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ABSTRACT                                  
In Libya, the general electricity company is 

tasked with managing peak electricity demand, 
often resorting to load shedding. This practice, while 
necessary, results in power outages, particularly 
impacting areas like the Benghazi Electrical Grid. 
This study aims to bring predictability to these events 
by exploring time series forecasting models namely: 
Autoregressive Integrated Moving Average (ARIMA), 
Seasonal ARIMA (SARIMA), and Dynamic Regression 
ARIMA (DRARIMA). The models were trained using 
data from May 2020 and 2021, and subsequently tested 
on May 2022.

Performance was evaluated using metrics such as mean squared error, mean absolute error, 
mean absolute percentage error, and mean absolute percentage accuracy. The ARIMA model 
achieved the highest accuracy at 78.88% mean absolute percentage accuracy with a mean absolute 
error of 0.9. The SARIMA model, which considers seasonal patterns, achieved an accuracy of 
73.86% and mean absolute error of 0.11, but its complexity may lead to overfitting. The DRARIMA, 
which incorporates exogenous variables, demonstrated an accuracy of 65.36% and mean absolute 
error of 0.15. Future projections for May 2024 and 2025 using ARIMA models indicate potential 
improvements in load shedding management and highlight the importance of model selection 
for accurate forecasting. By improving load forecasting accuracy, this research aims to enhance 
the effectiveness of load shedding management, thereby reducing power outages and their socio-
economic impacts in regions like Benghazi. These findings are particularly valuable for energy 
planners and managers in similar contexts, providing practical insights and data-driven strategies.
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نحو إدارة فعّالة للكهرباء في بنغازي:                                                                                                                                                     
التنبؤ بالطلب والأحمال باستخدام نماذج المتوسط المتحرك الانحدار الذاتي 

أسماء أعجال، هند فركاش، منصور الصغير، عباس إحسين.

ملخ��ص: في ليبي��ا، تت��ولى الش��ركة العام��ة للكهرب��اء إدارة ذروة الطل��ب عل��ى الكهرب��اء، وغالبً��ا م��ا تلج��أ إلى خف��ض الأحم��ال. ت��ؤدي 
ه��ذه الممارس��ة، عل��ى الرغ��م م��ن ضرورته��ا، إلى انقط��اع التي��ار الكهربائ��ي، وخاص��ة التأث��ر عل��ى مناط��ق كث��رة مث��ل ش��بكة كهرب��اء 
بنغازي. تهدف هذه الدراسة إلى تحقيق القدرة على التنبؤ بهذه الأحداث من خلال استكشاف نماذج التنبؤ بالسلاسل الزمنية وهي: 
المتوس��ط المتح��رك المتكام��ل الانح��دار الذات��ي )ARIMA(، و ARIMA الموسم��ي )SARIMA(، و ARIMA الانح��داري الديناميك��ي 
)DRARIMA(. تم تدري��ب النم��اذج باس��تخدام بيان��ات م��ن ماي��و 2020 و 2021، وتم اختباره��ا لاحقً��ا في ماي��و 2022. تم تقييم الأداء 
باس��تخدام مقاييس مثل متوس��ط الخطأ التربيعي، ومتوس��ط الخطأ المطلق، ومتوس��ط الخطأ المطلق النس��ي، ومتوس��ط دقة النس��بة 
المئوية المطلقة. حقق نموذج ARIMA أعلى دقة بنس��بة % 78.88 من متوس��ط دقة النس��بة المئوية المطلقة مع متوس��ط خطأ مطلق 
ق��دره 0.9. حق��ق نم��وذج SARIMA، ال��ذي يأخ��ذ في الاعتب��ار الأنم��اط الموسمي��ة، دق��ة بنس��بة 73.86٪ ومتوس��ط خط��أ مطل��ق ق��دره 
0.11، لك��ن تعقي��ده ق��د ي��ؤدي إلى الإف��راط في الملاءم��ة. وق��د أظه��ر نم��وذج DRARIMA، ال��ذي يش��تمل عل��ى متغ��رات خارجي��ة، دقة 
بنسبة %65.36 ومتوسط خطأ مطلق بنسبة 0.15. وتشر التوقعات المستقبلية لشهري مايو/أيار 2024 و 2025 باستخدام نماذج 
ARIMA إلى تحس��ينات محتمل��ة في إدارة انقط��اع التي��ار الكهربائ��ي وتس��لط الض��وء عل��ى أهمي��ة اختيار النموذج للتنب��ؤ الدقيق. ومن 
خلال تحس��ن دقة التنبؤ بالأحمال، يهدف هذا البحث إلى تعزيز فعالية إدارة انقطاع التيار الكهربائي، وبالتالي تقليل انقطاع التيار 
الكهربائ��ي وتأثرات��ه الاجتماعي��ة والاقتصادي��ة في مناط��ق مث��ل بنغازي. وهذه النتائج ذات قيمة خاص��ة لمخططي ومديري الطاقة في 

س��ياقات مماثل��ة، حي��ث توفر رؤى عملية واس��تراتيجيات تعتم��د على البيانات.

الكلم��ات المفتاحي��ة - المتوس��ط المتح��رك الانح��دار التلقائ��ي، ش��بكة كهرب��اء بنغ��ازي، الش��ركة العام��ة للكهرب��اء في ليبي��ا، انقط��اع التي��ار الكهربائ��ي، تحلي��ل 
السلاس��ل الزمني��ة.

