Investigation of Thermoelectric and Structural Properties of BeAlH₃, BeGaH₃, and BeInH₃ perovskite Hydrides for Energy Applications
DOI:
https://doi.org/10.51646/jsesd.v14iSTR2E.786Keywords:
DFT, BeAlH₃, BeGaH₃, BeInH₃, Gravimetric, Hydrogen, Thermal.Abstract
This study explores the structural, electrical, and thermoelectric properties of crystalline beryllium hydrides BeXH3 (X = Al, Ga, In) using the generalized gradient approximation (GGA) within the framework of density functional theory (DFT). The analysis is performed using the BoltzTrap package, integrated with the Wien2k code, and the Murnaghan equation of state to determine total energy and atomic volume while providing detailed information on band structure and electronic densities of states. Key thermoelectric properties, including power factor (PF), figure of merit (Zt), thermal conductivity (k), and electrical conductivity (σ), were investigated over a temperature range from 300 to 900 K. The results show that BeGaH3 exhibits the best thermoelectric performance over the entire temperature range, with a maximum electrical conductivity of 3.5*10²⁰ (1/Ω.m) at 900 K. In contrast, BeAlH3 and BeInH3 show interesting thermoelectric behaviors with an increase in efficiency at higher temperatures. Thermal conductivity increases with temperature, influenced by electron vibrations, while Zt and PF factors show material-specific variations, highlighting the optimization potential of these compounds for thermoelectric devices.
Downloads
Metrics
References
M. Newborough, & G. Cooley. Developments in the global hydrogen market: The spectrum of hydrogen colours. Fuel Cells Bulletin, 2020(11), 16-22 (2020). DOI: https://doi.org/10.1016/S1464-2859(20)30546-0
E. Jiaqiang, B. Luo, D. Han, J. Chen, G. Liao, F. Zhang, & J. Ding. A comprehensive review on performance improvement of micro energy mechanical system: Heat transfer, micro combustion and energy conversion. Energy, 239, 122509 (2022). DOI: https://doi.org/10.1016/j.energy.2021.122509
I. S. Anufriev. Review of water/steam addition in liquid-fuel combustion systems for NOx reduction: Waste-to-energy trends. Renewable and Sustainable Energy Reviews, 138, 110665 (2021). DOI: https://doi.org/10.1016/j.rser.2020.110665
S. Ozgen, S. Cernuschi, & S. Caserini. An overview of nitrogen oxides emissions from biomass combustion for domestic heat production. Renewable and Sustainable Energy Reviews, 135, 110113 (2021). DOI: https://doi.org/10.1016/j.rser.2020.110113
N. S. Veeramalli, S. S. Vasamsetti, J. Aravind Kumar, S. Sathish, D. Prabu, & T. Krithiga. Sustainable Environment with Green Energy Options: Advantages and Disadvantages. In Green Hydrogen Economy for Environmental Sustainability., Volume 1: Fundamentals and Feedstocks (pp. 287-303). American Chemical Society (2024). DOI: https://doi.org/10.1021/bk-2024-1473.ch013
Z. Hammi, N. Labjar, M. Dalimi, Y. El Hamdouni, & S. El Hajjaji. Green hydrogen: A holistic review covering life cycle assessment, environmental impacts, and color analysis. International Journal of Hydrogen Energy, 80, 1030-1045 (2024). DOI: https://doi.org/10.1016/j.ijhydene.2024.07.008
C. Ghenai, M. Albawab, & M. Bettayeb. Sustainability indicators for renewable energy systems using multi-criteria decision-making model and extended SWARA/ARAS hybrid method. Renewable Energy, 146, 580-597 (2020). DOI: https://doi.org/10.1016/j.renene.2019.06.157
M. Majid. Renewable energy for sustainable development in India: current status, future prospects, challenges, employment, and investment opportunities. Energy, Sustainability and Society, 10(1), 1-36 (2020). DOI: https://doi.org/10.1186/s13705-019-0232-1
