several gaps remain 
unaddressed:
1. Most studies focus on model accuracy without considering deployment challenges in real-time 
PV monitoring systems.
2. Comparative analyses of ML models rarely assess their effectiveness in predictive vs. preventive 
maintenance applications.
3. Limited research explores the impact of environmental variability and noisy data on ML model 
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performance.
To address these gaps, this study comprehensively evaluates five ML models—Random Forest, 
XGBoost, ANN, CNN, and SVM—using accurate operational data from a 250-kW PV power 
station. This research compares their fault detection capabilities and analyzes their suitability for 
predictive and preventive maintenance strategies, offering practical insights for integrating ML 
into real-world PV system management.

3. METHODOLOGY

3.1. Description of the PV System and Data Collection

The dataset used in this study was collected from a simulated 250-kW photovoltaic (PV) power 
station connected to the grid. The station is located in a simulated 250-kW PV farm, described 
in the study “Fault Detection Algorithms for Achieving Service Continuity in Photovoltaic 
Farms” (Ghoneim, Rashed, & Elkalashy, 2021) [17]. The system consists of 850 polycrystalline 
PV modules, each with a rated capacity of 250 kW, connected to a central inverter with a peak 
efficiency of 98%. The station has real-time monitoring sensors to ensure continuous data 
acquisition under real-world operating conditions. It fully integrates with the primary power 
grid, allowing constant data collection in real-time operational conditions.
The dataset comprises 700 samples, each containing 31 electrical and environmental features, 
including current (I), voltage (V), power output (P), temperature (T), and irradiance (IR). The 
power output of a photovoltaic (PV) system is fundamentally governed by Ohm’s law and the 
power equation, as defined in Equation (1): 

1                                                                                                          ( )P V I= ×

Current is measured using Hall-effect sensors with ±1% accuracy, voltage using precision voltage 
dividers with ±0.5% accuracy, power output is derived from voltage and current measurements, 
temperature using thermocouples with ±0.5°C accuracy, and irradiance using a pyranometer 
with ±5% accuracy.
The dataset includes fault and non-fault states, categorized into four distinct classes. Class 0 
corresponds to normal operating conditions. Class 1 represents string faults, typically caused 
by shading, degradation, or loose connections. Class 2 covers string-to-ground faults, which 
occur when an unintended electrical connection is formed with the ground. Class 3 accounts 
for string-to-string faults, where unintended interconnections between separate strings lead to 
voltage imbalances and reduced system efficiency.
Unlike simulated datasets, real-world operational data captures the complexities of PV system 
behavior, including environmental fluctuations, sensor noise, and system degradation over time. 
Exposing machine learning models to actual operational conditions enhances their robustness, 
improving their ability to generalize and detect faults under varying circumstances.

3.2. Data Preprocessing

The dataset underwent rigorous preprocessing to enhance its quality and improve model 
performance. No missing values were detected, eliminating the need for imputation. Outliers 
were identified and removed using Z-score thresholding (±3 standard deviations), with validation 
performed through box plots and interquartile range (IQR) analysis.
Feature selection was conducted using Pearson correlation analysis, eliminating redundant 
features with correlation coefficients above 0.85. the importance ranking of the Random Forest 
feature was also applied to retain the most influential features. The top five selected features based 
on importance ranking were Pdcmean1, Vdcmean1, IR, I1, and I2.
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To standardize feature scales, Min-Max normalization was employed, transforming feature values 
into a range between 0 and 1, which is mathematically defined as Equation (2):

2min

max min

                                                                                  ( )
( )

( )scaled

X X
X

X X
−

=
−

Distribution histograms and correlation matrices validated the effectiveness of this normalization 
process, ensuring uniformity across feature distributions.
Table 1 summarizes the key statistical properties of the dataset, including the mean, standard 
deviation, and distribution percentiles for current, voltage, power output, and other critical 
features.

