Review paper on Green Hydrogen Production, Storage, and Utilization Techniques in Libya
DOI:
https://doi.org/10.51646/jsesd.v13i1.165Keywords:
Green hydrogen, Renewable energy, Types of hydrogen, Preparation methods, Utilization techniquesAbstract
the world is currently facing energy-related challenges due to the cost and pollution of non-renewable energy sources and the increasing power demand from renewable energy sources. Green hydrogen is a promising solution in Libya for converting renewable energy into usable fuel. This paper covers the types of hydrogen, its features, preparation methods, and uses. Green hydrogen production is still limited in the world due to safety requirements because hydrogen has a relatively low ignition temperature and an extensive ignition range and is considered a hazardous element, the lack of infrastructure in Libya, as well as the high cost of production currently. However, the production costs of one megawatt of green hydrogen and fossil fuels are insignificant. This suggests that electricity production from green hydrogen could become an economic competitor to fossil fuels in Libya. This is due to the cost of adding renewable energy to the public electricity grid. Also, the production of gray hydrogen is possible in Libya because of oil through the installation of systems for converting methane gas and capturing carbon dioxide gas.
Downloads
Metrics
References
Y. Fathi, H. El-Khozondar, W. El-Osta, S. Mohammed, M. Elnaggar, M. Khaleel, A. Ahmed, A. Alsharif, Carbon footprint and energy life cycle assessment of wind energy industry in Libya, Energy conversion and management, vol. 300, 15 January 2024, 117846, https://doi.org/10.1016/j.enconman.2023.117846 DOI: https://doi.org/10.1016/j.enconman.2023.117846
N. Yasser, H. El-Khozondar, G. Ghaboun, M. Khaleel, Z. Yusupov, A. Ahmed, A. Alsharif, 2023. Solar and wind atlas for Libya, International Journal of Electrical Engineering and Sustainability (IJEES), vol. 1, no. 3, pp. 27-43. https://ijees.org/index.php/ijees/article/view/44/20
A. Maka and J. Alabid, “Solar energy technology and its roles in sustainable development,” Clean Energy, vol. 6, no. 3, pp. 476–483, Jun. 2022, doi: 10.1093/ce/zkac023. DOI: https://doi.org/10.1093/ce/zkac023
L. Rtemi, W. El-Osta, A. Attaiep, Hybrid system modeling for renewable energy sources, Journal of Solar Energy and Sustainable Development, vol. 12, no. 1, pp. 13-28. DOI: https://doi.org/10.51646/jsesd.v12i1.146
M. Almihat, M. Kahn, Design and implementation of Hybrid Renewable energy (PV/Wind/Diesel/Battery) Microgrids for rural areas, Journal of Solar Energy and Sustainable Development, vol. 12, no. 1, pp. 80–104. DOI: https://doi.org/10.51646/jsesd.v12i1.151
S. Mohammed, Y. Nassar, W. El-Osta, H. El-Khozondar, A. Miskeen, and A. Basha, “Carbon and Energy Life Cycle Analysis of Wind Energy Industry in Libya,” Solar Energy and Sustainable Development Journal, vol. 12, no. 1, pp. 50–69, 2023 DOI: https://doi.org/10.51646/jsesd.v12i1.150
Y. Nassar, H. El-Khozondar, N. Abohamoud, A. Abubaker, A. Ahmed, A. Alsharif, M. Khaleel, 2023. Regression Model for Optimum Solar Collectors' Tilt Angles in Libya. The 8th International Engineering Conference on Renewable Energy & Sustainability (ieCRES 2023), May 8-9, 2023, Gaza Strip, Palestine, pp. 1-6, DOI: https://doi.org/10.1109/ieCRES57315.2023.10209547
I. Imbayah, A. Ahmed, A. Alsharif, M. Khaleel, A. Alarga, “A Review of the Possibility Integrating the Solar System into the Libyan Railway Transportation”. African Journal of Advanced Pure and Applied Sciences (AJAPAS), Volume 2, Issue 2, April-June 2023, Page No: 1-10.
https://cleantechnica.com/2013/06/29/libya-solar-potential-5x-larger-than-oil-reserves-infographic/.
