Industrial Rock Packed-Bed Heat Storage System:

Thermal Behavior and Performance Assessment

Authors

  • Aicha Eddemani Thermodynamic and Energetics Laboratory, Faculty of Science, Ibn Zohr University, 80006 Agadir, Morocco. https://orcid.org/0000-0002-6032-3608

DOI:

https://doi.org/10.51646/jsesd.v14iSTR2E.800

Keywords:

Rock-bed, storage material, thermal stratification, industrial packed-bed, computational fluid dynamics (CFD) analysis.

Abstract

The first industrial-scale packed-bed configuration for a Thermal Energy Storage (TES) using rocks, offering a thermal capacity of 100 MWhth, has been constructed for a Concentrated Solar Power (CSP) facility in Ait Baha, Morocco. It employs environmentally friendly materials, using natural pebbles as the energy storage material and ambient air as the heat exchange fluid. The storage unit features an innovative design characterized by a truncated-cone form, is embedded in the ground, and operates at high temperatures ranging from 293K to 843K. To assess the thermal performance and behavior of the system, a verified Computational Fluid Dynamics (CFD) method is employed over thirty days of operation under real-world daily conditions. The results of the cyclic behavior show that the impact of thermal cycles is most pronounced in the initial cycles, while thermal stratification during both the energy storage and release phases is significantly enhanced through repeated operation. Furthermore, the system's performance improves over the thermal cycles, achieving an efficiency of 80% by the 30th cycle.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

A. Z. A. Shaqsi, K. Sopian, and A. Al-Hinai, “Review of energy storage services, applications, limitations, and benefits,” Energy Reports, vol. 6, pp. 288–306, Dec. 2020, doi: 10.1016/j.egyr.2020.07.028. DOI: https://doi.org/10.1016/j.egyr.2020.07.028

S. Kakran, J. S. Rathore, A. Sidhu, and A. Kumar, “Solar Energy Advances and CO2 Emissions: A Comparative review of leading nations path to sustainable future,” Journal of Cleaner Production, p. 143598, Oct. 2024, doi:10.1016/j.jclepro.2024.143598. DOI: https://doi.org/10.1016/j.jclepro.2024.143598

A. Gil, M. Medrano, I. Martorell, A. Lázaro, P. Dolado, B. Zalba, and L.F. Cabeza, “State of the art on high temperature thermal energy storage for power generation. Part 1- Concepts, materials and modellization,” Renewable and Sustainable Energy Reviews, vol. 14, no. 1, pp. 31–55, Jan. 2010, doi: 10.1016/j.rser.2009.07.035. DOI: https://doi.org/10.1016/j.rser.2009.07.035

T. Kousksou, P. Bruel, A. Jamil, T. E. Rhafiki, and Y. Zeraouli, “Energy storage: Applications and challenges,” Solar Energy Materials and Solar Cells, vol. 120, pp. 59–80, Sep. 2013, doi: 10.1016/j.solmat.2013.08.015. DOI: https://doi.org/10.1016/j.solmat.2013.08.015

V. Bhardwaj, S. C. Kaushik, and H. P. Garg, “Sensible thermal storage in rock beds for space conditioning: a state of the art study,” International Journal of Ambient Energy, vol. 20, no. 4, pp. 211–219, 30 Mar. 2011, doi: 10.1080/01430750.1999.9675342. DOI: https://doi.org/10.1080/01430750.1999.9675342

V. Dreißigacker, S. Zunft, Müller- H. Steinhagen, “A thermomechanical model of packed-bed storage and experimental validation”. Applied Energy, vol. 111, pp. 1120–1125, 2013. doi: 10.1016/j.apenergy.2013.03.067. DOI: https://doi.org/10.1016/j.apenergy.2013.03.067

Z. Lai, L. Ding, H. Lyu, C. Hou, J. Chen, X. Guo, G. Han, and K. Zhang. “Experimental study on energy storage characteristics of sintered ore particle packed beds,” Journal of Thermal Science, vol. 34, no. 1, pp. 242-253, Dec. 2024, doi: 10.1007/s11630-024-2079-9. DOI: https://doi.org/10.1007/s11630-024-2079-9

N. B. Desai, M. E. Mondejar, and F. Haglind, “Techno-economic analysis of two-tank and packed-bed rock thermal energy storages for foil-based concentrating solar collector driven cogeneration plants,” Renewable Energy, vol. 186, pp. 814–830, Mar. 2022, doi: 10.1016/j.renene.2022.01.043. DOI: https://doi.org/10.1016/j.renene.2022.01.043