Table 1: Summary Statistics of Key Features.
Statistic I1 

(A)
I2 

(A) 
Vdcmean1 

(V)
Pdcmean1 

(W)
IR 

(W/m²)
T 

(°C)
Class

Count 700 700 700 700 700 700 700
Mean 2.265 2.776 507.70 141.71 553.40 22.04 1.71
Std Dev 6.29 5.67 11.28 65.75 254.79 7.49 1.10
Min -99.26 -99.26 470.62 24.40 104.00 10.00 0.00
25th Percentile 1.48 1.82 500.04 85.49 334.75 15.00 1.00
50th Percentile 2.69 3.05 507.52 136.06 538.50 21.50 2.00
75th Percentile 3.93 4.38 516.49 197.13 779.00 28.00 3.00
Max 5.66 5.89 529.35 263.57 1000.00 40.00 3.00

3.3. Feature Selection

Pearson correlation analysis was performed to identify the most essential features for fault 
detection. The correlation coefficient ρ quantifies the linear relationship between features and 
the target variable (fault status) [18], calculated using Equation (3):

3                                                                                  ( )( , )( , )
X Y

Cov X YX Yρ
σ σ

=

Cov(X, Y) is the covariance between variables X and Y, and σX and σY are the standard deviations 
of X and Y, respectively.
This analysis helps determine which operational parameters are most relevant for fault detection. 
Features with stronger correlations to the fault status (ρ) are considered more influential for 
classification models. 
Table 2 presents the correlation between key operational features and the fault status. The highest 
correlation is observed for power output (P), suggesting its significant role in fault classification.

Table 2: Feature Correlation Analysis.
Feature Correlation with Fault Status (ρ)
Current (I) 0.76
Voltage (V) 0.72
Power Output (P) 0.80
Temperature 0.30
Irradiance (IR) 0.29

The Pearson correlation coefficient was selected for its ability to detect linear relationships, making 
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it highly effective in analyzing how operational parameters influence fault occurrences. Focusing 
on features with higher correlation values enhances the model’s fault detection performance by 
ensuring that only the most impactful data is utilized during training.
Feature importance rankings were further refined using the Gini importance metric (for tree-
based models) and mutual information scores (for other models). These rankings confirmed that 
voltage fluctuations and irradiance levels significantly contribute to fault detection.
Based on this correlation study, the three most influential features—current (I), voltage (V), and 
power output (P)—were selected as primary inputs for machine learning models.
Figure 1 visualizes the correlation between operational features, confirming the significance of 
power output and voltage in fault classification.

Figure 1: Correlation Matrix of Key Features.

The following heatmap (Figure 1) visually represents the correlation between features, with 
higher correlation values indicating a stronger linear relationship. This refined feature selection 
approach ensures that only the most relevant data is used, optimizing model accuracy and 
computational efficiency. 

3.4. Data Visualization

Two visualizations were generated to help better understand the distribution of the attributes and 
their relationships:
• Histogram of Features: This shows the distribution of each feature.
• Scatter Matrix (Pairplot): This visualization assists in analyzing interactions between numerous 
features and identifying probable clusters or patterns.
Figure 2 highlights the distribution of critical features before normalization, indicating the 
presence of outliers in current and power measurements.
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Figure 2: Histogram of Key Features.

Figure 3: Scatter Matrix (Pairplot) of Key Features.

This study uses machine learning models, specifically SVM, Random Forest, XGBoost, ANN, and 
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CNN. Table 3 outlines the characteristics of each model, highlighting its strengths and optimal 
use cases.