L. Dogaru “The main goals of the Fourth Industrial Revolution. Renewable energy perspectives”. Procedia Manuf, 46 (2020), pp. 397-401, doi. 10.1016/j.promfg.2020.03.058. DOI: https://doi.org/10.1016/j.promfg.2020.03.058
J.A. Duro, C. Lauk, T. Kastner, K.-H. Erb, H. Haberl “Global inequalities in food consumption, cropland demand, and land-use efficiency: A decomposition analysis”. Glob Environ Chang, 64 (2020), Article 102124, 10.1016/j.gloenvcha.2020.102124, DOI: https://doi.org/10.1016/j.gloenvcha.2020.102124
D.A. Hutchins, J.K. Jansson, J.V. Remais, V.I. Rich, B.K. Singh, P. Trivedi “Climate change microbiology — problems and perspectives”. Nat Rev Microbiol, 17 (6) (2019), pp. 391-396, 10.1038/s41579-019-0178-5 DOI: https://doi.org/10.1038/s41579-019-0178-5
A. Rahman, O. Farrok, M.M. Haque.“Environmental impact of renewable energy source-based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic”. Renew Sustain Energy Rev, 161 (2022), Article 112279, doi:10.1016/j.rser.2022.112279. DOI: https://doi.org/10.1016/j.rser.2022.112279
R. Hren, A. Vujanović, Y. Van Fan, J.J. Klemeš, D. Krajnc, L. Čuček. “Hydrogen production, storage and transport for renewable energy and chemicals: An environmental footprint assessment”. Renew Sustain Energy Rev, 173 (2023), doi:10.1016/j.rser.2022.113113 DOI: https://doi.org/10.1016/j.rser.2022.113113
M. Almaktar, A. M. Elbreki, and M. Shaaban, “Revitalizing operational reliability of the electrical energy system in Libya: Feasibility analysis of solar generation in local communities,” J. Clean. Prod., vol. 279, p. 123647, 2021, doi: 10.1016/j.jclepro.2020.123647. DOI: https://doi.org/10.1016/j.jclepro.2020.123647
A. Miskeen, R. Elzer, I. Mangir,Y. Nassar, H. ElKhozondar, M. Khaleel, A. Ahmed, A. Alsharif, I. Imbayah. “Electricity from Wastewater Treatment Plants”, Solar Energy And Sustainable Development. 2023, pp.24–37. DOI: https://doi.org/10.51646/jsesd.v12i2.156
M. Fawzi, T. Hamad, and A. Azouz, “Hazard and Economical Evaluation for a Hydrogen Fuel Station”, jsesd, vol. 9, no. 2, pp. 1–10, Dec. 2020. DOI: https://doi.org/10.51646/jsesd.v9i2.11
M. Ashur, “An Integrated System of Gasoline Reformer and Thee Way Converter for On-board Hydrogen Production”, jsesd, vol. 2, no. 1, pp. 38–47, Dec. 2013. DOI: https://doi.org/10.51646/jsesd.v2i1.95
I. Mohamed, “Solar Hydrogen System Configuration Using Genetic Algorithms”, jsesd, vol. 1, no. 1, pp. 18–24, Jun. 2012. DOI: https://doi.org/10.51646/jsesd.v1i1.103
H. Ahmed and A. Musa, “Performance Parameters of Direct Coupling Advanced Alkaline Electrolysis and PEMFC System”, jsesd, vol. 9, no. 2, pp. 29–45, Dec. 2020. DOI: https://doi.org/10.51646/jsesd.v9i2.12
A. Kagilik, “Dry Phosphorus silicate glass etching and surface conditioning and cleaning for multi-crystalline silicon solar cell processing” " Jsesd, vol. 3, no. 1, pp. 38–50, Dec. 2014. DOI: https://doi.org/10.51646/jsesd.v3i1.87
A. Musa, R. Arfa, and A. Agina, “Optimal Operating Point of a Hydrogen Fueled SOFC Models Using Al-Nour Software”, jsesd, vol. 5, no. 2, pp. 1–9, Dec. 2016. DOI: https://doi.org/10.51646/jsesd.v5i2.59
Hassan, Q., Sameen, A. Z., Salman, H. M., Jaszczur, M., Al-Hitmi, M., & Alghoul, M. "Energy futures and green hydrogen production: Is Saudi Arabia trend? Results in Engineering", (2023). https://doi.org/10.1016/j.rineng.2023.101165 DOI: https://doi.org/10.1016/j.rineng.2023.101165
M. Newborough, G. Cooley. “Developments in the global hydrogen market: the spectrum of hydrogen colors,” Fuel Cell Bull, 2020 (11) (2020), pp. 16-22, 10.1016/S1464-2859(20)30546-0.
