Navigating Renewable Energy Transition Challenges for a Sustainable Energy Future in Ghana

Authors

  • Mark Amoah Nyasapoh Department of Renewable Energy Engineering, School of Energy, and Regional Center for Excellence in Energy and Environmental Sustainability, University of Energy and Natural Resources (UENR), P. O. Box 214. Sunyani, Ghana.
  • Samuel Gyamfi Department of Renewable Energy Engineering, School of Energy, and Regional Center for Excellence in Energy and Environmental Sustainability, University of Energy and Natural Resources (UENR), P. O. Box 214. Sunyani, Ghana.
  • Seth Kofi Debrah Department of Nuclear Engineering, School of Nuclear and Allied Sciences, University of Ghana–Legon, P. O. Box AE1. Accra, Ghana.
  • Hossam A. Gabbar Smart Energy Systems Lab (SESL), and Advanced Plasma Engineering Lab (APEL) Faculty of Energy Systems and Nuclear Science, and Faculty of Engineering and Applied Science Ontario Tech University, Canada.
  • Nana Sarfo Agyemang Derkyi School of Energy, University of Energy and Natural Resources (UENR), P. O. Box 214. Sunyani, Ghana.
  • Yasser Fathi Nassar Islamic University of Gaza, Gaza, Palestine; and Wadi Alshatti University, Brack, Libya.
  • Romeo Djimasbe Department of Renewable Energy Engineering, School of Energy, and Regional Center for Excellence in Energy and Environmental Sustainability, University of Energy and Natural Resources (UENR), P. O. Box 214. Sunyani, Ghana.
  • Joshua Gbinu Nuclear Power Institute, Ghana Atomic Energy Commission, P. O. Box LG 80, Legon, Accra, Ghana.
  • Flavio Odoi-Yorke Department of Renewable Energy Technology, School of Engineering, Cape Coast Technical University, Cape Coast, Ghana.
  • Hala J. El-Khozondar Electrical Engineering and smart systems Department, Islamic University of Gaza, Gaza, Palestine; and Department of Materials, Imperial college London, Royal School of Mines, London, SW7 2AZ, UK.

DOI:

https://doi.org/10.51646/jsesd.v14i1.479

Keywords:

sustainable energy development, renewable energy challenges, electricity generation mix, energy transition, resilient energy future, energy resources, sustainable energy solutions.

Abstract

The transition to a sustainable energy future in Ghana faces critical challenges, particularly in integrating renewable energy sources like solar and wind into the national grid. This study examined Ghana’s progress in renewable energy adoption using the International Atomic Energy Agency’s (IAEA) Model for Energy Supply Strategies and Their General Environmental Impacts (MESSAGE) tool. It evaluates the feasibility of achieving the 10% renewable energy target set in national energy policies by 2030 and beyond, highlighting key challenges and their impact on the country’s energy transition efforts. The findings revealed a significant shortfall, with renewable energy penetration reaching only 4.77%, far below the targeted 10%. The actual installed capacity of renewable energy sources ranges from 150.87 MW to 377.18 MW, falling considerably short of the projected 219.75 MW to 645.71 MW from 2020 to 2050, respectively. Expanding Ghana’s renewable energy sector remains challenging, with fossil-based thermal generation continuing to dominate, raising concerns about emissions and sustainability. Overcoming barriers to renewable energy penetration requires targeted policies, investment in energy storage, smart grids, and financial incentives. Additionally, integrating renewables with low-carbon baseload options like Small Modular Reactors (SMRs) could accelerate Ghana’s energy transition. Achieving a sustainable energy future will depend on strong governmental commitment, private sector involvement, and technological innovation to bridge the gap between energy targets and actual capacity while significantly creating jobs.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

. Abban, J., & Awopone, A. (2021). Techno-Economic and Environmental Analysis of Energy Scenarios in Ghana. Smart Grid and Renewable Energy, 12(06), 81–98. https://doi.org/10.4236/sgre.2021.126006 DOI: https://doi.org/10.4236/sgre.2021.126006

. Ahuja, D., Schaffer, D., & Tatsutani, M. (2019). Sustainable energy for developing countries. Sapiens-823, 2(May). http://journals.openedition.org/sapiens/823

