Impact of Thermal Insulation on Vehicle Cabin Heat Loads and Energy Use

المؤلفون

  • Hasnaa Oubnaki IMMI Laboratory, Faculty of sciences and techniques, Hassan 1st University Settat, Morocco.
  • Charifa Haouraji IMMI Laboratory, Faculty of sciences and techniques, Hassan 1st University Settat, Morocco.
  • Ilham Mounir LAPSSII Laboratory, Graduate School of Thechnology, Safi, Morocco.
  • Badia Mounir LAPSSII Laboratory, Graduate School of Thechnology, Safi, Morocco. https://orcid.org/0000-0002-2430-5752
  • Abdelmajid Farchi LAPSSII Laboratory, Graduate School of Thechnology, Safi, Morocco.

DOI:

https://doi.org/10.51646/jsesd.v14iSTR2E.803

الكلمات المفتاحية:

Automobile cabin، CFD، Energy، Thermal insulation، Optimization.

الملخص

A car's passenger cabin's heating, ventilation, and air conditioning system is the biggest auxiliary charge, other than the primary traction charge. It may cause a vehicle with a motor to increase its energy consumption by up to 25%. The main factor contributing to the passenger compartment's excessive warmth is the car's exposure to maximum sun radiation.

The goal of this study is to predict the thermal loads of the studied vehicle. Indeed, energy-saving measures such as using various types of insulating and storing materials have been implemented in this paper to predict their impact on the vehicle's interior thermal loads. The inside fluid domain of a cabin was modeled and simulated using CATIA and FLUENT to investigate the temperature drop in the car's cabin based on their thermal characteristics. Computational Fluid Dynamics (CFD) simulations were used Using a vehicle cabin CFD model that was verified by climatic measurements, simulation information covering the full range of boundary conditions that affect thermal loads was methodically generated. The results strongly supported the CFD study, highlighting its effectiveness in analyzing the key parameters impacting the internal thermal loads. They reveal that aerogel polymers are distinguished by a significantly superior insulating capacity, reducing energy consumption by up to 40% compared to existing materials. These findings pave the way for adopting highly economical and well-optimized vehicles.

التنزيلات

بيانات التنزيل غير متوفرة بعد.

المقاييس

يتم تحميل المقاييس...

المراجع

R. K. Shah, “Automotive Air-Conditioning Systems—Historical Developments, the State of Technology, and Future Trends,” Heat Transf. Eng., vol. 30, no. 9, pp. 720–735, Aug. 2009, doi: 10.1080/01457630802678193. DOI: https://doi.org/10.1080/01457630802678193

V. H. Johnson, “Fuel Used for Vehicle Air Conditioning: A State-by-State Thermal Comfort-Based Approach,” presented at the Future Car Congress, Jun. 2002, pp. 2002-01–1957. doi: 10.4271/2002-01-1957. DOI: https://doi.org/10.4271/2002-01-1957

P. Lenzuni, P. Capone, D. Freda, and M. Del Gaudio, “Is driving in a hot vehicle safe?,” Int. J. Hyperthermia, vol. 30, no. 4, pp. 250–257, Jun. 2014, doi: 10.3109/02656736.2014.922222. DOI: https://doi.org/10.3109/02656736.2014.922222

K. R. Kambly and T. H. Bradley, “Estimating the HVAC energy consumption of plug-in electric vehicles,” J. Power Sources, vol. 259, pp. 117–124, Aug. 2014, doi: 10.1016/j.jpowsour.2014.02.033. DOI: https://doi.org/10.1016/j.jpowsour.2014.02.033

Hariharan. C, Sanjana. S, Saravanan. S, S. Sundar. S, A. Prakash. S, and A. A. Raj. V, “CFD studies for energy conservation in the HVAC system of a hatchback model passenger car,” Energy Sources Part Recovery Util. Environ. Eff., vol. 45, no. 2, pp. 4724–4741, Jun. 2023, doi: 10.1080/15567036.2019.1670757. DOI: https://doi.org/10.1080/15567036.2019.1670757

Z.-K. Ding, Q.-M. Fu, J.-P. Chen, H.-J. Wu, Y. Lu, and F.-Y. Hu, “Energy-efficient control of thermal comfort in multi-zone residential HVAC via reinforcement learning,” Connect. Sci., vol. 34, no. 1, pp. 2364–2394, Dec. 2022, doi: 10.1080/09540091.2022.2120598. DOI: https://doi.org/10.1080/09540091.2022.2120598

F. Kader, M. A. Jinnah, and K.-B. Lee, “THE EFFECT OF SOLAR RADIATION ON AUTOMOBILE ENVIRONMENT THROUGH NATURAL CONVECTION AND MIXED CONVECTION,” vol. 7, 2012, doi: 7(5):589-600.

