First-Principles Study of Ge-Doped CH₃NH₃PbI₃ Perovskite:
Optical and Electronic Properties
DOI:
https://doi.org/10.51646/jsesd.v14iSTR2E.799Keywords:
CH₃NH₃PbI₃, Absorption coefficient, Bandgap energy, Density of states, Refractive index.Abstract
This study focuses on the examination of the optical and electronic properties of perovskite structures, with particular emphasis on the effect of germanium ( Ge) doping on these properties. The aim of this study is to explore how doping with Ge can affect its optoelectronic properties and thus optimize its efficiency in applications such as photovoltaic solar cells. We used the code CASTEP from the Materials Studio software to calculate the optical and electronic attributes of perovskite structures , doping the lead (Pb) metal with three different percentages of germanium: 12.5%, 25%, and 37.5%. Pure perovskite has a bandgap energy (Eg) of 1.733 eV. The bandgap energies of the doped materials are 1.57 eV, 1.545 eV, and 1.503 eV, respectively. The pure structure has a maximum absorption coefficient of in the wavelength range of 400 nm to 800 nm. This calculation also studied the effects of Ge doping on the bandgap energy, absorption, total density of states, the real and imaginary components of the dielectric function, as well as the refractive index, the optical conductivity, and the loss function. The computed results align with the experimental findings and provide information on the possibility of modulating the optical properties and electronic of through Ge doping, doping with Ge enhances its optoelectronic properties, particularly its absorption in the visible range, optimizing its efficiency in photovoltaic solar cells. These improvements make Ge-doped promising for renewable energy applications, as well as in light-emitting diodes and laser devices.
Downloads
Metrics
References
S. Bilgen, “Structure and environmental impact of global energy consumption,” Renewable and Sustainable Energy Reviews, vol. 38, pp. 890–902, Oct. 2014, doi: 10.1016/j.rser.2014.07.004. DOI: https://doi.org/10.1016/j.rser.2014.07.004
A. Shukla, V.K. Sharma, S.K. Gupta, A.S. Verma, “Computational determination of the physical-thermoelectric parameters of tin-based organomatallic halide perovskites (CH3NH3SnX3, X = Br and I): Emerging materials for optoelectronic devices”. Materials Chemistry and Physics. 253, 123389 (2020). https://doi.org/10.1016/j.matchemphys.2020.123389 DOI: https://doi.org/10.1016/j.matchemphys.2020.123389
A. Nicolas, J.-L. Barrat, J. Rottler, ‘‘Effects of inertia on the steady-shear rheology of disordered solids,”. Phys. Rev. Lett. 116, 058303 (2016). DOI: https://doi.org/10.1103/PhysRevLett.116.058303
L. Moulaoui, O. Bajjou, Y. Lachtioui, A. Najim, M. Archi, K. Rahmani, B. Manaut, “Modeling of Highly Efficient Lead Free MASnI3 Based Solar Cell with Graphene Oxide as Hole Transport Layer Using SCAPS 1D,” . J. Electron. Mater. 52, 7541–7553 (2023). https://doi.org/10.1007/s11664-023-10684-4 DOI: https://doi.org/10.1007/s11664-023-10684-4
L. Moulaoui, A. Najim, A. Laassouli, M. Archi, A. Bakour, Y. Lachtioui, K. Rahmani, O. Bajjou, B. Manaut, “Theoretical investigations on the electronic and optical properties of Na-doped CH3NH3PbI3 perovskite ‘’. E3S Web of Conferences.469, 00086 (2023). https://doi.org/10.1051/e3sconf/202346900086
Bahadur, A. H. Ghahremani, S. Gupta, T. Druffel, M. K. Sunkara, K. Pal, ‘’Enhanced moisture stability of MAPbI3 perovskite solar cells through Barium doping’’. Solar Energy, 190, 396-404 (2019). https://doi.org/10.1016/j.solener.2019.08.033 DOI: https://doi.org/10.1016/j.solener.2019.08.033