A. Mostafaeipour, S.J. Hosseini Dehshiri, S.S. Hosseini Dehshiri, “Ranking locations for producing hydrogen using geothermal energy in Afghanistan,” Int J Hydrogen Energy, 45 (2020), pp. 15924-15940, 10.1016/j.ijhydene.2020.04.079. DOI: https://doi.org/10.1016/j.ijhydene.2020.04.079
Ratnakar RR, Gupta N, Zhang K, van Doorne C, Fesmire J, Dindoruk B, et al. “Hydrogen supply chain and challenges in large scale LH2 storage and transportation”. Int J Hydrogen Energy 2021. doi.org/10.1016/ j. ijhydene.2021.05.025. DOI: https://doi.org/10.1016/j.ijhydene.2021.05.025
Y.E. Yuksel, M. Ozturk, “Thermodynamic and thermoeconomic analyses of a geothermal energy based integrated system for hydrogen production,”. Int J Hydrogen Energy, 42 (2017), pp. 2530-2546, 10.1016/j.ijhydene.2016.04.172. DOI: https://doi.org/10.1016/j.ijhydene.2016.04.172
Y.E. Yuksel, M. Ozturk, I. Dincer, “Evaluation of a new geothermal based multigenerational plant with primary outputs of hydrogen and ammonia”. Int J Hydrogen Energy, 46 (2021), pp. 16344-16359, 10.1016/j.ijhydene.2020.12.144. DOI: https://doi.org/10.1016/j.ijhydene.2020.12.144
S.M. Alirahmi, E. Assareh, N.N. Pourghassab, M. Delpisheh, L. Barelli, A. Baldinelli, “Green hydrogen & electricity production via geothermal-driven multi-generation system: thermodynamic modeling and optimization”. Fuel, 308 (2022), 10.1016/j.fuel .2021.122049, doi: 10.1016/j.pecs.2019.04.002. DOI: https://doi.org/10.1016/j.fuel.2021.122049
Chen, X., Yue, J., Fu, L., Zhang, M., Tang, M., Feng, J., & Shen, B. (2023). "Green hydrogen production and liquefaction using offshore wind power, liquid air, and LNG cold energy". Journal of Cleaner Production, 423. doi: /10.1016/j.jclepro.2023.138653. DOI: https://doi.org/10.1016/j.jclepro.2023.138653
Ponnala Rambabu, Nageswara Rao Peela, “In-situ CdS nanowires on g-C3N4 nanosheet heterojunction construction in 3D-Optofluidic microreactor for the photocatalytic green hydrogen production,” International Journal of Hydrogen Energy, 2023, pp. 15406-15420, doi.org/10.1016/j.ijhydene.2023.01.041. DOI: https://doi.org/10.1016/j.ijhydene.2023.01.041
M. Amin, E. Croiset, W. Epling, “Review of methane catalytic cracking for hydrogen production,” Int J Hydrogen Energy, 36 (4) (2011), pp. 2904-2935, 10.1016/j.ijhydene.2010.11.035. DOI: https://doi.org/10.1016/j.ijhydene.2010.11.035
Alexander Körner, “Technology Roadmap Hydrogen and Fuel Cells,” Technical Annex. pp.1-29. Jun-2015.
Ajanovic, A., Sayer, M., & Haas, R. “The economics and the environmental benignity of different colors of hydrogen”. International Journal of Hydrogen Energy, (2022). 47(57), 24136–24154. doi.org/10.1016/j.ijhydene.2022.02.094. DOI: https://doi.org/10.1016/j.ijhydene.2022.02.094
Muhammad, K. Sami, G. “Hydrogen economy for sustainable development in GCC countries: A SWOT analysis considering the current situation, challenges, and prospects”. International Journal of Hydrogen Energy Volume 48, Issue 28, 1 April 2023, Pages 10315-10344. https://doi.org/10.1016/j.ijhydene.2022.12.033. DOI: https://doi.org/10.1016/j.ijhydene.2022.12.033
Ivanenko, N. P. and Petr Vladimirovich Tarasenko. “Cost of hydrogen production with using the share of electricity from a wind power plant in Ukraine.” The Problems of General Energy (2021), pp. 45–51. doi: https://doi.org/10.15407/pge2021.01.045 DOI: https://doi.org/10.15407/pge2021.01.045
Ramsden, Todd, Darlene Steward and Jarett Zuboy. “Analyzing the Levelized Cost of Centralized and Distributed Hydrogen Production Using the H2A Production Model, Version 2.” Technical Report NREL/TP-560-46267. September 2009. DOI: https://doi.org/10.2172/965528
Acharya, A.. “A Review of Renewable Electricity Cost and Capacity Factor Impact on Green Hydrogen Levelized Cost in Off-grid Configuration.” Journal of Sustainable Development; Vol. 16, No. 3; 2023. pp. 106-118. doi:10.5539/jsd.v16n3p106. DOI: https://doi.org/10.5539/jsd.v16n3p106
https://lcss.gov.ly/articles/blog/post-133/?fbclid= IwAR2UC1HXKUIEJzljX7s9XdIJKspEj FsILkiR0c YbXAHXxzZMmFVJGzzIzA0.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.