A. Alahmer, A. Mayyas, A. A. Mayyas, M. A. Omar, and D. Shan, “Vehicular thermal comfort models; a comprehensive review,” Appl. Therm. Eng., vol. 31, no. 6–7, pp. 995–1002, May 2011, doi: 10.1016/j.applthermaleng.2010.12.004. DOI: https://doi.org/10.1016/j.applthermaleng.2010.12.004

R. B. Farrington, J. P. Rugh, and G. D. Barber, “Effect of Solar-Reflective Glazing on Fuel Economy, Tailpipe Emissions, and Thermal Comfort,” presented at the International Body Engineering Conference & Exposition, Oct. 2000, pp. 2000-01–2694. doi: 10.4271/2000-01-2694. DOI: https://doi.org/10.4271/2000-01-2694

C. Croitoru, I. Nastase, F. Bode, A. Meslem, and A. Dogeanu, “Thermal comfort models for indoor spaces and vehicles—Current capabilities and future perspectives,” Renew. Sustain. Energy Rev., vol. 44, pp. 304–318, Apr. 2015, doi: 10.1016/j.rser.2014.10.105. DOI: https://doi.org/10.1016/j.rser.2014.10.105

J. W. Lee, E. Y. Jang, S. H. Lee, H. S. Ryou, S. Choi, and Y. Kim, “Influence of the spectral solar radiation on the air flow and temperature distributions in a passenger compartment,” Int. J. Therm. Sci., vol. 75, pp. 36–44, Jan. 2014, doi: 10.1016/j.ijthermalsci.2013.07.018. DOI: https://doi.org/10.1016/j.ijthermalsci.2013.07.018

W. Huo, Y. Cheng, Y. Jia, and C. Guo, “Research on the thermal comfort of passenger compartment based on the PMV/PPD,” Int. J. Therm. Sci., vol. 184, p. 107876, Feb. 2023, doi: 10.1016/j.ijthermalsci.2022.107876. DOI: https://doi.org/10.1016/j.ijthermalsci.2022.107876

H. Krishnaswamy, S. Muthukrishnan, S. Thanikodi, G. A. Arockiaraj, and V. Venkatraman, “Investigation of air conditioning temperature variation by modifying the structure of passenger car using computational fluid dynamics,” Therm. Sci., vol. 24, no. 1 Part B, pp. 495–498, 2020, doi: 10.2298/TSCI190409397K. DOI: https://doi.org/10.2298/TSCI190409397K

I. Nastase, P. Danca, F. Bode, C. Croitoru, L. Fechete, M. Sandu, & C. I. Coşoiu, “A regard on the thermal comfort theories from the standpoint of Electric Vehicle design — Review and perspectives,” Energy Rep., vol. 8, pp. 10501–10517, Nov. 2022, doi: 10.1016/j.egyr.2022.08.186. DOI: https://doi.org/10.1016/j.egyr.2022.08.186

A. Warey, S. Kaushik, B. Khalighi, M. Cruse, and G. Venkatesan, “Data-driven prediction of vehicle cabin thermal comfort: using machine learning and high-fidelity simulation results,” Int. J. Heat Mass Transf., vol. 148, p. 119083, Feb. 2020, doi: 10.1016/j.ijheatmasstransfer.2019.119083. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2019.119083

P. Bandi, N. P. Manelil, M. P. Maiya, S. Tiwari, and T. Arunvel, “CFD driven prediction of mean radiant temperature inside an automobile cabin using machine learning,” Therm. Sci. Eng. Prog., vol. 37, p. 101619, Jan. 2023, doi: 10.1016/j.tsep.2022.101619. DOI: https://doi.org/10.1016/j.tsep.2022.101619

A. A. G. Maia, D. F. Cavalca, J. T. Tomita, F. P. Costa, and C. Bringhenti, “Evaluation of an effective and robust implicit time-integration numerical scheme for Navier-Stokes equations in a CFD solver for compressible flows,” Appl. Math. Comput., vol. 413, p. 126612, Jan. 2022, doi: 10.1016/j.amc.2021.126612. DOI: https://doi.org/10.1016/j.amc.2021.126612

Tadili (R.) and M. n. Bargach, “Une méthode d’estimation du rayonnement solaire global reçu par une surface inclinée : Application aux sites marocains,” La Météorologie, vol. 8, no. 50, p. 46, 2005, doi: 10.4267/2042/34823. DOI: https://doi.org/10.4267/2042/34823

التنزيلات

منشور

2025-09-26

كيفية الاقتباس

Oubnaki , H., Haouraji , C., Mounir, I., Mounir, B., & Farchi, A. . (2025). Impact of Thermal Insulation on Vehicle Cabin Heat Loads and Energy Use. Solar Energy and Sustainable Development Journal, 14(STR2E), 105–113. https://doi.org/10.51646/jsesd.v14iSTR2E.803

إصدار

القسم

SI-STR2E