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ABSTRACT                                  
This research presents an innovative method 

for enhancing hydrogen production through proton 
exchange membrane (PEM) water electrolysis, 
powered by photovoltaic (PV) energy. The system is 
based on the Perturbation and Observation (P & O) 
method of Maximum Power Point Tracking (MPPT) 
with a boost converter to maximize energy capture, 
and a buck converter to stabilize DC voltage, ensuring 
compatibility with the proton exchange membrane 
electrolyzer. An artificial neural network (ANN)-based 
controller manages the buck converter, effectively 
minimizing the effects of solar irradiation fluctuations 
on electrolyzer performance.

By using the adaptive learning capabilities of the ANN, the proposed approach increases the 
efficiency of hydrogen production under varying solar energy levels. Simulation results indicate 
that the ANN controller outperforms the conventional PI controller, reducing the mean absolute 
percentage error (MAPE) from 1.22 % to 0.95 %, decreasing overshoot from 12.84 % to 3.19 %, 
and achieving a faster settling time of 0.022 s compared to 0.023 s. This study advances renewable 
hydrogen production technologies, demonstrating that ANN-based control improves dynamic 
performance and contributes to the development of smarter, more resilient energy systems.
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تحسين كفاءة التحليل الكهربائي للماء بتقنية الغشاء البروتوني )PEM( عبر التحكم القائم على 
الشبكات العصبية الاصطناعية لمواجهة التقلبات السريعة في الطاقة الكهربائية المولدة من الألواح الشمسية

عبد الله الإدريسي، بلقاسم اموضان، حميد حمداني، محند أوبلا، محمد بنيدير ، محمد اجعموم .

ملخ��ص: يق��دم ه��ذا البح��ث طريق��ة مبتك��رة لتحس�ني إنت��اج الهيدروجين م��ن خ�لال التحلي��ل الكهربائي للماء باس��تخدام غش��اء تبادل 
البروت��ون، مدعومً��ا بالطاق��ة الكهروضوئي��ة. يس��تفيد النظ��ام م��ن طريق��ة التش��ويش القابل��ة والمرن��ة لتتب��ع نقط��ة الق��درة القصوى مع 
محول تعزيز لزيادة التقاط الطاقة إلى أقصى حد، ومحول باك لتثبيت جهد التيار المستمر، مما يضمن التوافق مع المحلل الكهربائي 
بغش��اء تبادل البروتون. يدير نظام تحكم قائم على الش��بكة العصبية الاصطناعية محول باك، مما يقلل بش��كل فعال من آثار تقلبات 

الإش��عاع الشمس��ي على أداء المحلل الكهربائي.
م��ن خ�لال الاس��تفادة م��ن الق��درة التعلمي��ة التكيفي��ة لنظ��ام التحك��م القائ��م عل��ى الش��بكة العصبي��ة الاصطناعي��ة، يزي��د النه��ج المق�ترح 
من كفاءة إنتاج الهيدروجين في ظل مس��تويات طاقة شمس��ية متفاوتة. تش�ير نتائج المحاكاة إلى أن وحدة تحكم النظام القائم على 
الشبكة العصبية الاصطناعية تتفوق على وحدة التحكم التناسبي التكاملي التقليدية، مما يوفر أوقات استجابة أسرع ويعزز كفاءة 

النظ��ام. تعم��ل ه��ذه الدراس��ة عل��ى تطوير تقني��ات إنتاج الهيدروجين المتجددة، مما يدعم تطوير أنظم��ة طاقة أكثر ذكاءً ومرونة.

الكلمات المفتاحية - إنتاج الهيدروجين، الطاقة المتجددة، المحلل الكهربائي، محول التيار المستمر، الشبكة العصبية الاصطناعية.

