Analysis of the Thermal Response of a Floor Heating System Incorporating a Phase Change Material

Authors

  • Afaf Charraou Laboratory of Advanced Materials Studies and Applications, FS-EST, Moulay Ismail University, BP 11201, Meknes, Morocco. https://orcid.org/0000-0002-5964-2302
  • Mohamed Errebii Advanced Materials and Thermal Physics Laboratory (LPMAT), FS Ain Chock, Hassan II University of Casablanca, 20100, Morocco. https://orcid.org/0009-0001-2212-7606
  • Amina Mourid Laboratory of Advanced Materials Studies and Applications, FS-EST, Moulay Ismail University, BP 11201, Meknes, Morocco.
  • Rachid Saadani Laboratory of Advanced Materials Studies and Applications, FS-EST, Moulay Ismail University, BP 11201, Meknes, Morocco. https://orcid.org/0000-0002-3558-1103
  • Miloud Rahmoune Laboratory of Advanced Materials Studies and Applications, FS-EST, Moulay Ismail University, BP 11201, Meknes, Morocco.
  • Mustapha El Alami Advanced Materials and Thermal Physics Laboratory (LPMAT), FS Ain Chock, Hassan II University of Casablanca, 20100, Morocco. https://orcid.org/0000-0001-5020-9388

DOI:

https://doi.org/10.51646/jsesd.v14iSTR2E.895

Keywords:

Floor heating system, Latent storage, Phase Change Materials (PCM), Parametric analysis, Energy storage.

Abstract

The rapid urbanization and the increasing demand for indoor comfort have resulted in a rise in energy consumption and a negative impact on the environment within the building sector. A promising approach to improving energy efficiency is the integration of phase change materials (PCM) into underfloor heating systems. This study aims to assess the impact of PCM integration on the thermal and energy performance of a hydronic floor heating system. To achieve this objective, a two-dimensional numerical model was developed using COMSOL Multiphysics software. The finite element method, combined with the effective heat capacity approach, was employed to accurately simulate the thermal behavior of the system. The influence of several parameters, such as PCM type, thickness, and position within the floor structure, was analyzed to optimize system performance. The results reveal that integrating a 3 cm thick salt hydrate-based PCM, with a water supply temperature of 40 °C, significantly improves the thermal inertia of the floor. This configuration ensures a comfortable temperature (~27 °C) even after the heating system is turned off, with a time lag of 17 hours compared to a floor heating system without PCM. These findings highlight the potential of PCM in underfloor heating systems, offering an effective solution to reduce energy consumption in buildings while maintaining optimal thermal comfort.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

P. Nejat, F. Jomehzadeh, M. M. Taheri, M. Gohari, and M. Z. Abd. Majid, « A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO 2 emitting countries) », Renewable and Sustainable Energy Reviews, vol. 43, p. 843‑862, mars 2015, doi: 10.1016/j.rser.2014.11.066. DOI: https://doi.org/10.1016/j.rser.2014.11.066

P. Jaffar Abass and S. Muthulingam, « Comprehensive assessment of PCM integrated roof for passive building design: A study in energo-economics », Energy and Buildings, vol. 317, p. 114387, août 2024, doi: 10.1016/j.enbuild.2024.114387. DOI: https://doi.org/10.1016/j.enbuild.2024.114387

K. Jiao, L. Lu, L. Zhao, and G. Wang, « Towards Passive Building Thermal Regulation: A State-of-the-Art Review on Recent Progress of PCM-Integrated Building Envelopes », Sustainability, vol. 16, no 15, p. 6482, juill. 2024, doi: 10.3390/su16156482. DOI: https://doi.org/10.3390/su16156482

P. Devaux and M. M. Farid, « Benefits of PCM underfloor heating with PCM wallboards for space heating in winter », Applied Energy, vol. 191, p. 593‑602, avr. 2017, doi: 10.1016/j.apenergy.2017.01.060. DOI: https://doi.org/10.1016/j.apenergy.2017.01.060