1. INTRODUCTION

The power sector faces diverse challenges, including humanitarian crises, as seen in Palestine 
[1], and political instability, as in Libya. Libya’s energy sector is particularly strained, with an 
operational power capacity of only 4.8 GW—42% of its 11.5 GW installed capacity—resulting 
in a 3 GW deficit during peak summer demand. Persistent power shortages due to aging 
infrastructure, lack of maintenance, and fuel scarcity have impacted vital sectors like oil and gas 
[2]. Frequent blackouts since 2011, exacerbated by subsidized tariffs that inflate demand, have led 
to scheduled outages and widespread summer protests.
In Benghazi, these issues are especially acute, with the Benghazi Electrical Grid (SEGL) facing 
regular outages due to supply-demand mismatches. Infrastructure damage from the 2011 
and ongoing development projects add further strain [3, 4]. While electricity generation grew 
significantly from 2000 to 2010, it has not kept pace with the projected doubling of demand by 
2030 [5]. While electricity generation grew significantly from 2000 to 2010, it has not kept pace 
with the projected doubling of demand by 2030 [5].
This widening gap necessitates frequent load shedding [6], a reactive measure that disrupts daily 
life and hinders economic activity [7]. Current reliance on real-time monitoring for load shedding 
decisions proves insufficient in anticipating short-term demand fluctuations and accounting for 
external factors. Additionally, domestic energy consumption—36% of total energy use [6, 8], 
influenced by socio-economic and behavioral factors [9]—complicates accurate load forecasting. 
These challenges highlight the critical need for advanced forecasting methodologies.
To address this, our research leverages time series analysis to develop predictive models for the 
East City Benghazi station. Time series forecasting has gained traction for predicting trends based 
on historical data. At the heart of this approach is pattern recognition, uncovering regularities 
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or anomalies within datasets [10]. Traditional methods like ARIMA and SARIMA have shown 
effectiveness in identifying patterns and producing accurate forecasts [11]. However, gaps remain 
in understanding the limitations of these models and the potential for improved accuracy through 
hybrid approaches, especially in Libya’s grid context.
This study aims to: (1) Evaluate the performance of ARIMA [12], SARIMA [13], and Dynamic 
Regression ARIMA (DRARIMA) [14] models in predicting peak loads for the East City Benghazi 
station; (2) Identify the strengths and weaknesses of each model; and (3) Provide recommendations 
to enhance load forecasting accuracy. This comparative analysis informs model selection for 
similar energy challenges, offering a first-of-its-kind examination within the specific context 
of Benghazi. Furthermore, this study delves into model resilience, computational efficacy, and 
forecast accuracy across real-world datasets. By focusing on short-term load demand forecasting, 
this research not only fills a notable gap in the literature but also provides practical insights for 
energy planners in load-shedding-prone regions.
The rest of this paper is organized as follows: Section 2 offers a comprehensive review of current 
research on time series modeling, pattern extraction, and the application of ARIMA and SARIMA 
models. Section 3 outlines the research methods employed in the study. Section 4 presents the 
results and discusses the findings. Section 5 provides future predictions using ARIMA models. 
Section 6 concludes the paper, and Section 7 offers recommendations for future research.

2. PREVIOUS STUDIES

This section reviews existing research on electricity load forecasting, emphasizing time series 
models and their applications in various contexts. This review highlights contributions, 
limitations, and gaps in the literature, ultimately justifying the focus and methodology of the 
current study.

2.1. ARIMA and SARIMA Models for Load Forecasting 

Numerous studies have employed ARIMA and SARIMA models, showcasing their versatility 
across different forecasting horizons and applications:
• Model Robustness and General Reviews: Chodakowska et al. [15] explored the resilience of the 
ARIMA model to noise within the Polish power system, using ARIMA to examine sensitivity 
thresholds. They found that ARIMA remained relatively stable up to a specific noise threshold, 
but they did not quantify this impact or compare ARIMA’s performance with alternative models, 
limiting the scope of their findings. Similarly, Czapaj et al. [16] reviewed a variety of autoregressive 
methods, including ARIMA, and identified promising alternatives, such as Fuzzy Logic, Artificial 
Neural Networks (ANNs), and hybrid approaches. However, they did not conduct a direct 
comparison between these methods, leaving open the question of ARIMA’s relative performance.
• Short-Term Load Forecasting: López et al.[17] employed multiplicative SARIMA for short-
term load forecasting in distribution systems, comparing frequentist and Bayesian parameter 
estimation, Their findings emphasized the role of estimation technique in enhancing forecast 
accuracy but did not explore the model’s effectiveness with non-linear data. Amerise and 
Tarsitano [18] used a two-stage linear regression-SARMA approach for hourly forecasts in Italy, 
addressing serial correlation but potentially missing non-linear relationships, While their model 
performed well with linear data, it potentially overlooked non-linear relationships that could 
affect forecasting accuracy in more complex settings. Crujido et al. [19] found that FFNN and 
LSTM outperformed SARIMA for day-ahead forecasting (MAPE: 1.80%, 1.75% vs. 4.48%), This 
finding highlighted SARIMA’s limitations when dealing with non-linear data patterns, suggesting 
that neural network-based models may be more suitable in such scenarios. Dubey et al. [20] 
also showed LSTM’s superiority over ARIMA and SARIMA (average MAE: 0.23), incorporating 
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weather feature correlations, This result underscored the importance of exogenous variables in 
enhancing the predictive power of LSTM models in load forecasting.
• Medium- and Long-Term Forecasting: Yin et al. [21] demonstrated SARIMA’s suitability for 
medium- and long-term forecasting in China, focusing on parameter tuning. Durmus Senyapar 
and Aksoz [22] found SARIMA superior to exponential smoothing (MAPE: 2.21% training, 
2.44% testing vs. SSE: 0.469) but didn’t consider exogenous variables.

2.2. Hybrid Models 

Hybrid models combine different forecasting approaches to leverage their respective strengths:
• ARIMA-based Hybrids: Velasco et al. [23] achieved a 4.09% MAPE with an ARIMA-ANN hybrid 
for next-day forecasting, which highlighted the effectiveness of combining ARIMA with neural 
networks. Kaytez [24] proposed an ARIMA-LSSVM hybrid for long-term forecasting in Turkey, 
finding that the hybrid model outperformed standalone forecasting methods, demonstrating the 
robustness of hybrid approaches for longer forecast horizons. Somu et al.[25] introduced ISCOA-
LSTM, a hybrid LSTM model optimized with an improved sine cosine algorithm, for building 
energy consumption forecasting, demonstrating improved accuracy. These studies showcase the 
potential of hybrid models, but further comparisons with other hybrid approaches are needed.

2.3. Other Time Series and Machine Learning Models

Beyond ARIMA and hybrids, various other techniques have been applied:
• Deep Learning: Gasparin et al. [26] comprehensively reviewed and evaluated deep learning 
models (feedforward, recurrent, sequence-to-sequence, TCN) for short-term load forecasting. 
Lara-Benítez et al.[27] showed that TCN outperforms LSTM for energy demand forecasting in 
Spain.
• African Context: Farkash et al. [28] used NARX neural networks for medium-term forecasting 
in Benghazi, Libya, focusing on local forecasting needs. Ali et al. [29] focused on voltage 
control in Libya, incorporating load growth projections. Alarbi [30] investigated demand-side 
response in Libya. Hamouda et al. [31] analyzed residential loads in Sawknah, Libya. Chaaraoui 
et al.[32] evaluated various algorithms, including SARIMA and LSTM, in a Ghanaian health 
facility. Guefano et al. [33] forecasted residential consumption in Cameroon (MAPE: 1.628%). 
While these studies offer valuable insights into regional energy challenges and solutions, their 
limitations in scope or methodology suggest the need for broader comparative analyses to fully 
address the complexities of regional demand and system requirements.
• Broader Reviews: Nti et al.[34] systematically reviewed electricity load forecasting algorithms 
and influencing factors. Hoffmann et al. [35] reviewed time series aggregation methods in energy 
system models.