1.	 INTRODUCTION

The global transition to renewable energies is changing how we produce and use energy. As 
countries aim to reduce greenhouse gas emissions, they are increasingly turning to cleaner energy 
solutions. Hydrogen has become a promising energy source due to its clean-burning nature and 
high energy content, particularly valuable in industries and transportation sectors where direct 
electrification is challenging [1], [2]. However, for hydrogen to be truly sustainable, its production 
must also be efficient and environmentally friendly. One effective method for producing 
hydrogen is through Proton Exchange Membrane (PEM) water electrolysis powered by sources 
of renewable energy such as solar energy. Laghlimi et al. (2024)  explores the historical evolution 
and modern techniques of green hydrogen production through water electrolysis, highlighting 
its role in sustainable energy. It emphasizes environmentally friendly methods for addressing 
the challenges of climate change [3]. Solar photovoltaic (PV) systems, which take advantage of 
the sun’s energy, are widely used due to their reliability and availability [4]. Nevertheless, the 
integration of PV systems with PEM electrolyzers poses significant challenges, as solar energy 
varies throughout the day, causing fluctuations in the power generated [5]. These fluctuations can 
have an impact on the performance of PEM electrolyzers, which require a stable power supply to 
produce hydrogen efficiently[6]. Consequently, solving these problems requires advanced systems 
to efficiently manage and control the flow of energy [7]. Various techniques have been applied to 
meet the challenges of integrating photovoltaic systems with PEM electrolyzers [8]. Traditional 
control methods, such as proportional-integral (PI) and proportional-integral-derivative (PID) 
controllers, are widely utilized because they are straightforward and simple to implement [9]. 
These methods can effectively control voltage and current under stable, predictable conditions. 
However, their performance decreases when confronted with highly variable solar irradiation or 
rapid environmental changes, as they suffer from a lack of adaptability and may encounter non-
linear system behavior [10]. Advanced control strategies such as fuzzy logic and model predictive 
control (MPC) have also been investigated for their ability to handle non-linearity and variability 
[11], but these approaches often require significant computational resources and may be less 
effective at adapting to dynamic conditions over time [12]. In contrast, artificial neural networks 
(ANNs) are a promising alternative, offering significant advantages in complex, dynamic systems 
[13]. ANNs can model non-linear relationships, learn from data and adapt to changing input 
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conditions, making them particularly well suited to renewable energy applications [14]. Unlike 
traditional methods, ANNs do not depend on predefined system models, enabling them to deal 
more effectively with variability and unpredictability. This study exploits the adaptive and learning 
capabilities of ANNs to improve the stability and performance of the integrated PV-PEM system, 
addressing the limitations of conventional techniques [15]. This research proposes an artificial 
neural network (ANN)-based control approach to improve the efficiency and stability of proton 
exchange membrane (PEM) water electrolysis when powered by a photovoltaic (PV) system 
under variable sunlight conditions. The inherent intermittency of solar energy leads to voltage 
and current fluctuations that can have a negative impact on electrolyzer performance, reducing 
hydrogen production efficiency and increasing stress on system components. To mitigate these 
issues, the proposed system incorporates maximum power point tracking (MPPT) using the 
Perturb and Observe (P and O) algorithm, which continuously adjusts the operating point of 
the photovoltaic array to extract the maximum available power [16]. A boost converter raises the 
photovoltaic voltage to an appropriate level for efficient energy conversion, while a buck converter 
precisely regulates the voltage supplied to the electrolyzer, ensuring optimal operating conditions 
for hydrogen production [17], [18]. At the heart of the proposed approach is an ANN-based control 
system that dynamically adapts to rapid changes in solar irradiance and temperature, enabling 
more efficient and stable power regulation compared to traditional proportional-integral (PI) 
control. Unlike fixed-parameter controllers, the ANN is trained to recognize complex patterns 
in power fluctuations and adjust control signals accordingly, improving voltage stability and 
reducing energy losses [19].The performance of the ANN-based controller is rigorously evaluated 
by comparing it with conventional PI control in terms of hydrogen production efficiency, voltage 
stability and overall system reliability.
The results of this study demonstrate that the ANN-based control approach significantly improves 
electrolyzer efficiency and durability, ensuring constant hydrogen production even under 
fluctuating solar energy conditions. This research contributes to the development of intelligent 
control strategies for electrolysis systems powered by renewable energies, paving the way for 
more sustainable, resilient and efficient hydrogen production technologies.