Y. Jemmal, N. Zari, M. Asbik, and M. Maaroufi, “Experimental characterization and thermal performance comparison of six Moroccan rocks used as filler materials in a packed bed storage system,” Journal of Energy Storage, vol. 30, p. 101513, Aug. 2020, doi: 10.1016/j.est.2020.101513. DOI: https://doi.org/10.1016/j.est.2020.101513

Z. Liu, L. N. Y. Wong, and S.-C. Chang, “Experimental investigation of major rocks in Hong Kong as potential sensible thermal energy storage medium,” Engineering Geology, vol. 343, p. 107763, Dec. 2024, doi: 10.1016/j.enggeo.2024.107763. DOI: https://doi.org/10.1016/j.enggeo.2024.107763

E. Abddaim, S. Sakami, A. E. Hassnaoui, and L. Boukhattem, “Impact of temperature on chemical, thermo-physical, and mechanical properties of four rock materials for sensible thermal energy storage,” Journal of Energy Storage, vol. 89, p. 111602, June 2024, doi: 10.1016/j.est.2024.111602. DOI: https://doi.org/10.1016/j.est.2024.111602

A. M. Rabi, J. Radulovic, and J. M. Buick, “Packed bed thermal energy storage system: Parametric study,” Thermo, vol. 4, no. 3, pp. 295–314, Jul. 2024, doi: 10.3390/thermo4030016. DOI: https://doi.org/10.3390/thermo4030016

P. Negi, Y. Singh, J. Dixit, M. Gwalwanshi, and R. Kanojia, “Experimental analysis based parametric study of packed bed heat regenerator with air as passing medium,” Materials Today Proceedings, vol. 46, pp. 10488–10491, Feb. 2021, doi: 10.1016/j.matpr.2020.12.1193. DOI: https://doi.org/10.1016/j.matpr.2020.12.1193

G. F. Al-Sumaily, H. A. Dhahad, and M. C. Thompson, “Mixed convection phenomenon in packed beds: A comprehensive review,” Thermal Science and Engineering Progress, vol. 32, p. 101242, July 2022, doi: 10.1016/j.tsep.2022.101242. DOI: https://doi.org/10.1016/j.tsep.2022.101242

W.C. Chen, Y.W. Fan, L.L. Zhang, B.C. Sun, Y. Luo, H.K. Zou, G.W. Chu, and J.F. Chen, “Computational fluid dynamic simulation of gas-liquid flow in rotating packed bed: A review,” Chinese Journal of Chemical Engineering, vol. 41, pp. 85–108, Jan. 2021. doi: 10.1016/j.cjche.2021.09.024. DOI: https://doi.org/10.1016/j.cjche.2021.09.024

A. Gautam and R. P. Saini, “A review on sensible heat based packed bed solar thermal energy storage system for low temperature applications,” Solar Energy, vol. 207, pp. 937–956, Sept. 2020, doi: 10.1016/j.solener.2020.07.027. DOI: https://doi.org/10.1016/j.solener.2020.07.027

M. Díaz-Heras, J. F. Belmonte, and J. A. Almendros-Ibáñez, “Effective thermal conductivities in packed beds: Review of correlations and its influence on system performance,” Applied Thermal Engineering, vol. 171, p. 115048, May 2020, doi: 10.1016/j.applthermaleng.2020.115048. DOI: https://doi.org/10.1016/j.applthermaleng.2020.115048

M. Tawalbeh, H. A. Khan, A. Al-Othman, F. Almomani, and S. Ajith, “A comprehensive review on the recent advances in materials for thermal energy storage applications,” International Journal of Thermofluids, vol. 18, p. 100326, May 2023, doi: 10.1016/j.ijft.2023.100326. DOI: https://doi.org/10.1016/j.ijft.2023.100326

I. Calderón-Vásquez, E. Cortés, J. García, V. Segovia, A. Caroca, C. Sarmiento, R. Barraza, and J. M. Cardemil, “Review on modeling approaches for packed-bed thermal storage systems,” Renewable and Sustainable Energy Reviews, vol. 143, p. 110902, June 2021, doi: 10.1016/j.rser.2021.110902. DOI: https://doi.org/10.1016/j.rser.2021.110902

M. M. Abera, V. R. Ancha, B. Amare, L. S. Sundar, K. V. V. C. Mouli, and S. Sangaraju, “Simulation and optimization of energy efficiency and total enthalpy analysis of sand based packed bed solar thermal energy storage,” Frontiers in Heat and Mass Transfer, vol. 22, no. 4, pp. 1043–1070, Aug. 2024, doi: 10.32604/fhmt.2024.049525. DOI: https://doi.org/10.32604/fhmt.2024.049525