Table 3: Summary of Model Selection.
Model Type Strengths Best for
SVM Binary Classifier Effective for smaller datasets Binary Faults
Random 
Forest

Ensemble 
(Tree-based)

Handles noisy data and performs 
well in multiclass tasks

Multiclass Faults

XGBoost Boosting 
(Ensemble)

Handles large, imbalanced 
datasets

Complex Faults

ANN Deep Learning Captures non-linear patterns Long-Term Detection
CNN Deep Learning Effective for time-series data Temporal Faults

The preprocessed dataset was divided into training (80%) and testing (20%) subsets, following 
standard machine learning practices to ensure effective learning while maintaining reliable 
evaluation—this split balances data sufficiency and model generalization, minimizing 
overfitting and ensuring robustness in real-world applications. To optimize model performance, 
hyperparameter tuning was conducted using cross-validation and grid search, refining the model 
parameters for improved accuracy and reliability in fault detection for photovoltaic (PV) systems.

3.5. Model Selection

Machine learning is pivotal in fault detection in photovoltaic (PV) systems. It utilizes operational 
data to identify fault patterns that indicate system failures. This study evaluates five machine 
learning models: Support Vector Machines (SVM), Random Forest (RF), XGBoost, Artificial 
Neural Networks (ANN), and Convolutional Neural Networks (CNN).
These models were selected based on their ability to process structured tabular data, handle 
nonlinear correlations, and accurately classify PV system faults.
3.5.1. Model Architectures and Mathematical Foundations

Each model in this study relies on a distinct mathematical approach to optimize fault detection 
and classification.
• Support Vector Machine (SVM) for Fault Classification
SVM is a supervised learning algorithm that aims to find the optimal hyperplane that maximizes 
the margin between different fault classes [19]. The optimization function is:   

2

i
w C ξ+ ∑

This optimization problem is solved using Equation (4):
1 4( . ) ,                                                                                     ( )i i iy w x b iξ+ ≥ − ∀

Where w is the weight vector, xi are feature vectors, yi are fault labels, iξ  are slack variables 
controlling misclassification, and C  is the regularization parameter.
SVM employs kernel transformations to map nonlinear fault patterns into a higher-dimensional 
space efficiently, improving classification accuracy.
• Random Forest (RF) for Robust Fault Detection
The Random Forest (RF) model aggregates the outputs of multiple decision trees, making 
predictions based on the majority vote rule [20], mathematically expressed in Equation (5):

1
51                                                                                           ( )( ) ( )

N

i
i

F x T x
N =

= ∑
F(x) is the final classification output, N is the number of decision trees, and Ti(x) is the prediction 
from the ith tree. This ensemble technique enhances reliability, reduces overfitting, and is 
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particularly effective for multiclass fault classification in PV systems.
• Artificial Neural Network (ANN) Architecture
The ANN model consists of an input layer, multiple hidden layers, and an output layer [21]. The 
forward propagation equation for each layer is given by Equation (6):

1 6( ) ( ) ( ) ( )                                                                                ( )( )l l l lh f W h b−= +

where:  h(l) is the output of layer l , W(l) represents the weight matrix for layer l , b(l) is the bias term,
f  is the activation function (ReLU for hidden layers, Softmax for output).
The network updates weights using backpropagation, following the gradient descent update rule, 
expressed in Equation (7):

7( ) ( )
( )                                                                                        ( )l l

l

LW W
W

η ∂
= −

∂
Where η is the learning rate, and L is the loss function.
To visualize the ANN architecture, we use (Figure 4).

Figure 4: ANN Architecture.

• Convolutional Neural Network (CNN) Architecture
Convolutional Neural Networks (CNN) are highly effective in detecting time-dependent fault 
patterns in photovoltaic (PV) systems. 
They utilize convolutional layers to extract spatial and temporal features, then pool layers to 
reduce dimensionality and fully connected layers for classification [22]. The feature extraction 
process is mathematically represented in Equation (8) as follows:

1 8( ) ( ) ( )
, , ,                                                                              ( )l l l

i j m n i m j n
m n

F W X b−
+ += +∑∑

To illustrate the CNN architecture, we use (Figure 5).
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Figure 5: CNN Architecture.

3.6. Model Training 

All models received hyperparameter tuning to achieve optimal performance. The training 
configuration for every model is detailed in Table 4.