2.	  SYSTEM DESCRIPTION AND DESIGN

2.1.	 The Electrical Equivalent Representation of the PEM Electrolyzer

Our system consists of a photovoltaic hydrogen production setup that includes a solar panel, 
a boost converter for MPPT, and a buck converter to step down the voltage to 7.5V. This 
configuration powers a 400W PEM electrolyzer for efficient hydrogen generation, as shown in 
Figure 1.
The design parameters for the PEM electrolyzer, solar panel, boost converter, and buck converter 
are outlined in the following subsections.
The electrical equivalent model of the PEM electrolyzer is an essential tool for testing and validating 
the performance of control techniques and power topologies. It provides a robust method for 
simulating electrolyzer behavior without the need for physical hardware implementation, thus 
mitigating risks such as damage caused by voltage overshoot and current ripple.
Various electrical models of PEM electrolyzers have been proposed in the literature. Some studies, 
such as references [20], [21], represent the electrolyzer as a simple resistor. Others, including 
references [22], [23], model it using an equivalent electrical circuit made up of a resistor (Relz) 
and a reversible voltage (Eelz) connected in series. This approach captures the electrolyzer’s static 
electrical characteristics, such as its voltage, current, and power-current relationships.
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Figure 1  Schematic Representation of the Discussed System.

In this study, the PEM electrolyzer is represented as a series combination of a resistor and a 
reversible DC voltage. This model provides an accurate representation of the electrolyzer’s 
operating range and behavior, expressed in the following mathematical equation (1.1):

elz elz elz elz elzV R I E 0.0625I 4.375                                      (1.1)= + = +

The electrical behavior in the range of 3A to 50A can be approximated through linear interpolation 
to determine the coefficients of this equation (1.1) [24]. The experimental data, sourced from 
[24] demonstrates a nearly linear relationship between voltage and current, as depicted in Fig. 2. 
This observation lends credence to the idea that the system can be modeled using resistances and 
a reversible voltage.                                                                                                                                   

Figure 2 Static characteristics of the selected PEM electrolyzer cells.

The method for determining the hydrogen production rate (NH2) in moles per second, is presented 
in equation (1.2), where n is the number of electrons involved, I is the electric current in amperes, 
and F is Faraday’s constant (96485 C/mol)}.

2H
nIN ( moles / s)                                                             (1.2)
2 F

=
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The hydrogen produced can be transformed from moles per second to liters per minute using the 
following equation (1.3):

2HN 0.00696nI ( L / min)                                                      (1.3)=

Table 1 PEM Electrolyzer Specifications.
Specification Result

Rated Electrolyzer Power 400                                                Watts
Stack Operating Electrolyzer Voltage 2.2--8                                           Volts
Stack Electrolyzer Current 0 -- 50                                    Amperes
Output Pressure. 0.1--10.5                                          bar
Hydrogen Flow Rate at Standard Temperature and Pressure 1                      Litre/min
Cell Numbers 3                                      -

2.2.	 Solar Photovoltaic Array

Solar photovoltaic units are arranged in parallel and series to increase power output and form 
solar photovoltaic arrays. The solar panel discussed in this article consists of two panels connected 
in series and four panels connected in parallel. Together, these panels have a total maximum 
power capacity of 965.6 W, as shown in Figure 2. The specifications of the solar modules are 
provided in Table 2.