Laghlimi, C., Moutcine, A., Ziat, Y., Belkhanchi, H., Koufi, A., & Bouyassan, S. (2024). Hydrogen, chronology and electrochemical production. Solar Energy and Sustainable Development, 22-37.https://doi.org/10.51646/jsesd.v14iSI_MSMS2E.405. DOI: https://doi.org/10.51646/jsesd.v14iSI_MSMS2E.405
V. Arun, R. Kannan, S. Ramesh, M. Vijayakumar, P. S. Raghavendran, M. Siva Ramkumar, ... & V. P. Sundramurthy. Review on Li‐Ion Battery vs Nickel, Metal Hydride Battery in EV. Advances in Materials Science and Engineering, 2022(1), 7910072 (2022). DOI: https://doi.org/10.1155/2022/7910072
M. G. Rasul, M. A. Hazrat, M. A. Sattar, M. I. Jahirul, & M. J. Shearer. The future of hydrogen: Challenges on production, storage and applications. Energy Conversion and Management, 272, 116326 (2022). DOI: https://doi.org/10.1016/j.enconman.2022.116326
B. C. Tashie-Lewis, & S. G. Nnabuife. Hydrogen production, distribution, storage and power conversion in a hydrogen economy-a technology review. Chemical Engineering Journal Advances, 8, 100172 (2021). DOI: https://doi.org/10.1016/j.ceja.2021.100172
L. Zhang, C. Jia, F. Bai, W. Wang, S. An, K. Zhao, ... & H. Sun. A comprehensive review of the promising clean energy carrier: Hydrogen production, transportation, storage, and utilization (HPTSU) technologies. Fuel, 355, 129455 (2024). DOI: https://doi.org/10.1016/j.fuel.2023.129455
M. Aravindan, V. S. Hariharan, T. Narahari, A. Kumar, K. Madhesh, P. Kumar, & R. bakaran. Fuelling the future: A review of non-renewable hydrogen production and storage techniques. Renewable and Sustainable Energy Reviews, 188, 113791 (2023). DOI: https://doi.org/10.1016/j.rser.2023.113791
L. Vidas, & R. Castro. Recent developments on hydrogen production technologies: state-of-the-art review with a focus on green-electrolysis. Applied Sciences, 11(23), 11363 (2021). DOI: https://doi.org/10.3390/app112311363
S. U. Batgi, & I. Dincer. A study on comparative environmental impact assessment of thermochemical cycles and steam methane reforming processes for hydrogen production processes. Computers & Chemical Engineering, 180, 108514 (2024). DOI: https://doi.org/10.1016/j.compchemeng.2023.108514
H. Ishaq, I. Dincer, & C. Crawford. A review on hydrogen production and utilization: Challenges and opportunities. International Journal of Hydrogen Energy, 47(62), 26238-26264 (2022). DOI: https://doi.org/10.1016/j.ijhydene.2021.11.149
X. Xu,Q. Zhou, & D. Yu. The future of hydrogen energy: Bio-hydrogen production technology. International Journal of Hydrogen Energy, 47(79), 33677-33698 (2022). DOI: https://doi.org/10.1016/j.ijhydene.2022.07.261
Younas, M., Shafique, S., Hafeez, A., Javed, F., & Rehman, F. (2022). An overview of hydrogen production: current status, potential, and challenges. Fuel, 316, 123317. DOI: https://doi.org/10.1016/j.fuel.2022.123317
L. Van Hoecke, L. Laffineur, R. Campe, P. Perreault, S.W. Verbruggen, & S. Lenaerts. Challenges in the use of hydrogen for maritime applications. Energy & Environmental Science, 14(2), 815-843 (2021). DOI: https://doi.org/10.1039/D0EE01545H
S. Alfei, B. Marengo, & G. Zuccari. Nanotechnology application in food packaging: A plethora of opportunities versus pending risks assessment and public concerns. Food Research International, 137, 109664 (2020). DOI: https://doi.org/10.1016/j.foodres.2020.109664
G. W. Meijer, L. Lähteenmäki, LR. H. Stadler, & J. Weiss. Issues surrounding consumer trust and acceptance of existing and emerging food processing technologies. Critical reviews in food science and nutrition, 61(1), 97-115 (2021). DOI: https://doi.org/10.1080/10408398.2020.1718597