2.4. Research Gap and Justification

Despite extensive research, several gaps necessitate the current study:
1. Limited focus on the Benghazi context: Existing studies on Libya [28-31] use different 
methodologies or address related but distinct problems. Studies from other African contexts [5, 
24] may not be directly transferable.
2. Inadequate exploration of exogenous variables with ARIMA-based models: Many studies 
using (S)ARIMA neglect external factors .[32, 33], limiting their predictive power. This study 
will specifically address this by employing DRARIMA.
3. Need for direct model comparison on the Benghazi dataset: While [16] identifies promising 
models, a direct comparison on a common dataset is lacking. This study will rigorously compare 
ARIMA, SARIMA, and DRARIMA on the same data, enabling informed model selection.
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By addressing these gaps, this research will contribute valuable insights into effective time series 
forecasting for the unique challenges of the Benghazi electrical grid, ultimately supporting 
improved load shedding management and enhanced energy security.

3. METHODOLOGY

Figure 1 shows the proposed load shedding prediction framework using ARIMA models:

Figure 1.The proposed methodology.

Load Forecasting Methodology Pipeline, as shown below:
• Data Acquisition: Gather historical load/generation data (May 2020-2022) from the North 
Benghazi distribution station.
• Data Preprocessing: Clean data (handle missing values, remove outliers using Z-score), and 
normalize using Min-Max scaling.
• Time Series Analysis: Perform EDA (distributions, trends, seasonality), stationarity tests (ADF, 
ACF, PACF), and differencing if needed.
• Model Selection & Training: Choose ARIMA, SARIMA, DRARIMA models (using auto_
arima), estimate parameters (MLE), and validate model assumptions (diagnostic plots).
• Forecasting & Evaluation: Generate forecasts (May 2022, 2024, 2025), and evaluate using MSE, 
MAE, RMSE, MAPE, MAPA.

3.1. Data Acquisition

3.1.1. Data collection

To forecast long-term peak loads for May, data was collected from the North Benghazi 
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distribution station, located in the Eastern Region 220 control area. The dataset includes 2234 
daily observations over three years, categorized into input and output data. Input data includes 
load, and generation for May 2020, May 2021, and May 2022. 
The research team’s affiliated institution submitted a formal request to the Electricity Company for 
data covering the month of May, due to significant load fluctuations observed during this period 
compared to other months. The Electricity Company approved the request and provided the 
data in electronic format, consisting of daily records for each day in May across the study years, 
as shown in Figure 2 of the report on daily electricity variables, dated May 1, 2020. Technical 
engineers from the company supervised the data collection and preparation process to ensure its 
accuracy and reliability, maintaining the highest standards and preventing any potential bias. The 
dataset is comprehensive, with detailed daily load records, making it ideal for thorough analysis 
and forecasting.

Figure 2. Daily report of electricity variables for the North Benghazi Distribution Station.

3.1.2. Characterization of the Data Set

Table 1 shows the features of the data set, which includes four attributes in addition to the target 
variable, representing the electrical load.

Table 1. Dataset characteristics.
Feature Feature description
days Number of days
hours The number of hours
years The value of years
generation Value of electrical generation
Loads Load value (Target)
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3.2. Data Preprocessing

Upon the acquisition of raw data, the following processing steps were undertaken:
3.2.1. Data Cleaning and Outlier Removal

The raw data underwent a thorough cleaning process to remove any erroneous or redundant value. 
Outliers were identified and excluded using the Z-Score method [36]. In the case of continuous 
numerical features with missing values, the average value was used as a replacement. 
3.2.2. Data Normalization

Post-cleaning, it was observed that different features exhibited different scales. To ensure 
equal weightage across all features, normalization of the dataset was deemed necessary. Data 
normalization refers to the process of adjusting all attribute values to a specified range [37]. 
Among the various data normalization techniques available, this study employed Min-Max 
Normalization, a widely accepted method. This technique transforms every attribute to a decimal 
value between 0 and 1, with the minimum value of the attribute mapped to 0, the maximum 
value to 1, and all other values proportionately scaled [38].

3.3. Autoregressive Integrated Moving Average

ARIMA is a popular time series forecasting method that combines three components [39]:
3.3.1. Auto Regressive (AR) Component

This section makes use of the dependence between several lagged observations (prior values) and 
an observation. The following equation (1) represents the AR model of order p:

1 1 2 2 3 3 1t t t t p t p tY c Y Y Y ...... Y                                     ( )φ φ φ φ ε− − − −= + + + + + +

where ϕ1,ϕ2,…,ϕp are the parameters of the model, c is a constant, and εt is white noise.
3.3.2. Integrated (I) Component

The time series is made stationary in this section by differencing the raw observations, which 
ensures that its mean and variance remain constant across time. The series is referred to as 
integrated of order d if it requires d difference steps to become stationary, as expressed by equation 
(2):

1 1 2 2 2t t t t d t dY c ......                                                ( )ε θ ε θ ε θ ε− − −= + + + + +

where  θ1,θ2,…,θd are the parameters of the model and εt is white noise.
3.3.3. Moving Average (MA) Component

This section makes use of the relationship between a lagged set of observations and a residual 
error from a moving average model. The following equation (3) represents the MA model of 
order q:

1 1 2 2 3t t t t q t qY c ......                                                ( )ε θ ε θ ε θ ε− − −= + + + + +

where θ1,θ2,…,θq are the parameters of the model and εt is white noise.
The ARIMA (p,d,q) notation represents the general ARIMA model, where (p) represents the 
order of the AR component, (d) represents the number of differencing steps needed, and (q) 
represents the order of the MA part. To make sure time series are stable, Auto ARIMA verifies 
their stability. AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion) are 
typically used as the criteria for selecting the optimal set of parameters [40].

