Environmental Stability Evaluation of Aluminium Doped Zinc Oxide (AZO) Transparent Electrodes Deposited at Low Temperature for Solar cells

Authors

  • S. O. Elhamali Electrical and Computer Engineering Department, Faculty of Engineering, AlAsmarya Islamic University, Zliten, Libya
  • M. N. Akhil Electrical and Computer Engineering Department, Faculty of Engineering, AlAsmarya Islamic University, Zliten, Libya
  • K. M. Abusabee Electrical and Computer Engineering Department, Faculty of Engineering, El-Mergib University, Al-Khums, Libya
  • N. Kalfagiannis School of Science and Technology, Nottingham Trent University, Cliftn Lane, Nottingham NG11 8NS, UK
  • D. C. Koutsogeorgis School of Science and Technology, Nottingham Trent University, Cliftn Lane, Nottingham NG11 8NS, UK

Keywords:

JAZO electrodes , RF-sputtering , Electrical properties , IEC 61646 test , Environmental stability

Abstract

The degradation of transparent electrodes’ electrical conductivity under environmental conditions is considered as a major failure mode for solar cells’ long-term efficiency. In this paper, AZO thin films were subjected to the International Electrotechnical Commission (IEC) 61646 test to examine their environmental stability and suitability as front electrodes for solar cells. To explore the interplay between AZO deposition parameters and environmental stability, AZO films were deposited by radio frequency magnetron sputtering at different parameters and without external heating. The conductivity stability evolution upon the test
was investigated via studying the AZO electrical, structural, and morphological characteristics at different deposition conditions. A direct dependence was identified between the samples’ conductivity degradation rates and the samples’ structural and morphological characteristics including grain size, grain boundary density, surface roughness, and compactness. The samples’ resistivity increases linearly over the test period due to both electron density and mobility degradations. Improved stability was observed for thicker AZO samples (360 nm) originating from enhanced grain size, surface profile, and compactness. These samples
maintained solar cells' applicable sheet resistance of 21.24 Ω/sq (ρ=7.64×10-4 Ω.cm) following the test. The conducted aging studies demonstrated that manipulating the AZO films growth process via optimizing the deposition parameters is an effective pathway for low-temperature deposited electrodes with enhanced environmental stability

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

. M.A. Green, Thn-fim solar cells: Review of materials, technologies and commercial status, in: J. Mater. Sci. Mater.

Electron., 2007. https://doi.org/10.1007/s10854-007-9177-9. DOI: https://doi.org/10.1007/s10854-007-9177-9

. Transparent conductive zinc oxide: basics and applications in thin fim solar cells, Choice Rev. Online. 45 (2008). https://doi.org/10.5860/choice.45-6197. DOI: https://doi.org/10.5860/CHOICE.45-6197

. K. Ellmer, Past achievements and future challenges in the development of optically transparent electrodes, Nat. Photonics. 6 (2012). https://doi.org/10.1038/nphoton.2012.282. DOI: https://doi.org/10.1038/nphoton.2012.282

. K. Ellmer, Resistivity of polycrystalline zinc oxide fims: Current status and physical limit, J. Phys. D. Appl. Phys. 34

(2001). https://doi.org/10.1088/0022-3727/34/21/301. DOI: https://doi.org/10.1088/0022-3727/34/21/301

. T. Minami, H. Sato, K. Ohashi, T. Tomofuji, S. Takata, Conduction mechanism of highly conductive and transparent

zinc oxide thin fims prepared by magnetron sputtering, J. Cryst. Growth. 117 (1992). https://doi.org/10.1016/0022-

(92)90778-H.

. S.O. El Hamali, W.M. Cranton, N. Kalfagiannis, X. Hou, R. Ranson, D.C. Koutsogeorgis, Enhanced electrical and optical properties of room temperature deposited Aluminium doped Zinc Oxide (AZO) thin films by excimer laser annealing, Opt. Lasers Eng. 80 (2016). https://doi.org/10.1016/j.optlaseng.2015.12.010. DOI: https://doi.org/10.1016/j.optlaseng.2015.12.010

. D. Scorticati, A. Illiberi, T.C. Bor, S.W.H. Eijt, H. Schut, G.R.B.E. Römer, M. Klein Gunnewiek, A.T.M. Lenferink, B.J.