N. Norouzi. Future of hydrogen in energy transition and reform. Journal of Chemistry Letters, 2(2), 64-72 (2021).
D. Guan, B. Wang, J. Zhang, R. Shi, K. L. L. Jiao, ... & M. Ni,. Hydrogen society: From present to future. Energy & Environmental Science, 16(11), 4926-4943 (2023). DOI: https://doi.org/10.1039/D3EE02695G
Q. Hassan, A. Z. Sameen, H. M., Salman, M., Jaszczur, & A. K. Al-Jiboory. Hydrogen energy future: Advancements in storage technologies and implications for sustainability. Journal of Energy Storage, 72, 108404 (2023). DOI: https://doi.org/10.1016/j.est.2023.108404
M. Usman, «Hydrogen storage methods: Review and current status, Renew.,» vol. 167, 2022. DOI: https://doi.org/10.1016/j.rser.2022.112743
A. Koufi, Y. Ziat, H. Belkhanchi, & A. Bouzaid. DFT and BoltzTrap investigations on the thermal and structural characteristics of the perovskite MgCuH3 and MgCoH3. Computational Condensed Matter, e01010 (2025), https://doi.org/10.1016/j.cocom.2025.e01010. DOI: https://doi.org/10.1016/j.cocom.2025.e01010
Y. Liu, W. Lv, J. Feng, J. Tian, P. Wang, L. Xu, ... & L. Yao. Emerging Thermochromic Perovskite Materials: Insights into Fundamentals, Recent Advances and Applications. Advanced Functional Materials, 2402234 (2024). DOI: https://doi.org/10.1002/adfm.202402234
Koufi, A., Ziat, Y., & Belkhanchi, H. (2024). Study of the Gravimetric, Electronic and Thermoelectric Properties of XAlH3 (X= Be, Na, K) as hydrogen storage perovskite using DFT and the BoltzTrap Software Package. Solar Energy and Sustainable Development, 53-66. https://doi.org/10.51646/jsesd.v14iSI_MSMS2E.403. DOI: https://doi.org/10.51646/jsesd.v14iSI_MSMS2E.403
S. Bahhar, A. Tahiri, A. Jabar, M. Louzazni, M. Idiri, & H. Bioud. Computational assessment of MgXH3 (X= Al, Sc and Zr) hydrides materials for hydrogen storage applications. International Journal of Hydrogen Energy, 58, 259-267 (2024). DOI: https://doi.org/10.1016/j.ijhydene.2024.01.176
S. Y. Lee, J. H. Lee, Y. H. Kim, J. W. Kim, K. J. Lee, & S. J. Park. Recent progress using solid-state materials for hydrogen storage: a short review. Processes, 10(2), 304 (2022). DOI: https://doi.org/10.3390/pr10020304
S. P. Filippov, & A. B. Yaroslavtsev. Hydrogen energy: Development prospects and materials. Russian Chemical Reviews, 90(6), 627 (2021). DOI: https://doi.org/10.1070/RCR5014
C. Xia, H. Wang, J. K. Kim, & J. Wang. Rational design of metal oxide‐based heterostructure for efficient photocatalytic and photoelectrochemical systems. Advanced Functional Materials, 31(12), 2008247 (2021). DOI: https://doi.org/10.1002/adfm.202008247
E. Mousset, & D. D. Dionysiou. Photoelectrochemical reactors for treatment of water and wastewater: a review. Environmental Chemistry Letters, 18(4), 1301-1318 (2020). DOI: https://doi.org/10.1007/s10311-020-01014-9
A. Koufi, Y. Ziat, H. Belkhanchi, ... & F. Z. Baghli. A computational study of the structural and thermal conduct of MgCrH3 and MgFeH3 perovskite-type hydrides: FP-LAPW and BoltzTraP insight. E3S Web of Conferences (2024), (Vol. 582, p. 02003). https://doi.org/10.1051/e3sconf/202458202003 DOI: https://doi.org/10.1051/e3sconf/202458202003
M. Dolors Baro, S. Surinach, E. Rossinyol, A. Marini, A. Girella, C. Milanese, E. Pellicer et S. Garroni, «Hydrogen sorption performance of MgH2 doped with mesoporous nickeland cobalt-based oxides,» pp. 540-5410 2011.