3.4. Seasonal ARIMA

To handle seasonal data with a recurrent pattern, SARIMA extends ARIMA. It enhances the 
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ARIMA model by adding more seasonal elements [41]. The notation for the SARIMA model is 
ARIMA (p,d,q) (P,D,Q), where:
( p,d,q ) are the non-seasonal parameters (as in ARIMA).
( P,D,Q ) are the seasonal parameters for the seasonal AR, differencing, and MA parts, respectively.
( s ) is the length of the seasonal cycle.
Although they are applied to lagged values at multiples of the seasonal period, the seasonal 
components function in a manner akin to that of the non-seasonal parts. The data’s general trend 
and seasonal influences are both captured by the SARIMA model [42].

3.5. Dynamic Regression ARIMA

Regression in Dynamic Form is used with ARIMA, also known as RegARIMA, to manage the 
time series data and exogenous variables, or predictors. It entails modeling the residuals (errors) 
using an ARIMA model after regressing the time series on external variables. Equation (4) can be 
used to express the model [43]:

0 1 1 2 2 4t t t k kt ( p ,d ,q ) Y X X ...... X ARIMA                           ( )β β β β= + + + + +

where X1t,X2t,…,Xkt are the exogenous variables, β0,β1,β2…βk are their coefficients, and ARIMA(p,d,q) 
models the residual errors from the regression.
When additional external factors impact the time series, this model is especially helpful since 
it incorporates such elements into the analysis, resulting in a more thorough knowledge and 
improved forecasts [44].

3.6. Model Evaluation

The assessment metrics are divided into two separate groups. While the second category is 
intended to calculate the accuracy and performance of the ARIMA models, the first category is 
devoted to evaluating the time series’ stability.
3.6.1. Augmented-Dickey-Fuller (ADF) and p-values

Higher-order autoregressive processes are supported by the ADF test, which is a “augmented” 
variant of the Dickey-Fuller test. The test is predicated on the null hypothesis that a time series 
sample contains a unit root. A time series that has a unit root becomes non-stationary. We are 
unable to rule out the null hypothesis that there is a unit root if the p-value is greater than a 
certain size [45].
3.6.2. Autocorrelation Function (ACF)

It gauges a time series value’s relationship to its historical values. For this reason, serial correlation 
is another name for it. Each bar in an ACF plot indicates the correlation’s magnitude and direction. 
Bars that pass over into the red zone indicate statistical significance. Autocorrelations for random 
data should be close to zero for all lags. There is always at least one notable lag in non-random 
data [46].
3.6.3. Partial Autocorrelation Function (PACF)

After accounting for correlations at all shorter delays, it calculates the correlation between 
observations at various points in a time series. Stated differently, it provides the stationary time 
series’ partial correlation with its own lagged values. When attempting to determine the order of 
an autoregressive model, the PACF is quite helpful. For example, the PACF of an AR(p) model 
ends at lag p. Accordingly, for lags up to p, the partial autocorrelation is considerable, whereas for 
lags longer than p, it is roughly nil [47].
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3.6.4. Mean Squared Error (MSE)

The discrepancies between the expected and actual values are called errors, and it measures the 
average of the squares of the errors [48]. The calculation is expressed as equation (5):

2
1

1 5n
i ii

MSE (Y Y )                                                                      ( )
n =

= −∑ 

           where  Yi is the actual value, iY   is the predicted value, and n is the number of observations.
Make use of Because the MSE squares the mistakes, greater errors add more to the MSE, making 
it susceptible to outliers. Due to its ability to offer a quadratic loss function, it is frequently utilized 
in regression analysis and model evaluation. A better match between the model and the data is 
shown by lower MSE values [49].
3.6.5. Mean Absolute Error (MAE)

It measures the average magnitude of the errors without considering their direction [50]. It is 
calculated as the equation (6):

2
1

1 6n
i ii

RMSE (Y Y )                                                                 ( )
n =

= −∑ 

Because MAE does not square the errors, it offers a simple way to evaluate average error magnitude 
that is less susceptible to outliers than MSE. A higher model fit is indicated by lower MAE values. 
Unlike MSE,MAE is easier to read because it is expressed in the same units as the original data.
3.6.6. Mean Absolute Percentage Error (MAPE)

It measures the average absolute percentage error between the predicted and actual values [51]. 
It is calculated as the equation (7):

1

1 100 7n i i
i

i

Y YMAPE                                                               ( )
n Y=

−
= ×∑



By expressing errors as a proportion of the actual values, MAPE allows for easy interpretation 
and cross-dataset comparison. A better match is indicated by lower MAPE values. When actual 
numbers are extremely close to zero, MAPE might cause very high or undefinable percentage 
errors, which can be troublesome.
3.6.7. Mean Absolute Percentage Accuracy (MAPA)

It’s a metric for assessing a forecast’s accuracy. It is based on the MAPE, which is a widely 
used indicator to assess how accurate forecasting models are. Although MAPE offers an error 
measure, MAPA converts it into an accuracy score that is simpler to understand as a percentage 
of correctness [41]. The following equation (8) is used to determine the MAPA:

1 100 8
100

MAPEMAPA                                                                 ( ) = − × 
 

4. RESULTS AND DISCUSSION

This section shows the results derived from the implementation of the proposed framework. 
Data was collected from the North Benghazi electricity distribution station with the objective 
of forecasting load demands for May 2024 and 2025. This prediction was based on the recorded 
loads for the month of May in the years 2020, 2021, and 2022. The Python environment was 
chosen for conducting the experiments, owing to its comprehensive support for time series 
techniques.  Subsequent to the pre-processing phase, the data was partitioned into two subsets: 
85% of the data, corresponding to the years 2020 and 2021, was utilized for training the ARIMA 
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models. The remaining 15% of the data, representing the year 2022, was allocated for testing and 
evaluation purposes.
The experiments conducted can be divided as follows:
• Exploratory Data Analysis was conducted to understand the characteristics of the data.
• Data visualization techniques were employed to identify trends, seasonality, and anomalies.
• Parameters of the ARIMA, SARIMA, and DRARIMA models were adjusted, and a predictive 
model was constructed for each.
• The performance of each model was evaluated using MSE, MAE, RMSE, MAPE, and MAPA.
• All ARIMA models were used to predict future values for May 2024 and 2025.