Table 4: Training Configuration of Models.
Model Hyperparameters Optimized Key Parameters
SVM Kernel (RBF), Regularization (C) C = 1.0, Kernel = ‘rbf ’
Random Forest Number of Trees (n_estimators) n_estimators = 100, max_depth = 10
XGBoost Learning Rate, Max Depth Learning Rate = 0.1, max_depth = 6
ANN Number of Layers, Neurons per Layer 3 Layers, 128 Neurons in First Layer, Dropout = 0.3
CNN Conv Layers, Kernel Size 2 Conv Layers, Kernel Size = 3

Based on the fault detection results, different maintenance strategies were proposed:
• Predictive Maintenance: This is for real-time fault detection (best for XGBoost and Random 
Forest).
• Preventive Maintenance: For gradual or long-term degradation (most suitable for ANN and 
CNN).
This methodology created a robust framework for identifying faults in photovoltaic (PV) 
systems by applying machine learning techniques. Essential data preprocessing steps, such as 
normalization and feature selection through Pearson correlation, were implemented to achieve 
optimal model performance. Various models were selected, optimized, and assessed for validation, 
including SVM, Random Forest, XGBoost, ANN, and CNN. Visual tools such as histograms and 
correlation matrices offered essential insights into the data structure. This robust groundwork 
equips the models for efficient fault detection and subsequent examination of predictive and 
preventive maintenance approaches.

4. RESULTS AND DISCUSSION 

In this section, a thorough comparison of the five machine learning models—Support Vector 
Machine (SVM), Random Forest (RF), XGBoost, Artificial Neural Networks (ANN), and 
Convolutional Neural Networks (CNN)—is presented, with a focus on their effectiveness in 
fault detection for photovoltaic (PV) systems. The analysis evaluates these models across several 
key metrics: accuracy, precision, recall, and F1-score. We also compare our findings with results 
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from earlier studies, highlighting significant advancements and challenges in applying machine 
learning for solar energy fault detection.
All experiments were conducted using Python 3.11.11 (main, Dec 4, 2024, 08:55:07) [GCC 11.4.0], 
along with Scikit-learn (version 1.6.1) and TensorFlow (version 2.18.0) libraries. Hyperparameter 
tuning was performed using grid search combined with 5-fold cross-validation to ensure optimal 
model performance. The computational setup consisted of an Intel Core i7 processor and 12.67 
GB of RAM, enabling efficient model training and scalability, even without GPU acceleration.

4.1. Comparison of Model Performance with Previous Studies

In this study, we evaluated the performance of five machine learning models: Support Vector 
Machine (SVM), Random Forest (RF), XGBoost, Artificial Neural Networks (ANN), and 
Convolutional Neural Networks (CNN) for fault detection in photovoltaic (PV) systems. Our 
findings show that the XGBoost model outperforms other models in terms of accuracy (88%), 
precision (87%), recall (88%), and F1-score (87.5%), aligning with results from previous studies 
such as Abdelmoula et al. (2024) and Mellit & Kalogirou (2021) who achieved similar accuracy 
rates using XGBoost and Random Forest.
However, our study goes a step further by incorporating real-time operational data from a 
simulated 250-kW photovoltaic power station, which provides more diverse and realistic 
conditions for fault detection. This allowed us to evaluate the models’ capabilities in managing 
real-world data complexities such as noisy environments and imbalanced datasets—challenges 
not extensively addressed in earlier research.
For instance, while Verma et al. (2024) demonstrated an accuracy of 85% using SVM for inverter 
fault detection, our XGBoost model achieved 88% accuracy, demonstrating its superior handling 
of complex fault types such as string-to-string faults, which were not covered in their study [23]. 
Similarly, Random Forest demonstrated a robust performance in our study with 87% accuracy, 
surpassing Mellit & Kalogirou’s results for shading and soiling faults, which were limited to 87% 
accuracy.
Furthermore, while the ANN and CNN models in our study performed similarly to earlier 
works, such as the results seen in Mellit & Kalogirou (2021), they offered more valuable insights 
for preventive maintenance [24]. The ANN and CNN models excelled in identifying long-term 
degradation patterns, which is critical for maintenance scheduling—something that earlier 
studies have not emphasized as much.
Table 5 compares our results with previous studies, demonstrating that XGBoost achieves the 
highest fault detection accuracy (88%), followed closely by Random Forest (87%).

