Forecasting Energy Consumption on a Microgrid using ARIMA-GRU Model
DOI:
https://doi.org/10.51646/jsesd.v14iSTR2E.791الكلمات المفتاحية:
ARIMA، GRU، Deep learning، Energy consumption، Microgrid.الملخص
Accurate forecasting of energy consumption is crucial for the efficient management and control of modern energy grids, particularly amid the escalating integration of renewable energy sources. This study proposes a hybrid approach that combines the Autoregressive Integrated Moving Average (ARIMA) and the Gated Recurrent Unit neural network (GRU) to predict energy consumption in a microgrid setting. The proposed hybrid ARIMA-GRU model integrates ARIMA’s residuals with GRU’s non-linear modeling capabilities, enabling enhanced prediction accuracy while capturing both linear and non-linear dependencies in microgrid energy data. The model’s performance is evaluated using real-world energy consumption data, achieving an RMSE of 38.28 kWh, MAE of 31.24 kWh, and MAPE of 10.29%. These results highlight the model’s effectiveness in improving energy forecasting and providing practical insights for better energy management in microgrids.
التنزيلات
المقاييس
المراجع
N. M. Manousakis, P. S. Karagiannopoulos, G. J. Tsekouras, and F. D. Kanellos, “Integration of Renewable Energy and Electric Vehicles in Power Systems: A Review,” Processes, vol. 11, no. 5, 2023, doi: 10.3390/pr11051544. DOI: https://doi.org/10.3390/pr11051544
M. Abumohsen, A. Y. Owda, and M. Owda, “Electrical Load Forecasting Using LSTM, GRU, and RNN Algorithms,” Energies (Basel), vol. 16, no. 5, 2023, doi: 10.3390/en16052283. DOI: https://doi.org/10.3390/en16052283
W. Liao, B. Bak-Jensen, J. R. Pillai, Z. Yang, and K. Liu, “Short-term power prediction for renewable energy using hybrid graph convolutional network and long short-term memory approach,” Electric Power Systems Research, vol. 211, p. 108614, 2022, doi: https://doi.org/10.1016/j.epsr.2022.108614. DOI: https://doi.org/10.1016/j.epsr.2022.108614
B.-M. Hodge, A. Zeiler, D. Brooks, G. Blau, J. Pekny, and G. Reklatis, “Improved Wind Power Forecasting with ARIMA Models,” in 21st European Symposium on Computer Aided Process Engineering, vol. 29, E. N. Pistikopoulos, M. C. Georgiadis, and A. C. Kokossis, Eds., in Computer Aided Chemical Engineering, vol. 29. , Elsevier, 2011, pp. 1789–1793. doi: https://doi.org/10.1016/B978-0-444-54298-4.50136-7. DOI: https://doi.org/10.1016/B978-0-444-54298-4.50136-7
Y. E. Shao and Y.-S. Tsai, “Electricity Sales Forecasting Using Hybrid Autoregressive Integrated Moving Average and Soft Computing Approaches in the Absence of Explanatory Variables,” Energies (Basel), vol. 11, no. 7, 2018, doi: 10.3390/en11071848. DOI: https://doi.org/10.3390/en11071848
D. Koschwitz, J. Frisch, and C. van Treeck, “Data-driven heating and cooling load predictions for non-residential buildings based on support vector machine regression and NARX Recurrent Neural Network: A comparative study on district scale,” Energy, vol. 165, pp. 134–142, 2018, doi: https://doi.org/10.1016/j.energy.2018.09.068. DOI: https://doi.org/10.1016/j.energy.2018.09.068
G. Lai, W.-C. Chang, Y. Yang, and H. Liu, “Modeling long-and short-term temporal patterns with deep neural networks,” in The 41st international ACM SIGIR conference on research & development in information retrieval, 2018, pp. 95–104. DOI: https://doi.org/10.1145/3209978.3210006
Y. Hua, Z. Zhao, R. Li, X. Chen, Z. Liu, and H. Zhang, “Deep Learning with Long Short-Term Memory for Time Series Prediction,” IEEE Communications Magazine, vol. 57, no. 6, pp. 114–119, 2019, doi: 10.1109/MCOM.2019.1800155. DOI: https://doi.org/10.1109/MCOM.2019.1800155
M. Dong and L. Grumbach, “A Hybrid Distribution Feeder Long-Term Load Forecasting Method Based on Sequence Prediction,” IEEE Trans Smart Grid, vol. 11, no. 1, pp. 470–482, 2020, doi: 10.1109/TSG.2019.2924183. DOI: https://doi.org/10.1109/TSG.2019.2924183
J. Lee and Y. Cho, “National-scale electricity peak load forecasting: Traditional, machine learning, or hybrid model?,” Energy, vol. 239, p. 122366, 2022, doi: https://doi.org/10.1016/j.energy.2021.122366. DOI: https://doi.org/10.1016/j.energy.2021.122366
H. Hewamalage, C. Bergmeir, and K. Bandara, “Recurrent Neural Networks for Time Series Forecasting: Current status and future directions,” Int J Forecast, vol. 37, no. 1, pp. 388–427, 2021, doi: https://doi.org/10.1016/j.ijforecast.2020.06.008. DOI: https://doi.org/10.1016/j.ijforecast.2020.06.008
