Comprehensive Analysis of Optoelectronic Properties and Photovoltaic Performance of Rb2CuAsZ6 (Z = Br and Cl) Double Perovskites Using DFT and SCAPS-1D Modelling

Authors

  • Kamal Assiouan Artificial Intelligence and Computational Physics Laboratory, Faculty of Sciences, Abdelmalek Essaadi University, B. P. 2121 M’Hannech II, Tetouan, 93030, Morocco.
  • Hanan Ziani Artificial Intelligence and Computational Physics Laboratory, Faculty of Sciences, Abdelmalek Essaadi University, B. P. 2121 M’Hannech II, Tetouan, 93030, Morocco.
  • Jamal EL Khamkhami Artificial Intelligence and Computational Physics Laboratory, Faculty of Sciences, Abdelmalek Essaadi University, B. P. 2121 M’Hannech II, Tetouan, 93030, Morocco.
  • Abdelfattah Achahbar Artificial Intelligence and Computational Physics Laboratory, Faculty of Sciences, Abdelmalek Essaadi University, B. P. 2121 M’Hannech II, Tetouan, 93030, Morocco. https://orcid.org/0000-0001-8974-8338

DOI:

https://doi.org/10.51646/jsesd.v14iSTR2E.802

Keywords:

Density Functional Theory (DFT), Double Perovskites, Rb2CuAsZ6 (Z = Br, Cl), Optoelectronic properties, solar cells.

Abstract

Rb2CuAsZ6 (Z = Br, Cl) double perovskites were studied for their optoelectronic and photovoltaic properties using a comprehensive density functional theory (DFT) analysis. Using the HSE06 functional for electronic band structure calculations, Rb2CuAsBr6 and Rb2CuAsCl6 exhibit indirect band gaps (Eg) of 0.64 eV and 1.09 eV, respectively. Moreover, the analysis of the optical properties revealed substantial absorption (α) around 105 in both the visible and near-infrared regions, highlighting their suitability for solar cell and optoelectronic applications. Moreover, we utilised the absorber layer Rb2CuAsCl6 to construct an n-i-p structure perovskite and modelled it Using the SCAPS-1d program, this calculation was performed with a thickness of 400 nm of Rb2CuAsCl6, yielding remarkable performance: an open-circuit voltage (Voc) of 0.81 V, a short-circuit current density (Jsc) of 38.33 mA/cm², a fill factor (FF) of 68.65%, and a power conversion efficiency (PCE) of 20.63%.

                           

 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

T.D. Lee, A.U. Ebong, A review of thin film solar cell technologies and challenges, Renewable and Sustainable Energy Reviews 70 (2017) 1286–1297. https://doi.org/10.1016/j.rser.2016.12.028. DOI: https://doi.org/10.1016/j.rser.2016.12.028

G.M. Mustafa, A. Slam, S. Saba, N.A. Noor, M. Waqas Iqbal, A. Dahshan, Optoelectronic and thermoelectric characteristics of halide based double perovskites K2YAgX6 (X = Br, I) for energy storage applications, Polyhedron 229 (2023) 116184. https://doi.org/10.1016/j.poly.2022.116184. DOI: https://doi.org/10.1016/j.poly.2022.116184

A. Augusto, J. Karas, P. Balaji, S.G. Bowden, R.R. King, Exploring the practical efficiency limit of silicon solar cells using thin solar-grade substrates, J. Mater. Chem. A 8 (2020) 16599–16608. https://doi.org/10.1039/D0TA04575F. DOI: https://doi.org/10.1039/D0TA04575F

A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, J. Am. Chem. Soc. 131 (2009) 6050–6051. https://doi.org/10.1021/ja809598r. DOI: https://doi.org/10.1021/ja809598r

H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee, J. Kim, M.J. Paik, Y.K. Kim, K.S. Kim, M.G. Kim, T.J. Shin, S. Il Seok, Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes, Nature 598 (2021) 444–450. https://doi.org/10.1038/s41586-021-03964-8. DOI: https://doi.org/10.1038/s41586-021-03964-8

M.A. Green, E.D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe, G. Siefer, X. Hao, Solar cell efficiency tables (Version 63), Progress in Photovoltaics 32 (2024) 3–13. https://doi.org/10.1002/pip.3750. DOI: https://doi.org/10.1002/pip.3750

B.P. Kore, M. Jamshidi, J.M. Gardner, The impact of moisture on the stability and degradation of perovskites in solar cells, Mater. Adv. 5 (2024) 2200–2217. https://doi.org/10.1039/D3MA00828B. DOI: https://doi.org/10.1039/D3MA00828B