4.1. Exploration Analysis 

The initial exploratory stage of our research encompassed an exhaustive analysis of the attributes 
of electrical load, and generation. This stage was instrumental in laying the foundation for the 
construction of ARIMA models designed to predict future values.
4.1.1. Descriptive Statistics and outliers’ detection 

Our analytical steps commenced with an in-depth exploration of the “loads” attribute, as illustrated 
in Figure 3. The density plot (on the left) unveiled an approximately normal distribution, with the 
mean load value hovering around 1325, as indicated by the red dashed line. This near-normality 
is beneficial, as many forecasting models assume a normal distribution, which could enhance 
model accuracy in predicting future loads. The 25th percentile (marked by the green dashed line) 
and the 75th percentile (denoted by the yellow dashed line) were approximately 1200 and 1420, 
respectively. These specific percentile values are critical, as they inform energy planners about the 
common range within which load values fluctuate, aiding in proactive load management.
Moreover, the nearness of the mean and median hinted at a symmetrical distribution.

Figure 3. The density plot for loads attribute.

The box plot (right) summarizes the data distribution through its quartiles (Q1 to Q3) and 
further emphasizes that all points fall within 1.5 times the interquartile range (IQR). The absence 
of outliers suggests a stable and predictable load pattern, which may simplify the forecasting 
process by reducing the influence of extreme values. This moderate data dispersion, as indicated 
by the IQR and whiskers, reinforces the dataset’s suitability for time series forecasting, potentially 
increasing the reliability of model predictions. Overall, these insights into load distribution are 
crucial for accurately projecting peak demand and effectively managing load shedding.
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Moreover, the “generation” attribute, as depicted in Figure 4, also displayed a regular distribution 
with a symmetrical form. The proximity of the mean and median suggested a central concentration 
of data points for both attributes. suggesting a stable core of generation values, which is useful for 
forecasting reliability. 
The average generation value of approximately 1257 closely aligns with the mean “loads” value of 
around 1275, indicating that typical generation levels are generally well-matched to typical load 
demands—a valuable insight for balancing supply and demand.
The minimum generation value of roughly 692 and maximum of approximately 1505 reveal 
a wider range than observed in “loads,” reflecting the capacity fluctuations that may occur in 
response to varying demand levels or operational conditions. This broader range, paired with 
the presence of outliers (visible in the box plot), suggests higher variability in generation than in 
loads. This variability, as indicated by the outliers, points to occasional spikes or drops that might 
require more adaptive forecasting approaches to ensure system stability.

Figure 4. The density plot for generation attribute.

The moderate dispersion of the “generation” data, as indicated by the interquartile range (IQR), 
reinforces that while generation generally follows a predictable pattern, it has moments of 
deviation that could impact load management. Recognizing these outliers and variability is 
essential for planners, as it highlights the potential need for reserve capacity to cover occasional 
generation drops or surges.
4.1.2. Three Years Heatmap  

The heatmap depicted in Figure 5 visually represents the load distribution over three consecutive 
years, focusing particularly on the month of May. In 2020, the load dynamics for May displayed 
concentrated activity on specific days, with a noticeable surge in loads towards late April and 
early May, reaching a peak just prior to mid-May, as indicated by a color intensity denoting a 
load magnitude of up to 17.5 units. Conversely, the load trend for May 2021 showed a more 
dispersed pattern, with an evident rise in load from mid-April and a peak around early May, albeit 
with a slightly lower maximum load value of approximately 15 units compared to the previous 
year. The distribution of loads across the initial half of May suggested a sustained, moderate 
load profile rather than sharp spikes. Moving to May 2022, the load distribution appeared more 
uniform throughout the days, with a gradual buildup leading into May and peak load values 
notably reduced compared to prior years, hovering just above 10 units. The May loads exhibited 
a consistent and moderate pattern, lacking the pronounced spikes observed in 2020 and 2021.
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Indeed, the load feature in May over the years has shown a clear evolution. In 2020, the load was 
characterized by high intensity and sharp peaks. In 2021, while the load was slightly lower, it 
remained significant. By 2022, the load pattern had become more balanced and consistent. This 
progression could potentially indicate an adaptation in load management strategies or a shift in 
consumption patterns over the years. 
This trend analysis provides valuable insights for future load forecasting and energy management 
planning. 

Figure 5. The load patterns for May over three years.

Figure 6 presents the generation patterns for May over three years, each exhibiting distinct 
trends. In 2020, generation activity mirrored the load pattern with high values concentrated on 
specific days, peaking at the end of April and early May with values reaching around 14 units. In 
contrast, 2021 showed a more distributed generation pattern, starting to increase in mid-April 
and peaking in early May with a maximum value of around 10 units, aligning with the lower peak 
loads of that year. The generation values were consistent and spread out, reflecting the distributed 
load pattern of 2021. By 2022, the generation activity was more evenly spread across the days 
with a moderate and consistent trend, peaking at 6 units. 

Figure 6. The generation patterns for May over three years.

This pattern aligned with the balanced load pattern of the same year, and the lower generation 
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values reflected the lower peak loads observed. These patterns suggest a shift in generation 
strategies over the years, transitioning from high and concentrated peaks to a more balanced 
and consistent trend, indicative of advancements in load management and energy conservation 
practices.
The dynamic relationship between load and generation, as depicted in Figures 5 and 6, reveals a 
notable correlation and evolution over time. In 2020, both load and generation demonstrated high 
concentrations on specific days, reflecting a reactive approach to meet heightened load demands. 
However, by 2021, these patterns evolved towards greater distribution, indicating a transition 
towards a proactive and balanced strategy in load and generation management. This trend 
continued into 2022, where both load and generation patterns exhibited a more moderate and 
consistent trajectory, signaling an improved equilibrium between load demands and generation 
capabilities. The decrease in peak values for both load and generation across the years suggests 
a successful adaptation or transformation in load management strategies, moving away from 
reactive responses to a more balanced and sustained approach. This evolution indicates progress 
towards more efficient energy management, with generation becoming more predictable and 
closely aligned with load necessities.
4.1.3. Trend Analysis

Figure 7 illustrates the trend analysis of both load and generation from 2020 to 2022, revealing 
a distinct evolution in their relationship and management strategies. In 2020, both load and 
generation demonstrated high peaks and sudden increases, indicating a strong correlation 
between generation and load demand. However, the sharp load spikes were not always matched 
by corresponding increases in generation, which suggests a reactive and lagging response in 
the generation system to meet demand. This reactive approach highlights the challenges in 
synchronizing generation with fluctuating load needs.

 

Figure 7. The trend analysis of both load and generation from 2020 to 2022.