R. Kothari, C. S. Hemmingsen, N. V. Voigt, A. La Seta, K. K. Nielsen, N. B. Desai, A. Vijayan, and F. Haglind, “Numerical and experimental analysis of instability in high temperature packed-bed rock thermal energy storage systems,” Applied Energy, vol. 358, p. 122535, March 2024, doi: 10.1016/j.apenergy.2023.122535. DOI: https://doi.org/10.1016/j.apenergy.2023.122535

H. Geng, Y. Wu, D. Ma, Y. Hao, D. Li, and H. Zhou, “Experimental study on the heat storage characteristics of rock bed heat storage system with different packing structure,” Journal of Energy Storage, vol. 101, p. 113973, Nov. 2024, doi: 10.1016/j.est.2024.113973. DOI: https://doi.org/10.1016/j.est.2024.113973

G. Zanganeh, A. Pedretti, A. Haselbacher, and A. Steinfeld, “Design of packed bed thermal energy storage systems for high-temperature industrial process heat,” Applied Energy, vol. 137, pp. 812–822, Jan. 2015, doi: 10.1016/j.apenergy.2014.07.110. DOI: https://doi.org/10.1016/j.apenergy.2014.07.110

S. A. Zavattoni, G. Zanganeh, A. Pedretti, and M. C. Barbato, “Numerical analysis of the packed bed TES system integrated into the first parabolic trough CSP pilot-plant using air as heat transfer fluid,” AIP Conference Proceedings, vol. 2033, p. 090027, Jan. 2018, doi: 10.1063/1.5067121. DOI: https://doi.org/10.1063/1.5067121

G. Zanganeh, A. Pedretti, S. Zavattoni, M. Barbato, and A. Steinfeld, “Packed-bed thermal storage for concentrated solar power – Pilot-scale demonstration and industrial-scale design,” Solar Energy, vol. 86, no. 10, pp. 3084–3098, Aug. 2012, doi: 10.1016/j.solener.2012.07.019. DOI: https://doi.org/10.1016/j.solener.2012.07.019

G. Zanganeh, A. Pedretti, S. A. Zavattoni, M. C. Barbato, A. Haselbacher, and A. Steinfeld, “Design of a 100 MWhth packed-bed thermal energy storage,” Energy Procedia, vol. 49, pp. 1071–1077, Jan. 2014, doi: 10.1016/j.egypro.2014.03.116. DOI: https://doi.org/10.1016/j.egypro.2014.03.116

A. Meier, C. Winkler, and D. Wuillemin, “Experiment for modelling high temperature rock bed storage,” Solar Energy Materials, vol. 24, no. 1–4, pp. 255–264, Dec. 1991, doi: 10.1016/0165-1633(91)90066-t. DOI: https://doi.org/10.1016/0165-1633(91)90066-T

J. Ochmann, K. Rusin, S. Rulik, S. Waniczek, and L. Bartela, “Experimental and computational analysis of packed-bed thermal energy storage tank designed for adiabatic compressed air energy storage system,” Applied Thermal Engineering, vol. 213, p. 118750, May 2022, doi: 10.1016/j.applthermaleng.2022.118750. DOI: https://doi.org/10.1016/j.applthermaleng.2022.118750

M. Hänchen, S. Brückner, and A. Steinfeld, “High-temperature thermal storage using a packed bed of rocks – Heat transfer analysis and experimental validation,” Applied Thermal Engineering, vol. 31, no. 10, pp. 1798–1806, July 2011, doi: 10.1016/j.applthermaleng.2010.10.034. DOI: https://doi.org/10.1016/j.applthermaleng.2010.10.034

A. Eddemani, H. El Baamrani, A. Aharoune, L. Bouirden and A. Ihlal, "Comparative Study of the Performance of Packed Beds Using Different Types of Thermal Storage Materials". Solar Energy and Sustainable Development Journal, 14 (SI_MSMS2E), 176–184, 2024, https://doi.org/10.51646/jsesd.v14iSI_MSMS2E.395. DOI: https://doi.org/10.51646/jsesd.v14iSI_MSMS2E.395

Downloads

Published

2025-09-26

How to Cite

Eddemani, A. (2025). Industrial Rock Packed-Bed Heat Storage System: : Thermal Behavior and Performance Assessment. Solar Energy and Sustainable Development Journal, 14(STR2E), 79–90. https://doi.org/10.51646/jsesd.v14iSTR2E.800

Issue

Section

SI-STR2E

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)