I. U. Haq, G. Rehman, H. A. Yakout, & I. Khan. Structural and optoelectronic properties of Ge-and Si-based inorganic two dimensional Ruddlesden Popper halide perovskites. Materials Today Communications, 33, 104368 (2022). DOI: https://doi.org/10.1016/j.mtcomm.2022.104368
A. Bouzaid, Y. Ziat, H. Belkhanchi, H. Hamdani, A. Koufi, M. Miri, ... & Z. Zarhri. Ab initio study of the structural, electronic, and optical properties of MgTiO3 perovskite materials doped with N and P. E3S Web of Conferences (2024), (Vol. 582, p. 02006). https://doi.org/10.1051/e3sconf/202458202006. DOI: https://doi.org/10.1051/e3sconf/202458202006
K. Burke, R. Car, & R. Gebauer. Density functional theory of the electrical conductivity of molecular devices. Physical review letters, 94(14), 146803 (2005). DOI: https://doi.org/10.1103/PhysRevLett.94.146803
M. Orio, D. A. Pantazis, F. & Neese. Density functional theory. Photosynthesis research, 102, 443-453 (2009), https://doi.org/10.1007/s11120-009-9404-8. DOI: https://doi.org/10.1007/s11120-009-9404-8
N. Argaman, & G. Makov. Density functional theory: An introduction. American Journal of Physics, 68(1), 69-79 (2000), https://doi.org/10.1119/1.19375. DOI: https://doi.org/10.1119/1.19375
P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G. K. Madsen, & L. D. Marks, WIEN2k: An APW+ lo program for calculating the properties of solids. The Journal of chemical physics, 152(7) (2020). https://doi.org/10.1063/1.5143061. DOI: https://doi.org/10.1063/1.5143061
J. P. Perdew, k. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865. DOI: https://doi.org/10.1103/PhysRevLett.77.3865
M. Miri, Y. Ziat, H. Belkhanchi, & Y. A. El Kadi, The effect of pressure on the structural, optoelectronic and mechanical conduct of the XZnF3 (X= Na, K and Rb) perovskite: First-principles study. Mod. Phys. B, 2550096 (2024). https://doi.org/10.1142/S0217979225500961 DOI: https://doi.org/10.1142/S0217979225500961
W. Khan. Computational screening of BeXH3 (X: Al, Ga, and In) for optoelectronics and hydrogen storage applications. Materials Science in Semiconductor Processing, 174, 108221 (2024). DOI: https://doi.org/10.1016/j.mssp.2024.108221
E. Ededet, H. Louis, U. G. Chukwu, T. O. Magu, A. E. Udo, S. A. Adalikwu, & A. S. Adeyinka. Ab Initio Study of the Effects of d-Block Metal (Mn, Re, Tc) Encapsulation on the Electronic, Phonon, Thermodynamic, and Gravimetric, Hydrogen Capacity of BaXH4 Hydride Perovskites. Electronic Materials, 53(1), 250-264 (2024). DOI: https://doi.org/10.1007/s11664-023-10759-2
H. H. Raza, G. Murtaza, S. Razzaq, & A. Azam. Improving thermodynamic properties and desorption temperature in MgH2 by doping Be: DFT study. Molecular Simulation, 49(5), 497-508 (2023). DOI: https://doi.org/10.1080/08927022.2023.2171075
N. Cargioli. Standard model physics and beyond in low energy neutrino scattering and parity violating electron interactions with nuclei (2024).
H. Takabe. Physical of Warm Dense Matters. In The Physics of Laser Plasmas and Applications-Volume 2: Fluid Models and Atomic Physics of Plasmas (pp. 397-450). Cham: Springer International Publishing (2024). DOI: https://doi.org/10.1007/978-3-031-45473-8_9
X. Diao. A Computational study of mixed metal oxides (Doctoral dissertation, UCL (University College London)) (2024).
A. Siddique, A. Khalil, B. S. Almutairi, M. B. Tahir, M. Sagir, Z. Ullah, ... & M. Alzaid. Structures and hydrogen storage properties of AeVH3 (Ae= Be, Mg, Ca, Sr) perovskite hydrides by DFT calculations, International Journal of Hydrogen Energy, 48(63), 24401-24411 (2023). DOI: https://doi.org/10.1016/j.ijhydene.2023.03.139
B. P. Tarasov, P. V. Fursikov, A. A. Volodin, M. S. Bocharnikov, Y. Y. Shimkus, A. M. Kashin, ... & M. V. Lototskyy. Metal hydride hydrogen storage and compression systems for energy storage technologies., International Journal of Hydrogen Energy, 46(25), 13647-13657 (2021). DOI: https://doi.org/10.1016/j.ijhydene.2020.07.085
M. Yaseen, H. Ambreen, Remsha, Mehmood, I. Munawar, A. Nessrin, Kattan,Thamraa Alshahrani, S. Noreen, & A. Laref. "Investigation of optical and thermoelectric properties of PbTiO3 under pressure", Physica B: Condensed Matter, (2021). DOI: https://doi.org/10.1016/j.physb.2021.412857
D. Chang-Hao, D. Zhi-Fu, D. Zhong-Ke, P. Hui & al. " XMoSiN (X=S, Se, Te): A novel 2D Janus semiconductor with ultra-high carrier mobility and excellent thermoelectric performance ", Europhysics Letters, (2023).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Solar Energy and Sustainable Development Journal

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.