In 2021, although the peaks in both load and generation were somewhat reduced, they remained 
significant, hinting at adaptations in response to the previous year’s high demand. Daily cyclical 
patterns persisted, but more pronounced discrepancies emerged between load and generation, 
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with anomalies appearing more frequently. These patterns suggest that, while there was an effort 
to balance load and generation, variability in daily load demands continued to pose challenges.
By 2022, both load and generation exhibited more consistent and moderate patterns, signaling 
stabilization and improvements in the management of these parameters. The intensity of peak 
values for both load and generation was at its lowest across the three years, which could indicate 
enhanced management practices or a reduction in peak demand and generation requirements. 
The daily distribution became more balanced and dispersed, marking an improvement in the 
evenness of load and generation management. Additionally, the alignment and synchronization 
between load and generation improved significantly, with fewer anomalies and better handling of 
peak demands. This suggests a shift toward a more proactive and balanced management strategy, 
possibly due to refined load forecasting and generation planning techniques.
4.1.4. Seasonality analysis of the load

As illustrated in Figures 8, 9, and 10, distinct patterns emerge over the years 2020 to 2022. In 
2020, energy consumption in May displayed a flat trend, while 2021 indicated a slight decrease, 
and 2022 exhibited a slight increase. 
This dynamic trend in energy consumption suggests a temporal evolution over these years. All 
three years demonstrated non-stationarity, as indicated by the ADF and p-values of 0.65, 0.41, and 
0.93 for 2020, 2021, and 2022 respectively. These values, exceeding the common significance level 
of 0.05, suggest the presence of underlying seasonal patterns or trends. Strong daily seasonality 
was observed across all three years, as evidenced by the sinusoidal patterns in the ACF plots and 
the significant PACF spikes at daily intervals. In terms of distribution, 2020 and 2021 had a more 
concentrated distribution around 0.5 to 0.6 kWh. However, 2022 showed a higher concentration 
of data points at slightly higher consumption levels, suggesting an overall increase in energy 
consumption in that year. 
Lastly, each year exhibited notable spikes indicating occasional high-consumption days, which 
might correspond to specific events or anomalies. This underscores the importance of considering 
these outliers when forecasting future load demands.

Figure 8. Load distribution, dynamic trend, and seasonal patterns in energy consumption during May 2020.
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Figure 9. Load distribution, dynamic trend, and seasonal patterns in energy consumption during May 2021.

Figure 10. Load distribution, dynamic trend, and seasonal patterns in energy consumption during May 2022.

4.1.5. Seasonality Analysis for generation

As illustrated in Figures 11, 12, and 13, the seasonality analysis of the generation feature, as 
represented in Figures 6, 7, and 8, uncovers both similarities and disparities across the years 2020 
to 2022. All three years exhibit clear seasonality with cyclical patterns discernible in the time 
series plots. This is further substantiated by the pronounced sinusoidal patterns in the ACF plots 
and the significant peaks at the first lag in the PACF plots, indicating a strong autocorrelation 
with the preceding value. However, when each year is examined individually, differences surface. 
In 2020, the generation data displays more variability and abrupt dips, suggesting potential 
outliers or anomalies within the data. Conversely, the seasonality pattern in 2021 is more regular 
and smoother. By 2022, an upward trend becomes evident in addition to the seasonal patterns, 
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indicating an overall escalation in energy consumption over the period. In terms of trend analysis, 
2020 and 2021 do not exhibit a strong trend component, with the variations primarily attributable 
to seasonal fluctuations. However, 2022 showcases a noticeable upward trend alongside the 
seasonal variations, suggesting an overall increase in energy consumption during this period.
 Lastly, the stationarity analysis reveals that all three years have high ADF values, indicating 
non-stationarity. Specifically, the ADF values for 2020, 2021, and 2022 were 0.76, 0.16, and 0.65 
respectively, all of which exceed the common significance level of 0.05. This non-stationarity 
could be attributed to the seasonal components, and addressing this will be crucial for accurate 
modeling.

Figure 11. Electric generation characteristic distribution, dynamic trend, and seasonal patterns during May 2020.

Figure 12. Electric generation characteristic distribution, dynamic trend, and seasonal patterns during May 2021.
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Figure 13. Electric generation characteristic distribution, dynamic trend, and seasonal patterns during May 2022.

Based on the previously discussed stability of the time series for both load and electrical 
generation, a differencing technique will be applied. The focus will primarily be on the time series 
related to the load. For this purpose, the Auto ARIMA model will be employed. This automatic 
model identifies the optimal order of differencing and the optimal orders for the Autoregressive 
(AR) and Moving Average (MA) components. The model aims to minimize a given information 
criterion to achieve optimal results. This approach allows for a more accurate and efficient analysis 
of the time series data, thereby enhancing the reliability of the forecasting process.

5. FITTING MODELS

To make the time series stationary and suitable for modeling, we will follow the approach 
described: 
• Use auto_arima: Automatically determines the best ARIMA models parameters, including 

order of difference.
• Model Selection Criteria: Lower AIC and BIC values indicate a better model fit.
• Check the p-value to be less than 0.05.
• Time Series Diagnostics: plot_diagnostics is used to ensure that the time series is stationary 

and the residuals are white noise
• Autocorrelation analysis: Examination of plots of the autocorrelation function (ACF).

5.1. Fitting the ARIMA Model

The ARIMA model was set up with an order of (3,1,2). In this context, ‘3’ denotes the autoregressive 
terms (p), ‘1’ indicates the degree of differencing (d), and ‘2’ represents the moving average terms 
(q). These parameters were selected based on a p-value of 0.000, an Akaike Information Criterion 
(AIC) value of -7493.368, and a Bayesian Information Criterion (BIC) value of -7459.104. 
Subsequently, an autoregressive (AR) model was fitted to the differenced training data using the 
method of maximum likelihood estimation. This approach allows for the efficient estimation of 
the model parameters, providing a robust framework for forecasting future values.
Figure 14 presents the diagnostic plots for the time series model generated by the ARIMA, which 
assist in evaluating the model’s goodness of fit and the assumptions of the residuals:
1. Standardized Residuals (Top Left): The residuals from the model are standardized to have a 
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mean of zero and a standard deviation of one. They appear to be randomly scattered around 
zero, suggesting that the model has adequately captured the underlying structure of the data.