S. Lu, Y. Zhao, K. Fang, Y. Li, and P. Sun, « Establishment and experimental verification of TRNSYS model for PCM floor coupled with solar water heating system », Energy and Buildings, vol. 140, p. 245‑260, avr. 2017, doi: 10.1016/j.enbuild.2017.02.018. DOI: https://doi.org/10.1016/j.enbuild.2017.02.018

H. Ju, X. Li, C. Chang, W. Zhou, G. Wang, and C. Tong, « Heating performance of PCM radiant floor coupled with horizontal ground source heat pump for single-family house in cold zones », Renewable Energy, vol. 235, p. 121306, nov. 2024, doi: 10.1016/j.renene.2024.121306. DOI: https://doi.org/10.1016/j.renene.2024.121306

B. Y. Yun, S. Yang, H. M. Cho, S. J. Chang, and S. Kim, « Design and analysis of phase change material based floor heating system for thermal energy storage », Environmental Research, vol. 173, p. 480‑488, juin 2019, doi: 10.1016/j.envres.2019.03.049. DOI: https://doi.org/10.1016/j.envres.2019.03.049

W. Cheng, B. Xie, R. Zhang, Z. Xu, and Y. Xia, « Effect of thermal conductivities of shape stabilized PCM on under-floor heating system », Applied Energy, vol. 144, p. 10‑18, avr. 2015, doi: 10.1016/j.apenergy.2015.01.055. DOI: https://doi.org/10.1016/j.apenergy.2015.01.055

K. Huang, G. Feng, and J. Zhang, « Experimental and numerical study on phase change material floor in solar water heating system with a new design », Solar Energy, vol. 105, p. 126‑138, juill. 2014, doi: 10.1016/j.solener.2014.03.009. DOI: https://doi.org/10.1016/j.solener.2014.03.009

Q. Zhang, Z. Yang, and G. Wang, « Numerical and experimental investigation on dynamic thermal performance of floor heating system with phase change material for thermal storage », Indoor and Built Environment, vol. 30, no 5, p. 621‑634, juin 2021, doi: 10.1177/1420326X19900535. DOI: https://doi.org/10.1177/1420326X19900535

T. Jiang, C. Zheng, S. You, H. Zhang, Z. Wu, Y. Wang, and S. Wei « Experimental and numerical study on the heat transfer performance of the radiant floor heating condenser with composite phase change material », Applied Thermal Engineering, vol. 213, p. 118749, août 2022, doi: 10.1016/j.applthermaleng.2022.118749. DOI: https://doi.org/10.1016/j.applthermaleng.2022.118749

B. Larwa, S. Cesari, and M. Bottarelli, « Study on thermal performance of a PCM enhanced hydronic radiant floor heating system », Energy, vol. 225, p. 120245, juin 2021, doi: 10.1016/j.energy.2021.120245. DOI: https://doi.org/10.1016/j.energy.2021.120245

M. T. Plytaria, C. Tzivanidis, E. Bellos, and K. A. Antonopoulos, « Parametric analysis and optimization of an underfloor solar assisted heating system with phase change materials », Thermal Science and Engineering Progress, vol. 10, p. 59‑72, mai 2019, doi: 10.1016/j.tsep.2019.01.010. DOI: https://doi.org/10.1016/j.tsep.2019.01.010

B. González and M. M. Prieto, « Radiant heating floors with PCM bands for thermal energy storage: A numerical analysis », International Journal of Thermal Sciences, vol. 162, p. 106803, avr. 2021, doi: 10.1016/j.ijthermalsci.2020.106803. DOI: https://doi.org/10.1016/j.ijthermalsci.2020.106803