Kniknie, R. Mary Joy, M.S. Dorenkamper, D.F. De Lange, C. Otto, D. Borsa, W.J. Soppe, A.J. Huis In ’t Veld, Thermal

annealing using ultra-short laser pulses to improve the electrical properties of Al:ZnO thin films, Acta Mater. 98 (2015). https://doi.org/10.1016/j.actamat.2015.07.047. DOI: https://doi.org/10.1016/j.actamat.2015.07.047

. Q. Nian, M.Y. Zhang, B.D. Schwartz, G.J. Cheng, Ultraviolet laser crystallized ZnO:Al fims on sapphire with high Hall mobility for simultaneous enhancement of conductivity and transparency, Appl. Phys. Lett. 104 (2014). https://doi. org/10.1063/1.4879643. DOI: https://doi.org/10.1063/1.4879643

. B. Ayachi, T. Aviles, J.P. Vilcot, C. Sion, Rapid thermal annealing effct on the spatial resistivity distribution of AZO thin films deposited by pulsed-direct-current sputtering for solar cells applications, Appl. Surf. Sci. 366 (2016). https://doi.org/10.1016/j.apsusc.2016.01.054. DOI: https://doi.org/10.1016/j.apsusc.2016.01.054

. S. Tabassum, E. Yamasue, H. Okumura, K.N. Ishihara, Electrical stability of Al-doped ZnO transparent electrode

prepared by sol-gel method, Appl. Surf. Sci. 377 (2016). https://doi.org/10.1016/j.apsusc.2016.03.133. DOI: https://doi.org/10.1016/j.apsusc.2016.03.133

. M. Thelen, T. Boumans, F. Stegeman, F. Colberts, A. Illiberi, J. Van Berkum, N. Barreau, Z. Vroon, M. Zeman, Physical and chemical degradation behavior of sputtered aluminum doped zinc oxide layers for Cu(In,Ga)Se2 solar cells, The Solid Films. 550 (2014). https://doi.org/10.1016/j.tsf.2013.10.149. DOI: https://doi.org/10.1016/j.tsf.2013.10.149

. J.I. Kim, W. Lee, T. Hwang, J. Kim, S.Y. Lee, S. Kang, H. Choi, S. Hong, H.H. Park, T. Moon, B. Park, Quantitative

analyses of damp-heat-induced degradation in transparent conducting oxides, Sol. Energy Mater. Sol. Cells. 122

(2014). https://doi.org/10.1016/j.solmat.2013.12.014. DOI: https://doi.org/10.1016/j.solmat.2013.12.014

. J. Hüpkes, J.I. Owen, M. Wimmer, F. Ruske, D. Greiner, R. Klenk, U. Zastrow, J. Hotovy, Damp heat stable doped zinc oxide fims, Thn Solid Films. 555 (2014). https://doi.org/10.1016/j.tsf.2013.08.011. DOI: https://doi.org/10.1016/j.tsf.2013.08.011

. F.J. Pern, R. Noufi B. To, C. DeHart, X. Li, S.H. Glick, Degradation of ZnO-based window layers for thin-fim CIGS

by accelerated stress exposures, in: Reliab. Photovolt. Cells, Modul. Components, Syst., 2008: p. 70480P. https://doi.

org/10.1117/12.795097.

. J.H. Kim, H. Lee, S. Choi, K.H. Bae, J.Y. Park, Impact of water corrosion on nanoscale conductance on aluminum doped zinc oxide, in: Thn Solid Films, 2013. https://doi.org/10.1016/j.tsf.2013.03.100. DOI: https://doi.org/10.1016/j.tsf.2013.03.100

. C.R. Osterwald, T.J. McMahon, History of accelerated and qualification testing of terrestrial photovoltaic modules: A literature review, Prog. Photovoltaics Res. Appl. 17 (2009). https://doi.org/10.1002/pip.861. DOI: https://doi.org/10.1002/pip.861

. M. Hála, H. Kato, M. Algasinger, Y. Inoue, G. Rey, F. Werner, C. Schubbert, T. Dalibor, S. Siebentritt, Improved

environmental stability of highly conductive nominally undoped ZnO layers suitable for n-type windows in thin film

solar cells, Sol. Energy Mater. Sol. Cells. 161 (2017). https://doi.org/10.1016/j.solmat.2016.11.015. DOI: https://doi.org/10.1016/j.solmat.2016.11.015

. S. Tabassum, E. Yamasue, H. Okumura, K.N. Ishihara, Sol–gel and rf sputtered AZO thin fims: Analysis of oxidation kinetics in harsh environment, J. Mater. Sci. Mater. Electron. 25 (2014). https://doi.org/10.1007/s10854-014-2248-9. DOI: https://doi.org/10.1007/s10854-014-2248-9

. T. Tohsophon, J. Hüpkes, S. Calnan, W. Reetz, B. Rech, W. Beyer, N. Sirikulrat, Damp heat stability and annealing

behavior of aluminum doped zinc oxide fims prepared by magnetron sputtering, Thn Solid Films. 511–512 (2006).

https://doi.org/10.1016/j.tsf.2005.12.130. DOI: https://doi.org/10.1016/j.tsf.2005.12.130

. M. Mickan, U. Helmersson, D. Horwat, Effct of substrate temperature on the deposition of Al-doped ZnO thin

fims using high power impulse magnetron sputtering, Surf. Coatings Technol. 347 (2018). https://doi.org/10.1016/j.

surfcoat.2018.04.089.