Table 2 Solar panel parameters for Waaree Energies WU-120.
Parameters Value
Imp 7.1 A
Vmp 17 V
Pmax,e 120.7 W
Isc 8 A
Voc 21 V
PV solar irradiation (G) 1000 W/m²
PV operation temperature (T) 25 °C

            
                                                  (a)                                                                                                   (b)

Figure 3 Voltage-current and voltage-power characteristics of a photovoltaic panel (Waare Energies WU-120, 2 
series modules, 4 parallel strings) (a) for different irradiance levels (G) at T = 25°C;  (b) for different  temperatures 

with 2  1000 /G W m=

2.3.	 Boost Converter

A boost converter, as shown in Figure 4, is employed for MPPT operation. Its input is the peak 
voltage of the solar panel, with the MPP voltage fixed at 34V. The output of the boost converter 
is represented by the DC link voltage (Vmppt ), which is set at 50V. The duty cycle Dpv  , inductance 
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Lpv  , and capacitor Cpv of the boost converter are determined using the following equations (1.4):

                                                                         (1.4)mppt pv
pv

mppt

V V
D

V
−

=

                                                                                          (1.5)
pv

pv pv
pv

s pv

V D
L

f I
=

∆

                                                                                         (1.6)
pv

pv
pv

s pv

I
C

f V
=

∆

Figure 4. Electrical schematic of the DC-DC Boost converter.

Table 3  MPPT boost parameters [25].
Parameters Values

Boost Input Voltage (Vpv ) 42V

Boost Output Voltage (Vmppt ) 50V

Inductor (Lpv ) 0.5 mH

Input capacitor (Cpv ) 1000µF

Output capacitor ( Cmppt) 1600µF

Switching Frequency (fspv ) 10 kHz

2.4.	 Buck Converter

Electrolyzers typically require a low DC voltage for water electrolysis, which is why a DC/DC 
buck converter, as shown in Figure 5, is often used. These converters not only reduce the voltage 
but also perform voltage conditioning, owing to the non-linear voltage characteristics of the 
electrolyzer stack. The parameters of the buck converter are calculated as follows:

                                                                                               (1.7)elz
elz

mppt

VD
V

=

(1 )                                                                                    (1.8)
elz

elz elz
elz

s elz

V DL
f I

−
=

∆

2

(1 )                                                                                  (1.9)
8

elz

elz elz
elz

elz s elz

V DC
L f V

−
=
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Figure 5. Electrical schematic of the DC-DC Buck converter.

Table 4 Specification of the Buck converter [25].
Parameters Values
Buck Input Voltage (V_mppt) 50V
Buck Output Voltage (V_elz) 7.5V
Inductor (L_elz) 1.5 mH
Capacitor (C_elz) 100µF
Switching Frequency (f_sel) 10 kHz

3.	 CONTROL STRATEGIES

The electrical control strategy for the selected system uses two controllers: perturbation and 
observation (P&O) for maximum power point tracking (MPPT) and a proportional-integral (PI) 
controller. We replace the PI controller with an artificial neural network (ANN)-based control to 
compare their performance. Each controller is adapted to specific functions, working together to 
optimize system performance, ensure stability, and improve reliability.

3.1.	 MPPT Controller

The MPPT controller regulates the boost converter to maximize power extraction from the solar 
panel. The perturbation and observation (P&O) technique, shown in Figure 6, is employed as the 
MPPT algorithm due to its simplicity and broad practical use [26]

Figure 6. System Electrical Control Strategy using MPPT (P and O).

3.2.	PI Controller

A proportional-integral (PI) controller Figure 7 is implemented to regulate the buck converter, 
ensuring that the output voltage supplied to the electrolyser remains stable. The PI controller 
evaluates the difference between the reference voltage and the actual voltage, generating the 
control signal for pulse-width modulation (PWM) to adjust the buck converter’s duty cycle.