Z. Kang, R. Tan, Q. Yao, J. Zhang, S. Zhang, and Y. Wei, « Numerical simulation of energy storage radiant floor heating systems with phase change materials having different thermophysical properties », Construction and Building Materials, vol. 463, p. 140010, févr. 2025, doi: 10.1016/j.conbuildmat.2025.140010. DOI: https://doi.org/10.1016/j.conbuildmat.2025.140010

Q. Yu, B. Sun, C. Li, F. Yan, and Y. Li, « Analysis of heat charging and release processes in cascade phase change materials energy storage floor heating systems: Performance evaluation », Journal of Energy Storage, vol. 78, p. 110020, févr. 2024, doi: 10.1016/j.est.2023.110020. DOI: https://doi.org/10.1016/j.est.2023.110020

A. Charraou, S. Oubenmoh, A. Mourid, R. Saadani, M. Rahmoune, and M. El Alami, « Experimental assessment and 3D numerical simulation of the thermal performance of a direct solar floor heating system installed in a bathroom in Casablanca city, Morocco: parametric, economic, and environmental analysis », J Build Rehabil, vol. 9, no 1, p. 78, juin 2024, doi: 10.1007/s41024-024-00408-4. DOI: https://doi.org/10.1007/s41024-024-00408-4

R. W. Pryor, Multiphysics Modeling Using COMSOL: A First Principles Approach. Jones & Bartlett Publishers, 2009. ISBN: 978-0-7637-9233-6.

S. A. Prakash, C. Hariharan, R. Arivazhagan, R. Sheeja, V. A. A. Raj, and R. Velraj, « Review on numerical algorithms for melting and solidification studies and their implementation in general purpose computational fluid dynamic software », Journal of Energy Storage, vol. 36, p. 102341, avr. 2021, doi: 10.1016/j.est.2021.102341. DOI: https://doi.org/10.1016/j.est.2021.102341

S. Lu, J. Gao, H. Tong, S. Yin, X. Tang, and X. Jiang, « Model establishment and operation optimization of the casing PCM radiant floor heating system », Energy, vol. 193, p. 116814, févr. 2020, doi: 10.1016/j.energy.2019.116814. DOI: https://doi.org/10.1016/j.energy.2019.116814

O. Babaharra, K. Choukairy, S. Hamdaoui, K. Khallaki, and S. Hayani Mounir, « Thermal behavior evaluation of a radiant floor heating system incorporates a microencapsulated phase change material », Construction and Building Materials, vol. 330, p. 127293, mai 2022, doi: 10.1016/j.conbuildmat.2022.127293. DOI: https://doi.org/10.1016/j.conbuildmat.2022.127293

H. Nazir, M. Batool, F.J. Bolivar Osorio, M. Isaza-Ruiz, Z. Xu, K. Vignarooban, P. Phelan, Inamuddin and A.M K.a.n.n.a.n, « Recent developments in phase change materials for energy storage applications: A review », International Journal of Heat and Mass Transfer, vol. 129, p. 491‑523, févr. 2019, doi: 10.1016/j.ijheatmasstransfer.2018.09.126. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.126

Ashish Kumar Shrivastava, T Ravi Kiran, and Anil Singh Yadav, ‘Enhancement of Productivity and Economic Analysis of Tubular Solar Still with Acrylic Cover Material’, jsesd, vol. 14, no. 1, pp. 131–140, Feb. 2025, doi: 10.51646/jsesd.v14i1.359. DOI: https://doi.org/10.51646/jsesd.v14i1.359

Downloads

Published

2025-09-26

How to Cite

Charraou, A. ., Errebii, M., Mourid, A., Saadani, R., Miloud, M., & Mustapha, M. (2025). Analysis of the Thermal Response of a Floor Heating System Incorporating a Phase Change Material. Solar Energy and Sustainable Development Journal, 14(STR2E), 123–133. https://doi.org/10.51646/jsesd.v14iSTR2E.895

Issue

Section

SI-STR2E

Similar Articles

You may also start an advanced similarity search for this article.