. Ali, A. F. M., Karram, E. M. H., Nassar, Y. F., & Hafez, A. A. (2021). Reliable and Economic Isolated Renewable Hybrid Power System with Pumped Hydropower Storage. 2021 22nd International Middle East Power Systems Conference (MEPCON), 515–520. https://doi.org/10.1109/MEPCON50283.2021.9686233 DOI: https://doi.org/10.1109/MEPCON50283.2021.9686233

. Almihat, M. G. M., Kahn, M. T. E., Aboalez, K., & Almaktoof, A. M. (2022). Energy and Sustainable Development in Smart Cities: An Overview. Smart Cities, 5(4), 1389–1408. https://doi.org/10.3390/smartcities5040071 DOI: https://doi.org/10.3390/smartcities5040071

. Amer, K., Irhouma, M., Hamdan, M., Aqila, A., Ahmed, A., Fakher, M., & Alkhazmi, A. (2025). Economic-Environmental-Energetic (3E) analysis of Photovoltaic Solar Energy Systems: Case Study of Mechanical & Renewable Energy Engineering Departments at Wadi AlShatti University. Wadi Alshatti University Journal of Pure and Applied Sciences, 51–58. https://waujpas.com/index.php/journal/article/view/108

. Andrianov, A. A., Kuptsov, I. S., Osipova, T. A., Andrianova, O. N., & Utyanskaya, T. V. (2019). Optimization models of a two-component nuclear energy system with thermal and fast reactors in a closed nuclear fuel cycle. Nuclear Energy and Technology, 5, 39. https://doi.org/10.3897/nucet.5.33981 DOI: https://doi.org/10.3897/nucet.5.33981

. Asuamah, E. Y., Gyamfi, S., & Dagoumas, A. (2021). Potential of meeting electricity needs of off-grid community with mini-grid solar systems. Scientific African, 11, e00675. https://doi.org/10.1016/j.sciaf.2020.e00675 DOI: https://doi.org/10.1016/j.sciaf.2020.e00675

. Awad, H., Nassar, Y. F., Hafez, A., Sherbiny, M. K., & Ali, A. F. . (2022). Optimal design and economic feasibility of rooftop photovoltaic energy system for Assuit University, Egypt. Ain Shams Engineering Journal, 13(3), 101599. https://doi.org/10.1016/j.asej.2021.09.026 DOI: https://doi.org/10.1016/j.asej.2021.09.026

. Awopone, A. K., Zobaa, A. F., & Banuenumah, W. (2017). Assessment of optimal pathways for power generation system in Ghana. Cogent Engineering, 4(1), 1314065. https://doi.org/10.1080/23311916.2017.1314065 DOI: https://doi.org/10.1080/23311916.2017.1314065

. Bragg-Sitton, S., Gorman, J., Burton, G., Moore, M., Siddiqui, A., Nagasawa, T., Kamide, H., Shibata, T., Arai, S., Araj, K., Chesire, E., Stone, T., Rogers, P., Peel, G., Kamide, H., Berthelemy, M., Paillere, H., Fraser, P., Wanner, B., … Forsberg, C. (2020). Flexible Nuclear Energy for Clean Energy Systems (Issue September). National Renewable Energy Lab.(NREL), Golden, CO (United States). https://doi.org/10.2172/1665841 DOI: https://doi.org/10.2172/1665841

. Chien, F., Vu, T. L., Hien Phan, T. T., Van Nguyen, S., Viet Anh, N. H., & Ngo, T. Q. (2023). Zero-carbon energy transition in ASEAN countries: The role of carbon finance, carbon taxes, and sustainable energy technologies. Renewable Energy. https://doi.org/10.1016/j.renene.2023.04.116 DOI: https://doi.org/10.1016/j.renene.2023.04.116

. Cosgrove, P., Roulstone, T., & Zachary, S. (2023). Intermittency and periodicity in net-zero renewable energy systems with storage. Renewable Energy, 212, 299–307. https://doi.org/10.1016/j.renene.2023.04.135 DOI: https://doi.org/10.1016/j.renene.2023.04.135

. Debrah, S. K., Nyasapoh, M. A., Ameyaw, F., Yamoah, S., Allotey, N. K., & Agyeman, F. (2020). Drivers for Nuclear Energy Inclusion in Ghana’s Energy Mix. Journal of Energy, 2020, 1–12. https://doi.org/10.1155/2020/8873058 DOI: https://doi.org/10.1155/2020/8873058