Figure 7. System Electrical Control Strategy using PI Controller.
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3.3.	 ANN-based Controller

For our model Figure 8, we use 64 hidden neurons and the Levenberg-Marquardt learning 
algorithm. The data collected to train the ANN model includes the error between the desired 
value (7.5 V) and the actual output voltage, as well as the error variation  , which indicates the 
variation in the error signal between successive time steps. In addition, the previous control 
output D is used as an input that reflects the control signal generated by the PI controller during 
the previous time step. The output of the model is the current output of the PI controller, which 
serves as a duty cycle sent to the PWM generator to convert it into a PWM signal for the power 
converter.

Figure 8. System Electrical Control Strategy using ANN Based-Controller.

4.	 RESULTS AND DISCUSSION

The dynamic performance of the system under varying atmospheric conditions is illustrated by 
data recorded in our laboratory. These results reflect the system’s behavior under fluctuating solar 
irradiation and temperature conditions. Solar irradiance varies from 400 W/m² to 1000 W/m², 
while the temperature of the photovoltaic panel fluctuates between 42°C and 62°C, as shown in 
Figure 9(a) and Figure 9(b), respectively. These variations have a direct impact on PV system 
parameters such as PV voltage (Vpv ) and power (ppv ), illustrated in  Figure 9(c) and Figure 9(d) 
respectively. The irradiance curve Figure 9(b) first shows a steady increase, which is followed 
by a sharp decrease near the mid-point, corresponding to a temporary drop in solar irradiance. 
This reduction in irradiance is reflected in the PV voltage profile Figure 9(c). Power output (ppv ) 
Figure 9(d) also follows a similar pattern, fluctuating with irradiation and temperature changes, 
as well as with other system parameters.

   
                                                    (a)	      (b)

  
                                                            (c)                                                                                           (d)

Figure 9. Dynamic performance of the system with varying solar irradiation and Temperature, where Solar 
irradiance, (b) Temperature of the photovoltaic panel, (c)  PV voltage (Vpv ) and (d) Power output (ppv ).

The Figure 10 shows how a photovoltaic (PV) system behaves under MPPT control. In Figure 
10(a), the PV voltage (Vpv ) and the MPPT voltage (VPPT ) are stable after an initial transient, but 



Improving PEM Water Electrolysis Efficiency with ANN-Based Control to Handle Rapid Photovoltaic Power Fluctuations.

159
Solar Energy and Sustainable Development, Special Issue (STR2E) , May  2025.

a dip is visible around 2 seconds before the system recovers. Figure 10(b) focuses on the current 
response, where both the PV current ( IPV) and MPPT current (IMPPT ) experience a spike during 
the same disturbance. Figure 10(c) provides a closer look at the power response during steady-
state and disturbance periods. Overall, the figure highlights how the system manages initial 
transients, maintains steady-state operation, and effectively responds to external disturbances.

  
                                         (a)                                                                             (b)

                                                                                         (c)
Figure 10. Dynamic Response of a Photovoltaic System Under MPPT Control where (a) the PV voltage (Vpv) and 

the MPPT voltage (MPPT ), (b) the PV current (Ipv) & MPPT current (Imppt ) and (b) the PV Power ( Ppv).

This Figure 11 compares the performance of a Proportional-Integral (PI) controller and an 
Artificial Neural Network (ANN) controller in regulating an electrolyzer system. 

 
(a)                                                                                            (b)

         
                                                    (c)                                                                                               (d)

Figure 11. Dynamic performance of the system with varying solar irradiation (a) the voltage response (Velz ), (b) 
The current response (Ielz ) (c) the power output (Pelz ) and (d) the hydrogen production rate (  Rate) all under PI 

and ANN control.