2. Histogram plus Estimated Density (Top Right): This plot shows a histogram of the residuals, 
the estimated density (KDE), and the normal distribution curve (N (0,1)). The residuals 
roughly follow the normal distribution, with some deviations in the tails indicating slight 
non-normality.

3. Normal Q-Q Plot (Bottom Left): This plot compares the quantiles of the standardized residuals 
to the theoretical quantiles of a normal distribution. The points lie approximately along the 
red line, indicating that the residuals follow a normal distribution, with slight deviations at 
the tails.

4. Correlogram (ACF of Residuals) (Bottom Right): This plot shows the autocorrelation function 
(ACF) of the residuals. Most of the autocorrelations fall within the 95% confidence interval, 
suggesting that the residuals are uncorrelated and resemble white noise, indicating that the 
model has adequately captured the time series dynamics.

Figure 14. The diagnostic plots for the time series model generated by the ARIMA.

These diagnostics collectively suggest that the ARIMA model provides a good fit to the data. 
The absence of significant correlations among the residuals indicates that the model captures the 
underlying patterns in the data well and can be used for forecasting purposes.

5.2. Fitting the SARIMA Model

In this case, the model is configured with the order (2, 1, 0) x (1, 1, [1], 12). Here’s what each 
parameter signifies:
• p = 2: This represents the number of autoregressive terms. Autoregressive terms are lags of the 

dependent variable, i.e., previous values of the time series.
• d = 1: This is the degree of differencing. Differencing is used to make the time series stationary.
• q = 0: This denotes the number of moving average terms. Moving averages use past errors to 

forecast future values.
• P = 1: This is the number of seasonal autoregressive terms.
• D = 1: This is the degree of seasonal differencing.
• Q = 1: This is the number of seasonal moving average terms.
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• 12: This represents the length of the seasonal cycle, indicating monthly seasonality in this 
case.

The parameters were chosen based on a p-value of 0.000, AIC of -7611.031, and BIC of -7576.800. 
The model was fitted to the differenced data using maximum likelihood estimation, ensuring an 
accurate representation of the underlying patterns.
The diagnostic plots of the SARIMA model, as shown in Figure 15, are crucial for determining 
the validity of the model fit and assessing the quality of the forecast. Here’s a breakdown of the 
key aspects of these diagnostic plots:
1. Standardized Residuals: The random pattern around zero suggests that the model is capturing 
much of the structure in the data. However, the presence of large spikes indicates that some 
patterns or irregularities may not be fully captured.
2. Histogram plus Estimated Density: A roughly normal distribution of residuals indicates that 
the model’s predictions are generally unbiased and that it captures the underlying distribution of 
the data well. However, the deviations suggest that some aspects of the data distribution may be 
missed.
3. Normal Q-Q Plot: This plot indicates that while the model captures the central patterns in the 
data well, it struggles with the extremes (i.e., the tails). This could suggest the model is good for 
general patterns but might miss outliers or extreme values.
4. Correlogram: The significant autocorrelation at lag 1 suggests that the model does not fully 
capture short-term dependencies in the data. However, the lack of significant autocorrelation at 
higher lags indicates that longer-term patterns are well captured.
As a result, the SARIMA model appears to be reasonably good at capturing the main patterns in 
the data, although there are some areas where it could potentially be improved.

Figure 15. The diagnostic plots for the time series model generated by the SARIMA.

5.3. Fitting the DRARIMA Model

It is a type of time series model that expresses the dependent variable as a linear function of its 
previous values. In this case, the model is configured with an order of (2,1,0), which signifies that 
it is an autoregressive (AR) model. Here’s what each parameter means:
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• p = 2: This represents the number of autoregressive terms, which are lags of the dependent 
variable.

• d = 1: This is the degree of differencing, which is used to make the time series stationary.
• q = 0: This denotes the number of moving average terms, which are not present in this model 

as it is purely an AR model.
These parameters were chosen based on a p-value of 0.000, an AIC value of -5893.162, and a BIC 
value of -5111.100. The model was then fitted to the differenced training data using maximum 
likelihood estimation.
The diagnostic plots of the DRARIMA model, displayed in Figure 16, are essential for validating 
the model fit and evaluating the forecast quality. Here’s a brief interpretation of these plots:
1. Standardized Residuals: The residuals fluctuate around zero with uniform variance, suggesting 

an unbiased forecast.
2. Histogram and Density Plot: The residuals appear to follow a Gaussian distribution with a 

mean of zero, indicating that the model’s predictions are generally unbiased.
3. Normal Q-Q Plot: The residuals align closely with the red line, suggesting a proper and un 

skewed distribution.
4. Correlogram (ACF Plot): The absence of significant autocorrelation at lag 1 implies that the 

residuals are not auto-correlated, indicating that the model has captured the dependencies 
in the data.

Figure 16. The diagnostic plots for the time series model generated by the RegARIMA.

The RegARIMA model is good but not perfect. It does a reasonable job of fitting the data, as 
evidenced by the random and uncorrelated residuals. However, the slight deviations from 
normality indicate that there might be room for improvement.

5.4. Model Training and Testing

This study aimed to develop and assess a range of ARIMA models for forecasting the electrical 
load time series in May 2022. The models were trained using electrical load data from May 2020 
and May 2021, while the performance was evaluated on the data from May 2022. To account for 
external influences on the load, such as generation, exogenous variables were introduced into the 
DRARIMA model.
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5.5. Performance Comparison of Models

The predictions from each model were compared with the actual load data for May 2022. As 
illustrated in Figure 17:
• Original Data: This is depicted by a blue line, which represents the actual electrical load.
• ARIMA Forecast: This is represented by a yellow dashed line. It captures the overall trend but 
tends to underestimate the peaks and valleys.
• SARIMA Forecast: This is shown as a green dashed line. It accounts for seasonal patterns but 
has higher errors compared to the ARIMA model.
• DRARIMA Forecast: This is displayed as a red dashed line. It incorporates exogenous variables 
but has the highest prediction error among all the models.

Figure 17. Forecasts from each model combined with actual load data for May 2022.

According to the evaluation metrics outlined in Table 2, the ARIMA model outperforms the other 
models, including SARIMA and DRARIMA, in terms of predictive performance. The ARIMA 
model, with the lowest values for MSE, MAE, RMSE, and MAPE, proves to be the most accurate 
in forecasting the electrical load for May 2022, achieving an estimated accuracy of 78.88%, as 
illustrated in Figure 17. In contrast, the SARIMA model, despite its incorporation of seasonality, 
did not perform as effectively as the ARIMA model, resulting in a prediction accuracy of 73.86%. 
Furthermore, the DRARIMA model, despite the inclusion of exogenous variables, demonstrated 
higher error rates and a diminished accuracy of 65.36%. This implies that the integration of the 
chosen exogenous variables did not significantly enhance the forecast accuracy.