. H.M. Mirletz, K.A. Peterson, I.T. Martin, R.H. French, Degradation of transparent conductive oxides: Interfacial

engineering and mechanistic insights, Sol. Energy Mater. Sol. Cells. 143 (2015). https://doi.org/10.1016/j.

solmat.2015.07.030. DOI: https://doi.org/10.1088/1475-7516/2015/07/030

. F. Machda, T. Ogawa, H. Okumura, K.N. Ishihara, Damp Heat Durability of Al-Doped ZnO Transparent Electrodes with Diffrent Crystal Growth Orientations, ECS J. Solid State Sci. Technol. 8 (2019). https://doi.org/10.1149/2.0261912jss. DOI: https://doi.org/10.1149/2.0261912jss

. F. Machda, T. Ogawa, H. Okumura, K.N. Ishihara, Damp-heat durability comparison of Al-doped ZnO transparent electrodes deposited at low temperatures on glass and PI-tape/PC substrates, Ceram. Int. 46 (2020). https://doi.org/10.1016/j.ceramint.2020.03.173. DOI: https://doi.org/10.1016/j.ceramint.2020.03.173

. M. Thelen, C. Hagedoorn, M. Götz-Köhler, A. Weeber, N. Neugebohrn, Damp heat induced degradation mechanisms occurring in coloured oxide/metal/oxide fims for thin-fim solar cells, Thn Solid Films. 730 (2021). https://doi.org/10.1016/j.tsf.2021.138711. DOI: https://doi.org/10.1016/j.tsf.2021.138711

. M. Wang, X. Hou, J. Liu, K.L. Choy, P. Gibson, E. Salem, D. Koutsogeorgis, W. Cranton, An alternative non-vacuum

and low cost ESAVD method for the deposition of Cu(In,Ga)Se2 absorber layers, Phys. Status Solidi Appl. Mater. Sci.

(2015). https://doi.org/10.1002/pssa.201431295. DOI: https://doi.org/10.1002/pssa.201431295

. T.H. de Keijser, J.I. Langford, E.J. Mittemeijer, A.B.P. Vogels, Use of the Voigt function in a single-line method for the analysis of X-ray diffaction line broadening, J. Appl. Crystallogr. 15 (1982). https://doi.org/10.1107/s0021889882012035. DOI: https://doi.org/10.1107/S0021889882012035

. U. Holzwarth, N. Gibson, Th Scherrer equation versus the “Debye-Scherrer equation,” Nat. Nanotechnol. 6 (2011). https://doi.org/10.1038/nnano.2011.145. DOI: https://doi.org/10.1038/nnano.2011.145

. A.R. Stokes, A.J.C. Wilson, Th diffaction of x rays by distorted crystal aggregates - I, Proc. Phys. Soc. 56 (1944). https://doi.org/10.1088/0959-5309/56/3/303. DOI: https://doi.org/10.1088/0959-5309/56/3/303

. W. Water, S.Y. Chu, Physical and structural properties of ZnO sputtered fims, Mater. Lett. 55 (2002). https://doi. DOI: https://doi.org/10.1016/S0167-577X(01)00621-8

org/10.1016/S0167-577X(01)00621-8.

. Y. Igasaki, H. Kanma, Argon gas pressure dependence of the properties of transparent conducting ZnO:Al fims deposited on glass substrates, Appl. Surf. Sci. 169–170 (2001). https://doi.org/10.1016/S0169-4332(00)00748-0. DOI: https://doi.org/10.1016/S0169-4332(00)00748-0

. J.A. Thrnton, INFLUENCE OF APPARATUS GEOMETRY AND DEPOSITION CONDITIONS ON THE

STRUCTURE AND TOPOGRAPHY OF THICK SPUTTERED COATINGS., in: J Vac Sci Technol, 1974. https://doi.

org/10.1116/1.1312732.

. W. Lin, R.X. Ma, J. Xue, B. Kang, RF magnetron sputtered ZnO:Al thin fims on glass substrates: A study of damp heat stability on their optical and electrical properties, Sol. Energy Mater. Sol. Cells. 91 (2007). https://doi.org/10.1016/j.solmat.2007.07.008. DOI: https://doi.org/10.1016/j.solmat.2007.07.008

. K. Ellmer, R. Mientus, Carrier transport in polycrystalline transparent conductive oxides: A comparative study of zinc oxide and indium oxide, Thn Solid Films. 516 (2008). https://doi.org/10.1016/j.tsf.2007.05.084. DOI: https://doi.org/10.1016/j.tsf.2007.05.084

. T. Tohsophon, A. Dabirian, S. De Wolf, M. Morales-Masis, C. Ballif, Environmental stability of high-mobility indium oxide based transparent electrodes, APL Mater. 3 (2015). https://doi.org/10.1063/1.4935125. DOI: https://doi.org/10.1063/1.4935125

Downloads

Published

2022-06-30

How to Cite

[1]
S. O. . Elhamali, M. N. . Akhil, K. M. . Abusabee, N. . Kalfagiannis, and D. C. Koutsogeorgis, “Environmental Stability Evaluation of Aluminium Doped Zinc Oxide (AZO) Transparent Electrodes Deposited at Low Temperature for Solar cells”, jsesd, vol. 11, no. 1, pp. 1–12, Jun. 2022.

Issue

Section

Articles