. El‐Khozondar, H. J., El‐batta, F., El‐Khozondar, R. J., Nassar, Y., Alramlawi, M., & Alsadi, S. (2023). Standalone hybrid PV/wind/diesel-electric generator system for a COVID-19 quarantine center. Environmental Progress & Sustainable Energy, 42(3), e14049. https://doi.org/10.1002/ep.14049 DOI: https://doi.org/10.1002/ep.14049

. Elnaggar, M., El-Khozondar, H. J., Salah, W. A., Nassar, Y. F., & Bashir, M. J. K. (2024). Assessing the Techno-enviro-economic viability of wind farms to address electricity shortages and Foster sustainability in Palestine. Results in Engineering, 24, 103111. https://doi.org/10.1016/j.rineng.2024.103111 DOI: https://doi.org/10.1016/j.rineng.2024.103111

. Enerdatics. (2022). Tax incentives for solar and energy storage systems. Energy-Data-Analytics. https://enerdatics.com/blog/tax-incentives-solar-energystorage/

. Energy Commission. (2023). 2023 National Energy Statistics. In Energy Commission, Ghana (Issue April). www.energycom.gov.gh

. Energy Commission Ghana. (2019a). Energy Profile of Districts in Ghana. Energy Commission of Ghana, December. http://www.energycom.gov.gh/files/DISTRICT ENERGY PROFILE - Draft Final.pdf

. Energy Commission Ghana. (2019b). Strategic National Energy Plan (SNEP 2030) Energy Demand Projections for the Economy of Ghana. Volume One Energy. http://www.energycom.gov.gh/files/SNEP Demand Oct2019_SNEP2030_Final.pdf

. Essel Ben, H. (2015). Renewable Energy Policy Review, Identification of Gaps and Solutions in Ghana. Energy Commission of Ghana. https://energycom.gov.gh/rett/files/Renewable-Energy-Policy-Review-Identification-of-Gaps-and-Solutions-in-Ghana.pdf

. Esteves, O. L. A., & Gabbar, H. A. (2023). Nuclear-Renewable Hybrid Energy System with Load Following for Fast Charging Stations. Energies, 16(10), 4151. https://doi.org/10.3390/en16104151 DOI: https://doi.org/10.3390/en16104151

. European Parliament. (2022). Taxonomy: MEPs do not object to inclusion of gas and nuclear activities. https://www.europarl.europa.eu/news/en/press-room/20220701IPR34365/taxonomy-meps-do-not-object-to-inclusion-of-gas-and-nuclear-activities

. Ghana Energy Commission. (2024). 2024 National Energy Statistical Bulletin. https://www.energycom.gov.gh/newsite/index.php/planning/energy-statistics

. Ghana News Agency. (2024). Ghana to settle on nuclear power plant vendor by end of 2024. Article.

. Hafez, A. A., Nassar, Y. F., Hammdan, M. I., & Alsadi, S. Y. (2020). Technical and Economic Feasibility of Utility-Scale Solar Energy Conversion Systems in Saudi Arabia. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 44(1), 213–225. https://doi.org/10.1007/s40998-019-00233-3 DOI: https://doi.org/10.1007/s40998-019-00233-3

. Huang, W.-C., Zhang, Q., & You, F. (2023). Impacts of battery energy storage technologies and renewable integration on the energy transition in the New York State. Advances in Applied Energy, 9, 100126. https://doi.org/https://doi.org/10.1016/j.adapen.2023.100126 DOI: https://doi.org/10.1016/j.adapen.2023.100126

. IAEA. (2023). Nuclear–Renewable Hybrid Energy Systems. In IAEA Nuclear Energy Series No. NR-T-1.24 (Vol. 4, Issue IAEA Nucl. Energy Ser. No. NR-T-1.24). https://www.iaea.org/publications/15098/nuclear-renewable-hybrid-energy-systems

. IIASA. (2020). MESSAGE: A modeling framework for medium- to long-term energy system planning, energy policy analysis, and scenario development. International Institute for Applied System Analysis. https://previous.iiasa.ac.at/web/home/research/researchPrograms/Energy/MESSAGE.en.html

. International Atomic Energy Agency. (2016). Modelling Nuclear Energy Systems with MESSAGE: A User’s Guide. http://www.iaea.org/Publications/index.html

. International Energy Agency. (2024). Electricity 2024 - Analysis and forecast to 2026. https://www.iea.org/reports/electricity-2024