A. Mera, G. Nazir, Q. Mahmood, N.A. Kattan, T. Alshahrani, A. Rehman, H. Sultana, M.A. Amin, H. Elhosiny Ali, The bandgap engineering of double perovskites Cs2CuSbX6 (X = Cl, Br, I) for solar cell and thermoelectric applications, Inorganic Chemistry Communications 148 (2023) 110303. https://doi.org/10.1016/j.inoche.2022.110303. DOI: https://doi.org/10.1016/j.inoche.2022.110303

Q. Mahmood, G.M. Mustafa, N.A. Kattan, T. Alshahrani, N. Sfina, A. Mera, Z. Hussain Shah, H.H. Somaily, S. Alharthi, M.A. Amin, Tunning of band gap of double perovskites halides Rb2CuSbX6 (X = Cl, Br, I) for solar cells and energy harvesting, Materials Science and Engineering: B 286 (2022) 116088. https://doi.org/10.1016/j.mseb.2022.116088. DOI: https://doi.org/10.1016/j.mseb.2022.116088

A.H. Slavney, T. Hu, A.M. Lindenberg, H.I. Karunadasa, A Bismuth-Halide Double Perovskite with Long Carrier Recombination Lifetime for Photovoltaic Applications, J. Am. Chem. Soc. 138 (2016) 2138–2141. https://doi.org/10.1021/jacs.5b13294. DOI: https://doi.org/10.1021/jacs.5b13294

E.T. McClure, M.R. Ball, W. Windl, P.M. Woodward, Cs2 AgBiX6 (X = Br, Cl): New Visible Light Absorbing, Lead-Free Halide Perovskite Semiconductors, Chem. Mater. 28 (2016) 1348–1354. https://doi.org/10.1021/acs.chemmater.5b04231. DOI: https://doi.org/10.1021/acs.chemmater.5b04231

Z. Deng, F. Wei, F. Brivio, Y. Wu, S. Sun, P.D. Bristowe, A.K. Cheetham, Synthesis and Characterization of the Rare-Earth Hybrid Double Perovskites: (CH3 NH3 )2 KGdCl6 and (CH3 NH3 )2 KYCl6, J. Phys. Chem. Lett. 8 (2017) 5015–5020. https://doi.org/10.1021/acs.jpclett.7b02322. DOI: https://doi.org/10.1021/acs.jpclett.7b02322

T. Minemoto, M. Murata, Theoretical analysis on effect of band offsets in perovskite solar cells, Solar Energy Materials and Solar Cells 133 (2015) 8–14. https://doi.org/10.1016/j.solmat.2014.10.036. DOI: https://doi.org/10.1016/j.solmat.2014.10.036

F. Liu, J. Zhu, J. Wei, Y. Li, M. Lv, S. Yang, B. Zhang, J. Yao, S. Dai, Numerical simulation: Toward the design of high-efficiency planar perovskite solar cells, Applied Physics Letters 104 (2014) 253508. https://doi.org/10.1063/1.4885367. DOI: https://doi.org/10.1063/1.4885367

H. Sabbah, Numerical Simulation of 30% Efficient Lead-Free Perovskite CsSnGeI3-Based Solar Cells, Materials 15 (2022) 3229. https://doi.org/10.3390/ma15093229. DOI: https://doi.org/10.3390/ma15093229

M. Burgelman, P. Nollet, S. Degrave, Modelling polycrystalline semiconductor solar cells, Thin Solid Films 361–362 (2000) 527–532. https://doi.org/10.1016/S0040-6090(99)00825-1. DOI: https://doi.org/10.1016/S0040-6090(99)00825-1

K.I. Ferdous Utsho, S.M.G. Mostafa, Md. Tarekuzzaman, M.S.M. Al-Saleem, N.I. Nahid, J.Y. Al-Humaidi, Md. Rasheduzzaman, M.M. Rahman, Md.Z. Hasan, Optimizing Cs2 CuBiBr6 double halide perovskite for solar applications: the role of electron transport layers in SCAPS-1D simulations, RSC Adv. 15 (2025) 2184–2204. https://doi.org/10.1039/D4RA08515A.