H. Hamdoun, A. Sagheer, and H. Youness, “Energy time series forecasting-analytical and empirical assessment of conventional and machine learning models,” Journal of Intelligent & Fuzzy Systems, vol. 40, pp. 12477–12502, 2021, doi: 10.3233/JIFS-201717. DOI: https://doi.org/10.3233/JIFS-201717
J. Wan, W. Hua, and B. Wang, “Compulsory Islanding Transition Strategy Based on Fuzzy Logic Control for a Renewable Microgrid System,” Math Probl Eng, vol. 2021, no. 1, p. 9959222, 2021, doi: https://doi.org/10.1155/2021/9959222. DOI: https://doi.org/10.1155/2021/9959222
X. Ma and D. Liu, “Comparative Study of Hybrid Models Based on a Series of Optimization Algorithms and Their Application in Energy System Forecasting,” Energies (Basel), vol. 9, no. 8, 2016, doi: 10.3390/en9080640. DOI: https://doi.org/10.3390/en9080640
Y. Wang, Y. Shen, S. Mao, G. Cao, and R. M. Nelms, “Adaptive Learning Hybrid Model for Solar Intensity Forecasting,” IEEE Trans Industr Inform, vol. 14, no. 4, pp. 1635–1645, 2018, doi: 10.1109/TII.2017.2789289. DOI: https://doi.org/10.1109/TII.2017.2789289
M. Du, “Improving LSTM Neural Networks for Better Short-Term Wind Power Predictions,” in 2019 IEEE 2nd International Conference on Renewable Energy and Power Engineering (REPE), 2019, pp. 105–109. doi: 10.1109/REPE48501.2019.9025143. DOI: https://doi.org/10.1109/REPE48501.2019.9025143
S. Haben, S. Arora, G. Giasemidis, M. Voss, and D. Vukadinović Greetham, “Review of low voltage load forecasting: Methods, applications, and recommendations,” Appl Energy, vol. 304, p. 117798, 2021, doi: https://doi.org/10.1016/j.apenergy.2021.117798. DOI: https://doi.org/10.1016/j.apenergy.2021.117798
S. and O. S. Hoyer Michael and Eivazi, “Efficient LSTM Training with Eligibility Traces,” in Artificial Neural Networks and Machine Learning – ICANN 2022, P. and J. C. and P. A. and A. M. Pimenidis Elias and Angelov, Ed., Cham: Springer Nature Switzerland, 2022, pp. 334–346. DOI: https://doi.org/10.1007/978-3-031-15934-3_28
K. E. ArunKumar, D. V Kalaga, Ch. Mohan Sai Kumar, M. Kawaji, and T. M. Brenza, “Comparative analysis of Gated Recurrent Units (GRU), long Short-Term memory (LSTM) cells, autoregressive Integrated moving average (ARIMA), seasonal autoregressive Integrated moving average (SARIMA) for forecasting COVID-19 trends,” Alexandria Engineering Journal, vol. 61, no. 10, pp. 7585–7603, 2022, doi: https://doi.org/10.1016/j.aej.2022.01.011. DOI: https://doi.org/10.1016/j.aej.2022.01.011
J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Gated feedback recurrent neural networks,” in International conference on machine learning, 2015, pp. 2067–2075.
N. Guo, W. Chen, M. Wang, Z. Tian, and H. Jin, “Appling an Improved Method Based on ARIMA Model to Predict the Short-Term Electricity Consumption Transmitted by the Internet of Things (IoT),” Wirel Commun Mob Comput, vol. 2021, no. 1, p. 6610273, 2021, doi: https://doi.org/10.1155/2021/6610273. DOI: https://doi.org/10.1155/2021/6610273
M. Awad and R. Khanna, “Support Vector Machines for Classification,” in Efficient Learning Machines, Berkeley, CA: Apress, 2015, pp. 39–66. doi: 10.1007/978-1-4302-5990-9_3. DOI: https://doi.org/10.1007/978-1-4302-5990-9_3
R. Trivedi, M. Bahloul, A. Saif, S. Patra, and S. Khadem, “Comprehensive Dataset on Electrical Load Profiles for Energy Community in Ireland,” Sci Data, vol. 11, no. 1, p. 621, 2024, doi: 10.1038/s41597-024-03454-2. DOI: https://doi.org/10.1038/s41597-024-03454-2
H. Yin, D. Jin, Y. H. Gu, C. J. Park, S. K. Han, and S. J. Yoo, “STL-ATTLSTM: Vegetable Price Forecasting Using STL and Attention Mechanism-Based LSTM,” Agriculture, vol. 10, no. 12, 2020, doi: 10.3390/agriculture10120612. DOI: https://doi.org/10.3390/agriculture10120612
A. Youssfi, and Youssef El Y. Kadi, "A New Advanced Strategy for Controlling the Charging and Discharging of a Storage Unit in a Microgrid Using a Finite Control Set Predictive Model" Solar Energy and Sustainable Development Journal, 14(SI_MSMS2E), 38–52, 2024, https://doi.org/10.51646/jsesd.v14iSI_MSMS2E.404. DOI: https://doi.org/10.51646/jsesd.v14iSI_MSMS2E.404
التنزيلات
منشور
كيفية الاقتباس
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2025 Solar Energy and Sustainable Development Journal

هذا العمل مرخص بموجب Creative Commons Attribution-NonCommercial 4.0 International License.