. IRENA. (2019). Scaling Up Renewable Energy Development in Africa: Impact of IRENA’s Engagement. IMPACT OVERVIEW OF IRENA‘S ENGAGEMENT, January, 1–20. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Jan/IRENA_Africa_impact_2019.pdf?la=en&hash=6B16ABE754FF6F843601E1E362F5D6B730ADF7A2

. IRENA. (2021a). IRENA and IAEA to Help African Union Develop Continental Power Master Plan with EU support. International Renewable Energy Agency. https://irena.org/newsroom/articles/2021/Sep/IRENA-and-IAEA-Selected-to-Help-African-Union-Develop-Continental-Power-Master-Plan-with-EU-support

. IRENA. (2021b). The Renewable Energy Transition in Africa: Country Studies for Côte d’Ivoire, Ghana, South Africa, Morocco and Rwanda. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/March/Renewable-Energy-Transition-Africa_Country_Studies_2021.pdf

. IRENA. (2021c). The Renewable Energy Transition in Africa: Powering Access, Resilience and Prosperity. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/March/Renewable_Energy_Transition_Africa_2021.pdf

. IRENA. (2022). Energy Transition Holds Key to Tackle Global Energy and Climate Crisis. Press Release. https://www.irena.org/news/pressreleases/2022/Mar/Energy-Transition-Holds-Key-to-Tackle-Global-Energy-and-Climate-Crisis

. IRENA. (2023a). NDCs and renewable energy targets in 2023: Tripling renewable power by 2030. https://www.irena.org/Publications/2023/Dec/NDCs-and-renewable-energy-targets-in-2023-Tripling-renewable-power-by-2030

. IRENA. (2023b). World Energy Transitions Outlook 2023: 1.5°C Pathway. https://www.irena.org/Publications/2023/Jun/World-Energy-Transitions-Outlook-2023

. IRENA and AfDB. (2022). Renewable Energy Market Analysis : Africa and Its Regions. In Energy Market. https://www.irena.org/publications/2022/Jan/Renewable-Energy-Market-Analysis-Africa

. Jenkins, J. D., Zhou, Z., Ponciroli, R., Vilim, R. B., Ganda, F., de Sisternes, F., & Botterud, A. (2018). The benefits of nuclear flexibility in power system operations with renewable energy. Applied Energy, 222, 872–884. https://doi.org/10.1016/J.APENERGY.2018.03.002 DOI: https://doi.org/10.1016/j.apenergy.2018.03.002

. Johansson, T. B., Patwardhan, A. P., Nakićenović, N., & Gomez-Echeverri, L. (2012). Global energy assessment: toward a sustainable future. Cambridge University Press. https://previous.iiasa.ac.at/web/home/research/Flagship-Projects/Global-Energy-Assessment/Global_Energy_Assessment_FullReport.pdf DOI: https://doi.org/10.1017/CBO9780511793677

. Kabeyi, M. J. B., & Olanrewaju, O. A. (2022). Sustainable Energy Transition for Renewable and Low Carbon Grid Electricity Generation and Supply. Frontiers in Energy Research, 9, 743114. https://doi.org/10.3389/fenrg.2021.743114 DOI: https://doi.org/10.3389/fenrg.2021.743114

. Kanté, M., Deng, S., Li, Y., Kanté, M., & Coulibaly, S. (2023). Long-term optimization of hydro & solar power electricity generation in the Taoussa area of Mali using the MESSAGE model. Energy Reports, 9, 252–265. https://doi.org/10.1016/j.egyr.2022.11.183 DOI: https://doi.org/10.1016/j.egyr.2022.11.183

. Mahama, M., Derkyi, N. S. A., & Nwabue, C. M. (2021). Challenges of renewable energy development and deployment in Ghana: perspectives from developers. GeoJournal, 86(3), 1425–1439. https://doi.org/10.1007/s10708-019-10132-z DOI: https://doi.org/10.1007/s10708-019-10132-z

. Messner, S. (1997). Endogenized technological learning in an energy systems model. Journal of Evolutionary Economics, 7(3), 291–313. DOI: https://doi.org/10.1007/s001910050045

. MESTI. (2021). Ghana: Updated Nationally Determined Contribution under Paris Agreement (2020-2030). Environmental Protection Agency (EPA) and the Ministry of Environment, Science, Technology and Innovation (MESTI), September. https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Ghana First/Ghana%27s Updated Nationally Determined Contribution to the UNFCCC_2021.pdf

. Ministry of Energy. (2011). Renewable Energy Act 2011: Act 832 (pp. 1–27). http://energycom.gov.gh/files/RENEWABLE ENERGY ACT 2011 (ACT 832).pdf

. Ministry of Energy. (2019a). Ghana Energy Policy, 2019: Energy Sector as Engine for Economic Growth and Sustainable Development.