Table 5: Performance Comparison with Previous Studies.
Study Reference Model Accuracy 

(%)
Precision

 (%)
Recall 

(%)
F1-Score 

(%)
Fault Type 
Detected

Verma et al. 
(2024) [23]

SVM 85 80 79 79.5 Inverter Faults

Mellit & Kalogirou 
(2021) [24]

Random Forest 87 85 84 84.5 Shading, Soiling

Abdelmoula et al. 
(2022) [25]

XGBoost 88 87 88 87.5 Inverter, Soiling

This Study XGBoost 88 87 88 87.5 Multiple Faults
This Study Random Forest 87 85 84 84.5 Multiple Faults
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4.2. Evaluation of Model Performance Using Key Metrics

The models were evaluated based on accuracy, precision, recall, and F1-Score metrics, consistently 
comparing model performance across different fault detection tasks.
The models were evaluated using standard classification metrics, including accuracy, precision, 
recall, and F1-score. While accuracy provides a general performance measure, it does not consider 
false positives or negatives, which are crucial in fault detection tasks.
Therefore, precision, defined by Equation (9), quantifies the proportion of correctly classified 
faults relative to all predicted fault cases [26]:

9                                                                                        ( )Pr TPecision
TP FP

=
+

Similarly, recall (Equation (10)) measures the ability to detect all actual faults in the dataset 
correctly [26]:

10                                                                                              ( )Re TPcall
TP FN

=
+

To balance precision and recall, the F1-score is used, as shown in Equation (11), which provides 
a harmonic mean of the two [26]:

1 2 11                                                              ( )Pr Re
Pr Re

ecision callF Score
ecision call

×
− = ×

+
These metrics are crucial in assessing the model’s performance, particularly in imbalanced 
datasets where one class (faults) is rarer than the other (regular operation).
Table 6 presents the performance metrics for all models, emphasizing the effectiveness of 
ensemble methods in fault detection.
The results show that ensemble models like Random Forest and XGBoost consistently outperform 
deep learning models and SVMs, particularly in managing complex, non-linear data distributions.

Table 6: Model Performance Metrics.
Model Accuracy

(%)
Precision

(%)
Recall

(%)
F1-Score

(%)
SVM 82 80 79 79.5
Random Forest 87 85 84 84.5
XGBoost 88 87 88 87.5
ANN 84 83 84 83.5
CNN 83 82 83 82.5

4.3. Graphical Analysis of Fault Detection Models

This visualization compares the five models’ accuracy, precision, recall, and F1 scores.
The performance comparison graph (Figure 6) provides a comprehensive view of all models’ 
accuracy, precision, recall, and F1 scores. This visualization highlights the superiority of ensemble 
methods (XGBoost and RF) compared to deep learning models (ANN and CNN) in handling 
imbalanced datasets.
Figure 6 confirms that XGBoost and Random Forest consistently outperform deep learning 
models, making them optimal for real-time fault detection.
The confusion matrix visually represents true positives, false positives, and false negatives.
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Figure 6: Machine Learning Model Performance Comparison.

Figure 7 shows the confusion matrix for Random Forest, demonstrating how the model accurately 
detects inverter faults. This visualization illustrates the alignment between actual and predicted 
classifications across different models.

Figure 7: Confusion Matrices for XGBoost and Random Forest.