K. Shivesh, I. Alam, A.K. Kushwaha, M. Kumar, S.V. Singh, Investigating the theoretical performance of Cs2TiBr6-based perovskite solar cell with La-doped BaSnO3 and CuSbS2 as the charge transport layers, Intl J of Energy Research 46 (2022) 6045–6064. https://doi.org/10.1002/er.7546. DOI: https://doi.org/10.1002/er.7546

M. Mehrabian, M. Taleb-Abbasi, O. Akhavan, Effects of electron transport layer type on the performance of Pb-free Cs2AgBiBr6 double perovskites: a SCAPS-1D solar simulator–based study, Environ Sci Pollut Res 30 (2023) 118754–118763. https://doi.org/10.1007/s11356-023-30732-0. DOI: https://doi.org/10.1007/s11356-023-30732-0

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. De Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter 21 (2009) 395502. https://doi.org/10.1088/0953-8984/21/39/395502. DOI: https://doi.org/10.1088/0953-8984/21/39/395502

D. Goldfarb, A family of variable-metric methods derived by variational means, Math. Comp. 24 (1970) 23–26. https://doi.org/10.1090/S0025-5718-1970-0258249-6. DOI: https://doi.org/10.1090/S0025-5718-1970-0258249-6

D.F. Shanno, Conditioning of quasi-Newton methods for function minimization, Math. Comp. 24 (1970) 647–656. https://doi.org/10.1090/S0025-5718-1970-0274029-X. DOI: https://doi.org/10.1090/S0025-5718-1970-0274029-X

J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865. DOI: https://doi.org/10.1103/PhysRevLett.77.3865

J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46 (1992) 6671–6687. https://doi.org/10.1103/PhysRevB.46.6671. DOI: https://doi.org/10.1103/PhysRevB.46.6671

A. Marini, C. Hogan, M. Grüning, D. Varsano, yambo: An ab initio tool for excited state calculations, Computer Physics Communications 180 (2009) 1392–1403. https://doi.org/10.1016/j.cpc.2009.02.003. DOI: https://doi.org/10.1016/j.cpc.2009.02.003

H. El-assib, M. Alla, S. Tourougui, M. Alla, F. Elfatouaki, S.A. Dar, A. Chauhan, Naima, N. Chawki, N. Shrivastav, V. Manjunath, M. Rouchdi, B. Fares, High-performance optimization and analysis of Cs₂CuSbCl₆-Based lead-free double perovskite solar cells with theoretical efficiency exceeding 27 %, Renewable Energy 239 (2025) 122092. https://doi.org/10.1016/j.renene.2024.122092. DOI: https://doi.org/10.1016/j.renene.2024.122092

V.M. Goldschmidt, Die Gesetze der Krystallochemie, Naturwissenschaften 14 (1926) 477–485. https://doi.org/10.1007/BF01507527. DOI: https://doi.org/10.1007/BF01507527

S.M. Alqahtani, A.Q. Alsayoud, F.H. Alharbi, Structures, band gaps, and formation energies of highly stable phases of inorganic ABX3 halides: A = Li, Na, K, Rb, Cs, Tl; B = Be, Mg, Ca, Ge, Sr, Sn, Pb; and X = F, Cl, Br, I, RSC Adv. 13 (2023) 9026–9032. https://doi.org/10.1039/D3RA00185G. DOI: https://doi.org/10.1039/D3RA00185G

W. Li, Z. Wang, X. Xiao, Z. Zhang, A. Janotti, S. Rajasekaran, B. Medasani, Predicting band gaps and band-edge positions of oxide perovskites using density functional theory and machine learning, Phys. Rev. B 106 (2022) 155156. https://doi.org/10.1103/PhysRevB.106.155156. DOI: https://doi.org/10.1103/PhysRevB.106.155156

Md.H. Miah, M.U. Khandaker, Md.B. Rahman, M. Nur-E-Alam, M.A. Islam, Band gap tuning of perovskite solar cells for enhancing the efficiency and stability: issues and prospects, RSC Adv. 14 (2024) 15876–15906. https://doi.org/10.1039/D4RA01640H. DOI: https://doi.org/10.1039/D4RA01640H

S. Zhao, K. Yamamoto, S. Iikubo, S. Hayase, T. Ma, First-principles study of electronic and optical properties of lead-free double perovskites Cs2NaBX6 (B = Sb, Bi; X = Cl, Br, I), Journal of Physics and Chemistry of Solids 117 (2018) 117–121. https://doi.org/10.1016/j.jpcs.2018.02.032. DOI: https://doi.org/10.1016/j.jpcs.2018.02.032

S. Ghosh, H. Shankar, P. Kar, Recent developments of lead-free halide double perovskites: a new superstar in the optoelectronic field, Mater. Adv. 3 (2022) 3742–3765. https://doi.org/10.1039/D2MA00071G. DOI: https://doi.org/10.1039/D2MA00071G