Table 2. Evaluating the performance of arima models for electrical load demand for may 2022.

Models MSE MAE RMSE MAPE Min 
Error

Max 
Error

ARIMA 0.014 0.09 0.12 21.12 -0.24 0.40
SARIMA 0.019 0.11 0.13 26.14 -0.30 0.40
DRARIMA 0.030 0.15 0.17 34.63 -0.33 0.30
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Figure 18. Estimating the performance of ARIMA models for forecasting electrical demand in terms of accuracy.

Figure 19. Future energy demand forecasting performance of three models for May 2024 and May 2025.

5.6. Future Forecasting 

This section evaluates the forecasting performance of three proposed models for May 2024 and 
May 2025. The aim is to understand each model’s predictive capabilities and assess their reliability 
and accuracy as show in Figure 18.
A. May 2024 Forecasts:
• ARIMA: Predicts a steady decline in load, showing a consistent downward trend.
• SARIMA: Captures more variability, reflecting short-term variations and seasonal patterns.
• DRARIMA: Forecasts a relatively stable load, suggesting that the inclusion of exogenous 
variables might stabilize predictions but possibly underestimate variability.
B. May 2025 Forecasts:
• ARIMA: Indicates a downward trend similar to the previous year, suggesting a continual 
reduction in load.
• SARIMA: Reflects a higher degree of variability, indicating its capacity to model seasonality and 
short-term dynamics effectively.
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• DRARIMA: Predicts an overall upward trend, suggesting potential growth or stability in 
external factors impacting the load.

5.7. Strength and Limitation of all Models

The future forecasts highlight the different characteristics and strengths of each model: The 
ARIMA model offers a clear and straightforward forecast with a consistent trend, making it 
useful for understanding long-term tendencies. However, it falls short in capturing seasonal 
variations and short-term fluctuations, leading to potentially oversimplified predictions. On 
the other hand, the SARIMA model effectively addresses seasonality and short-term variability, 
enhancing its responsiveness to periodic changes in the load, although its increased variability 
might lead to overfitting and sensitivity to noise. The DRARIMA model incorporates exogenous 
variables, providing a nuanced perspective on future load predictions by stabilizing the forecast 
and accounting for external influences. Despite this, it may underestimate inherent fluctuations 
due to the specific exogenous variables used. Therefore, choosing the appropriate model depends 
on the specific requirements of the analysis: the ARIMA model is suited for long-term trend 
analysis, the SARIMA model for 
detailed short-term predictions considering seasonality, and the DRARIMA model for scenarios 
where external factors significantly impact the load, with careful selection of exogenous variables 
essential for accurate forecasting.

6. THE EXPECTED DIRECTION OF THE DATA FROM THE PAPER IN LIGHT OF 
SIMILAR WORKS

The paper’s focus on forecasting electricity load in Benghazi, Libya, using ARIMA models, allows 
us to anticipate certain data characteristics based on similar studies and the general principles of 
load forecasting:
• Seasonality: Electricity demand often exhibits strong seasonal patterns. We can expect higher 
loads during the summer months due to increased air conditioning use, a common finding in 
similar studies in hot climates. Daily and weekly seasonality are also anticipated, with daily peaks 
aligning with typical usage patterns and differences between weekday and weekend demand. The 
paper’s mention of peak demand in summer reinforces this expectation.
• Trend: Given Libya’s developing economy and growing population, an upward trend in electricity 
demand is likely. Similar studies in developing regions often observe increasing trends in energy 
consumption. However, the rate of this trend might not be uniform and could be influenced by 
economic fluctuations, energy efficiency improvements, or policy changes.
• Noise and Outliers: Real-world data is inherently noisy. Random fluctuations and outliers 
caused by unusual events (e.g., holidays, extreme weather) are expected. The paper’s methodology 
includes outlier removal, which is crucial for accurate model training.
• Non-linearity: Electricity load data often exhibits non-linear behavior due to complex interactions 
between various factors. ARIMA models have limitations in capturing non-linearity. The paper 
should investigate the potential presence of non-linearity in the data and consider alternative 
models or hybrid approaches if necessary. The literature suggests that machine learning models 
or hybrid approaches might be better suited for capturing non-linear relationships.
In light of similar works, the paper’s expected data should exhibit seasonal patterns, potentially an 
upward trend, inherent noise and outliers. Furthermore, the possibility of non-linear relationships 
should be investigated. These anticipated data characteristics inform the selection and evaluation 
of appropriate forecasting models, crucial for accurate load forecasting and efficient load shedding 
management in Benghazi.
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7. CONCLUSION AND FUTURE WORK

In this study, we explored various time series forecasting models to predict the electrical load 
for May over several years. We employed ARIMA, SARIMA, and DRARIMA models, assessing 
their performance using historical data from May 2020 and 2021 to forecast loads for May 
2022. Additionally, we extended the forecasting to predict loads for May 2024 and May 2025. 
The performance evaluation metrics, including MSE, MAE, RMSE, MAPE, minimum and 
maximum errors, and accuracy percentage, provided a quantitative basis for comparing these 
models. Among the models, ARIMA demonstrated a balance between simplicity and accuracy, 
while SARIMA showed strength in capturing short-term variability. The DRARIMA model 
highlighted the importance of considering external factors. Future research can build upon the 
findings of this study by addressing several key areas: Identify and integrate relevant exogenous 
variables (e.g., weather conditions, economic indicators) that can significantly impact electrical 
loads. This can enhance the predictive power of the DRARIMA model. Combine the strengths 
of multiple models (e.g., hybrid ARIMA-LSTM) to create more robust forecasting systems that 
leverage both statistical and machine learning techniques.
In light of our research findings and potential future work, we propose the following 
recommendations for those engaged in electrical load forecasting: 
1) Data Quality and Preprocessing: Prioritize the collection of high-quality data and thorough 
preprocessing to reduce noise and improve model accuracy.
 2) Model Selection: Choose models judiciously, considering the specific needs of the forecasting 
task. For example, opt for SARIMA when detailed short-term variability analysis is required, and 
consider DRARIMA when external factors play a significant role.
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