The findings from our analysis highlight that ensemble models, particularly XGBoost and 
Random Forest, consistently outperform other algorithms in detecting faults in PV systems. 
XGBoost demonstrated the highest accuracy (88%), making it particularly suitable for 
predictive maintenance strategies. Random Forest showed remarkable performance in noisy 
data environments, while ANN and CNN models excelled at detecting long-term degradation 
patterns, making them practical for preventive maintenance.
The results suggest a hybrid approach to PV maintenance:
• XGBoost and Random Forest should be used for real-time predictive maintenance, enabling 
prompt fault detection and minimizing system downtime.
• ANN and CNN models are more suited for preventive maintenance, detecting gradual 
performance degradation over time.
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Integrating these models into a real-time monitoring system can significantly improve solar 
energy system efficiency, reduce maintenance costs, and ensure uninterrupted energy production 
in large-scale solar installations.
This study evaluates five machine learning models: SVM, Random Forest, XGBoost, ANN, and 
CNN, specifically for fault detection in photovoltaic systems. The analysis demonstrates that 
XGBoost is the most efficient model, attaining superior accuracy, precision, recall, and F1 score, 
rendering it suitable for predictive maintenance applications. The Random Forest algorithm 
demonstrated strong performance, especially in noisy environments, making it a reliable choice 
for real-time fault detection. 

Figure 8: Sample Index Comparisons Across Models.
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Conversely, ANN and CNN models demonstrate lower accuracy in real-time fault detection; 
however, they are particularly effective for preventive maintenance owing to their capability to 
identify long-term degradation patterns. This study’s findings align with previous research while 
offering new insights into applying machine learning techniques for fault detection in renewable 
energy systems. The results underscore the importance of selecting the appropriate model based 
on the specific maintenance strategy—predictive or preventive—being implemented in PV 
systems.

5. CONCLUSION

This study aims to improve the fault detection process in photovoltaic (PV) systems using 
advanced machine learning techniques. Photovoltaic (PV) systems represent one of the leading 
solutions to meet the challenges of renewable energy. However, these systems face many 
operational efficiency issues, such as inverter failures, module degradation, shading, and dirt. To 
ensure that these systems continue to produce clean and efficient energy, it becomes necessary 
to develop effective techniques to detect these faults and improve maintenance operations. In 
this study, a comparison was made between five advanced machine learning models: Support 
Vector Machines (SVM), Random Forest, XGBoost, Artificial Neural Networks (ANN), and 
Convolutional Neural Networks (CNN). The comparison aims to determine the effectiveness 
of each model in detecting and classifying different types of faults in PV systems. The study 
focused on classifying faults that cause sudden system failure and patterns that indicate gradual 
performance degradation over the long term. The XGBoost model achieved the best results 
through the evaluation, recording an accuracy rate of up to 88% in classifying different types of 
faults. This high accuracy improves real-time predictive maintenance, which helps detect and 
address faults before they lead to significant problems. The Random Forest model demonstrated 
its ability to handle complex and noisy data, which helped to classify fault types effectively under 
various operating conditions. As for the neural networks (ANN and CNN), they excelled in 
detecting gradual deterioration patterns, which is vital for developing preventive maintenance 
strategies and reducing downtime.
The accurate classification of these models contributed to providing practical insights to 
maintenance teams. Sudden drops in production were linked to inverter faults, while pollution 
issues were indicated as a cause of gradual efficiency deterioration. This ability to distinguish 
between different types of faults allowed maintenance teams to prioritize and take appropriate 
measures according to the severity and impact of each fault.
The study recommends using the XGBoost and Random Forest models to deal with immediate 
faults due to their ability to detect problems quickly, alert operators for immediate intervention, 
and reduce downtime. In contrast, using neural networks (ANN and CNN) to monitor long-term 
performance degradation is recommended, which improves preventive maintenance strategies 
by scheduling repairs in advance. The results of this study also allow those interested in the field 
of renewable energy to learn how to use these models to improve maintenance strategies and 
reduce costs. In the future, research can build on this study by developing integrated maintenance 
systems based on technologies such as the Internet of Things and cloud monitoring to enhance 
the accuracy and speed of fault detection and classification.
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