Figure 11(a) shows the voltage response(Velz), where the ANN controller achieves faster 
stabilization and smoother behavior after a disturbance at around 2 seconds, while the PI 
controller shows more pronounced oscillations. In Figure 11(b), the current response (Ielz) is 
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displayed, with the ANN controller providing a more stable and consistent response, effectively 
suppressing fluctuations during the disturbance. Figure 11(c) focuses on the power output (Pelz), 
where the ANN controller demonstrates quicker recovery and steadier performance under 
transient and steady-state conditions compared to the PI controller. 
Finally, Figure 11(d) presents the hydrogen production rate (H2 Rate), highlighting the ANN 
controller’s ability to maintain a more stable and reliable output, even during disturbances. 
Overall, the result shows that the ANN controller outperforms the PI controller, delivering faster 
responses, better stability, and improved efficiency under varying operating conditions.
The results Table 5 demonstrate that the ANN controller outperforms the PI controller on several 
performance parameters. The ANN has a minimum overshoot of 3.1%, significantly lower than 
the PI’s 12.84%, indicating a more controlled and consistent response close to the target value. In 
terms of settling time, the PI controller has a settling time of 0.023 s, while the ANN stabilizes at 
0.022 s. In addition, the PI controller’s mean absolute percentage error MAPE is 1.22%, while the 
ANN achieves a lower MAPE of 0.95%, indicating improved tracking accuracy. Overall, these 
parameters suggest that the ANN controller performs better than the PI controller in terms of 
tracking accuracy. In addition, the average flow rates for hydrogen production are 0.98 L/min 
for the PI controller and 0.99 L/min for the ANN controller, indicating that the ANN performs 
better in terms of hydrogen production efficiency.

Table 5 Dynamic Performance of Controllers.
Controller MAPE (%) Settling Time (S) Overshoot (%)

PI 1.22 0.023 12.84
ANN 0.95 0.022 3.19

5.	  CONCLUSIONS

In this study, we investigated a system integrating a PEM water electrolyzer and a photovoltaic 
panel to address the challenges of hydrogen production under fluctuating solar energy conditions. 
The system uses a boost converter with a perturbation and observation P&O algorithm for 
MPPT and a buck converter to stabilize the voltage supplied to the electrolyzer. Initially, the buck 
converter was controlled using a PI strategy, but to address the limitations caused by the system’s 
non-linearity, we proposed the use of an ANN controller. The results indicated that the ANN 
controller outperformed the PI controller in terms of stability and overall system performance. 
The ANN achieved 3.19% less overshoot} than the PI’s 12.84 %, 0.022 s faster stabilization than 
the PI’s 0.023 s, and 0.95% less mean absolute percentage error (MAPE) than the PI’s 1.22%. 
In addition, hydrogen production rates were higher with the ANN (0.99 L/min vs. 0.98 L/min 
for the PI). Future work could explore advanced ANN techniques, such as deep learning and 
reinforcement learning, to improve system accuracy and adaptability, even in the presence of 
different disturbances. In addition, the integration of improved converters and MPPT strategies 
can maximize energy extraction and system efficiency, contributing to the sustainability of the 
electrolyzer and the advancement of sustainable green hydrogen production.
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List of Abbreviations:
Abbreviation Meaning
ANN Artificial Neural Network
DC Direct Current
MAPE Mean Absolute Percentage Error
MPPT Maximum Power Point Tracking
P&O Perturbation and Observation (MPPT algorithm)
PEM Proton Exchange Membrane
PI Proportional-Integral (Control)
PV Photovoltaic

Nomenclature:
Symbol Meaning
H₂ Hydrogen Gas
Iₑₗ𝓏 Electrolyzer Current (A)

Iₘₚₚₜ Maximum Power Point Tracking Current (A)

Iᵣ Irradiance (W/m²)

Iₚᵥ Photovoltaic Current (A)

Nₕ₂ Hydrogen Production Rate (moles/s or L/min)

Pₑₗ𝓏 Electrolyzer Power (W)

Pₘₚₚₜ Maximum Power Point Tracking Power (W)

Pₚᵥ Photovoltaic Power (W)

Tₚᵥ Photovoltaic Temperature (°C)

Vₑₗ𝓏 Electrolyzer Voltage (V)

Vₘₚₚₜ Maximum Power Point Tracking Voltage (V)

Vₚᵥ Photovoltaic Voltage (V)