V. Deswal, S. Kaushik, R. Kundara, S. Baghel, Numerical simulation of highly efficient Cs2AgInBr6-based double perovskite solar cell using SCAPS 1-D, Materials Science and Engineering: B 299 (2024) 117041. https://doi.org/10.1016/j.mseb.2023.117041. DOI: https://doi.org/10.1016/j.mseb.2023.117041

G. Pindolia, S.M. Shinde, P.K. Jha, Optimization of an inorganic lead free RbGeI3 based perovskite solar cell by SCAPS-1D simulation, Solar Energy 236 (2022) 802–821. https://doi.org/10.1016/j.solener.2022.03.053. DOI: https://doi.org/10.1016/j.solener.2022.03.053

B.K. Ravidas, M.K. Roy, D.P. Samajdar, Investigation of photovoltaic performance of lead-free CsSnI3-based perovskite solar cell with different hole transport layers: First Principle Calculations and SCAPS-1D Analysis, Solar Energy 249 (2023) 163–173. https://doi.org/10.1016/j.solener.2022.11.025. DOI: https://doi.org/10.1016/j.solener.2022.11.025

A. Amjad, S. Qamar, C. Zhao, K. Fatima, M. Sultan, Z. Akhter, Numerical simulation of lead-free vacancy ordered Cs2 PtI6 based perovskite solar cell using SCAPS-1D, RSC Adv. 13 (2023) 23211–23222. https://doi.org/10.1039/D3RA04176J. DOI: https://doi.org/10.1039/D3RA04176J

W. Gao, C. Ran, J. Xi, B. Jiao, W. Zhang, M. Wu, X. Hou, Z. Wu, High‐Quality Cs2 AgBiBr6 Double Perovskite Film for Lead‐Free Inverted Planar Heterojunction Solar Cells with 2.2 % Efficiency, ChemPhysChem 19 (2018) 1696–1700. https://doi.org/10.1002/cphc.201800346. DOI: https://doi.org/10.1002/cphc.201800346

Z. Zhang, Q. Sun, Y. Lu, F. Lu, X. Mu, S.-H. Wei, M. Sui, Hydrogenated Cs2AgBiBr6 for significantly improved efficiency of lead-free inorganic double perovskite solar cell, Nat Commun 13 (2022) 3397. https://doi.org/10.1038/s41467-022-31016-w. DOI: https://doi.org/10.1038/s41467-022-31016-w

M.K. Hossain, A.A. Arnab, R.C. Das, K.M. Hossain, M.H.K. Rubel, Md.F. Rahman, H. Bencherif, M.E. Emetere, M.K.A. Mohammed, R. Pandey, Combined DFT, SCAPS-1D, and wxAMPS frameworks for design optimization of efficient Cs2 BiAgI6 -based perovskite solar cells with different charge transport layers, RSC Adv. 12 (2022) 34850–34873. https://doi.org/10.1039/D2RA06734J. DOI: https://doi.org/10.1039/D2RA06734J

M.U. Alam, Md.K.I. Shifat, J.K. Modak, Md. Tarekuzzaman, Md.I. Haque, Md. Rasheduzzaman, M.A. Qader, R. Islam, Y. Arafat, Md.Z. Hasan, Improving the efficiency and performance of Rb2SnI6-based perovskite solar cells through comprehensive optimization: a numerical study, J Comput Electron 24 (2025) 41. https://doi.org/10.1007/s10825-024-02276-0. DOI: https://doi.org/10.1007/s10825-024-02276-0

K.I. Ferdous Utsho, S.M.G. Mostafa, Md. Tarekuzzaman, M.S.M. Al-Saleem, N.I. Nahid, J.Y. Al-Humaidi, Md. Rasheduzzaman, M.M. Rahman, Md.Z. Hasan, Optimizing Cs2 CuBiBr6 double halide perovskite for solar applications: the role of electron transport layers in SCAPS-1D simulations, RSC Adv. 15 (2025) 2184–2204. https://doi.org/10.1039/D4RA08515A. DOI: https://doi.org/10.1039/D4RA08515A

Downloads

Published

2025-09-26

How to Cite

Assiouan, K., Ziani, H., EL Khamkhami, J. ., & Achahbar, A. (2025). Comprehensive Analysis of Optoelectronic Properties and Photovoltaic Performance of Rb2CuAsZ6 (Z = Br and Cl) Double Perovskites Using DFT and SCAPS-1D Modelling. Solar Energy and Sustainable Development Journal, 14(STR2E), 91–104. https://doi.org/10.51646/jsesd.v14iSTR2E.802

Issue

Section

SI-STR2E