L. Qiu, S. He, J. Yang, F. Jin, J. Deng, H. Sun, X. Cheng, G. Guan, X. Sun, H. Zhaob, H. Peng, ‘’An all-solid-state fiber-type solar cell achieving 9.49% efficiency’’. J. Mater. Chem. A . 4, 10105 (2016). DOI: 10.1039/c6ta03263j DOI: https://doi.org/10.1039/C6TA03263J
J. Lu, S. Chen, H. Wang, L. Qiu, C. Wu, W. Qian, Z. Wang, K. Huang, J. Wu, H. Chen, and Y. Gao, “Replacing the electron-hole transport layer with doping: SCAPS simulation of lead-free germanium-based perovskite solar cells based on CsGeI3,” Solar Energy Mater. Sol. Cells, vol. 271, p. 112883, Apr. 2024, doi: 10.1016/j.solmat.2024.112883. DOI: https://doi.org/10.1016/j.solmat.2024.112883
R. Chiara, M. Morana, and L. Malavasi, “Germanium-based halide perovskites: Materials, properties, and applications,” ChemPlusChem, vol. 86, no. 8, pp. 879–888, 2021, doi: 10.1002/cplu.202100191. DOI: https://doi.org/10.1002/cplu.202100191
I. Diomandé, A. Bouich, A. A. Hyacinthe, B. M. Soucasse, and A. Boko, “Comparative Performance Analysis of MAPbI3 and FAPbI3 Perovskites: Study of Optoelectronic Properties and Stability,” Modeling and Numerical Simulation of Material Science, vol. 13, no. 4, p. 134004, Oct. 2023, doi: 10.4236/mnsms.2023.134004. DOI: https://doi.org/10.4236/mnsms.2023.134004
L. Moulaoui, O. Bajjou, A. Najim, K. Rahmani, A. Marouane, A. Laassouli, Y Lachtioui, B Manaut, ‘’Numerical Simulation of FAPbI3 perovskite based solar cells with graphene oxide as hole transport layer using SCAPS-1D’’, 2023 3rd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET). https://doi.org/10.1109/IRASET57153.2023 DOI: https://doi.org/10.1109/IRASET57153.2023.10153032
P. S.Whitfield, N. Herron, W. E.Guise, K. Page1, Y.Q. Cheng1, I. Milas and M. K. Crawford, ‘’Structures, Phase Transitions and Tricritical Behavior of the Hybrid Perovskite Methyl Ammonium Lead Iodide’’. Scientific Repots 6:35685 (2016). DOI: 10.1038/srep35685. DOI: https://doi.org/10.1038/srep35685
K. Hossain, S. Khanom, F. Israt, M.K. Hossain, M.A. Hossain, F. Ahmed, First-principles study on structural, mechanical and optoelectronic properties of lead-free mixed Ge–Sn hybrid organic-inorganic perovskites. Solid State Communications. 320, 114024 (2020). https://doi.org/10.1016/j.ssc.2020.114024 DOI: https://doi.org/10.1016/j.ssc.2020.114024
Y.Q. Huang, J. Su, Q.F. Li, D. Wang, L.H. Xu, Y. Bai, Structure, optical and electrical properties of CH₃NH₃SnI₃ single crystal. Physica B: Condensed Matter 563, 107–112 (2019). https://doi.org/10.1016/j.physb.2019.03.035. DOI: https://doi.org/10.1016/j.physb.2019.03.035
S.S. Bagade, M.M. Malik, P.K. Patel, The charm of entwining two major competitors CZTS and CH₃NH₃SnI₃ to feasibly explore photovoltaic world beyond Shockley–Queisser limit. Surfaces and Interfaces 46, 104020 (2024). https://doi.org/10.1016/j.surfin.2024.104020. DOI: https://doi.org/10.1016/j.surfin.2024.104020
K. Yan, B. Sun, T. Lu, X.D. Feng, Simulation of MASnI₃-based inverted perovskite solar cells with double hole transport layers and an electron transport layer. Optik 287, 171100 (2023). https://doi.org/10.1016/j.ijleo.2023.171100. DOI: https://doi.org/10.1016/j.ijleo.2023.171100
J.H. Yoo, S.B. Kwon, J. Park, S.H. Choi, H.C. Yoo, B.K. Kang, Y.H. Song, S. Hong, D.H. Yoon, Potential usage of cesium manganese halide for multi-functional optoelectronic devices: Display & photodetector application. Chemical Engineering Journal 479, 147277 (2024). https://doi.org/10.1016/j.cej.2023.147277. DOI: https://doi.org/10.1016/j.cej.2023.147277
J. Chang, G. Wang, Y. Huang, X. Luo, H. Chen, New insights into the electronic structures and optical properties in the orthorhombic perovskite MAPbI₃: a mixture of Pb and Ge/Sn, New J. Chem. 41, 11413–11421 (2017). https://doi.org/10.1039/c7nj01442b. DOI: https://doi.org/10.1039/C7NJ01442B
D. Liu, Q. Li, J. Hu, R. Sa, K. Wu, Photovoltaic Performance of Lead-Less Hybrid Perovskites from Theoretical Study. J. Phys. Chem. C 123, 12638–12646 (2019). https://doi.org/10.1021/acs.jpcc.9b02705. DOI: https://doi.org/10.1021/acs.jpcc.9b02705
Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S.S. Pandey, T. Ma, S. Hayase, CH₃NH₃SnₓPb(1−ₓ)I₃ Perovskite Solar Cells Covering up to 1060 nm. J. Phys. Chem. Lett. 5, 1004–1011 (2014). https://doi.org/10.1021/jz5002117. DOI: https://doi.org/10.1021/jz5002117
G. Niu, W. Li, J. Li, X. Liang, L. Wang, Enhancement of thermal stability for perovskite solar cells through cesium doping. RSC Advances 7, 17473–17479 (2017). https://doi.org/10.1039/C6RA28501E. DOI: https://doi.org/10.1039/C6RA28501E
H. Choi, J. Jeong, H.B. Kim, S. Kim, B. Walker, G.H. Kim, J.Y. Kim, Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy 7, 80–85 (2014). http://dx.doi.org/10.1016/j.nanoen.2014.04.017. DOI: https://doi.org/10.1016/j.nanoen.2014.04.017
S. Nations, T. Jia, S. Wang, Y. Duan, Electronic and optical properties of orthorhombic (CH₃NH₃)BX₃ (B = Sn, Pb; X = F, Cl, Br, I) perovskites: a first-principles investigation. RSC Adv. 11, 22264–22272 (2021). https://doi.org/10.1039/d1ra01586a. DOI: https://doi.org/10.1039/D1RA01586A
H. Arif, M.B. Tahir, M. Sagir, H. Alrobei, M. Alzaid, S. Ullah, M. Hussien, Effect of potassium on the structural, electronic, and optical properties of CsSrF₃ fluoro-perovskite: First-principles computation with GGA-PBE. Optik 259, 168741 (2022). https://doi.org/10.1016/j.ijleo.2022.168741. DOI: https://doi.org/10.1016/j.ijleo.2022.168741
A. Taya, P. Rani, J. Thakur, M.K. Kashyap, First principles study of structural, electronic and optical properties of Cs-doped CH₃NH₃PbI₃ for photovoltaic applications. Vacuum 160, 440–444 (2019). https://doi.org/10.1016/j.vacuum.2018.12.008. DOI: https://doi.org/10.1016/j.vacuum.2018.12.008
L. Moulaoui, A. Najim, A. Laassouli, M. Archi, A. Bakour, Y. Lachtioui, K. Rahmani, O. Bajjou, B. Manaut, Theoretical investigations on the electronic and optical properties of Na-doped CH₃NH₃PbI₃ perovskite. E3S Web of Conferences 469, 00086 (2023). https://doi.org/10.1051/e3sconf/202346900086. DOI: https://doi.org/10.1051/e3sconf/202346900086
A. Laassouli, O. Bajjou, Y. Lachtioui, A. Najim, L. Moulaoui, K. Rahmani, DFT investigation on the electronic and optical properties of Br-doped CH₃NH₃SnI₃ perovskite. 3rd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), Mohammedia, Morocco, May 18-19, June 21 (2023). https://doi.org/10.1109/IRASET57153.2023.10153066. DOI: https://doi.org/10.1109/IRASET57153.2023.10153066
A. Najim, O. Bajjou, L. Moulaoui, A. Laassouli, M. Archi, A. Bakour, Y. Lachtioui, K. Rahmani, Effects of lithium intercalation on the electronic and optical properties of graphene: Density Functional Theory (DFT) computing. 3rd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), Mohammedia, Morocco, May 18-19, June 21 (2023). https://doi.org/10.1109/IRASET57153.2023.10153044. DOI: https://doi.org/10.1109/IRASET57153.2023.10153044
A. Laassouli, L. Moulaoui, A. Najim, H. Errahoui, K. Rahmani, Y. Lachtioui, O. Bajjou, Phosphorus Doping Effects on the Optoelectronic Properties of K₂AgAsBr₆ Double Perovskites for Photovoltaic Applications. Solar Energy and Sustainable Development Journal, 14(SI_MSMS2E), 1–11 (2024). DOI:https://doi.org/10.51646/jsesd.v14iSI_MSMS2E.407. DOI: https://doi.org/10.51646/jsesd.v14iSI_MSMS2E.407
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Solar Energy and Sustainable Development Journal

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.