. Ministry of Energy. (2019b). Ghana Renewable Energy Master Plan. http://www.energycom.gov.gh/files/Renewable-Energy-Masterplan-February-2019.pdf

. Ministry of Energy. (2020). Renewable Energy (Amendment) ACT, 2020 (ACT 1045). 2020(Act 1045). https://www.purc.com.gh/attachment/58406-20210701030745.pdf

. Ministry of Energy. (2021). National Energy Policy: Energy Sector, an Engine for Economic Growth and Sustainable Development. https://energymin.gov.gh/sites/default/files/2023-09/2021 ENERGY POLICY.pdf

. Ministry of Energy. (2023). Ghana’s National Energy Transition Framework (2022-2070). https://www.energymin.gov.gh/search/node?keys=energy+transition

. Mohammadi, N., Mostofi, H., & Dienel, H. L. (2023). Policy Chain of Energy Transition from Economic and Innovative Perspectives: Conceptual Framework and Consistency Analysis. Sustainability 2023, Vol. 15, Page 12693, 15(17), 12693. https://doi.org/10.3390/SU151712693 DOI: https://doi.org/10.3390/su151712693

. Mohammed, S., Nassar, Y., El-Osta, W., El-Khozondar, H. J., Miskeen, A., & Basha, A. (2023). Carbon and energy life cycle analysis of wind energy industry in Libya. Journal of Solar Energy and Sustainable Development, 12(1). DOI: https://doi.org/10.51646/jsesd.v12i1.150

. Nassar, Y. F., El-khozondar, H. J., Ahmed, A. A., Alsharif, A., Khaleel, M. M., & El-Khozondar, R. J. (2024). A new design for a built-in hybrid energy system, parabolic dish solar concentrator and bioenergy (PDSC/BG): A case study – Libya. Journal of Cleaner Production, 441, 140944. https://doi.org/10.1016/j.jclepro.2024.140944 DOI: https://doi.org/10.1016/j.jclepro.2024.140944

. Nassar, Y. F., El-Khozondar, H. J., Alsadi, S. Y., Abuhamoud, N. M., & Miskeen, G. M. (2022). Atlas of PV Solar Systems Across Libyan Territory. 2022 International Conference on Engineering & MIS (ICEMIS), 1–6. https://doi.org/10.1109/ICEMIS56295.2022.9914355 DOI: https://doi.org/10.1109/ICEMIS56295.2022.9914355

. Nassar, Y. F., El-Khozondar, H. J., El-Osta, W., Mohammed, S., Elnaggar, M., Khaleel, M., Ahmed, A., & Alsharif, A. (2024). Carbon footprint and energy life cycle assessment of wind energy industry in Libya. Energy Conversion and Management, 300, 117846. https://doi.org/10.1016/j.enconman.2023.117846 DOI: https://doi.org/10.1016/j.enconman.2023.117846

. Nassar, Y. F., El-Khozondar, H. J., & Fakher, M. A. (2025). The role of hybrid renewable energy systems in covering power shortages in public electricity grid: An economic, environmental and technical optimization analysis. Journal of Energy Storage, 108, 115224. https://doi.org/10.1016/j.est.2024.115224 DOI: https://doi.org/10.1016/j.est.2024.115224

. Nassar, Y. F., El-Khozondar, H. J., Khaleel, M. M., Ahmed, A. A., Alsharif, A. H., Elmnifi, M. H., Salem, M. A., & Mangir, I. (2024). Design of reliable standalone utility-scale pumped hydroelectric storage powered by PV/Wind hybrid renewable system. Energy Conversion and Management, 322, 119173. https://doi.org/10.1016/j.enconman.2024.119173 DOI: https://doi.org/10.1016/j.enconman.2024.119173

. Nassar, Y. F., El-Khozondar, H. J., Khaleel, M. M., Ahmed, A. A., Alsharif, A. H., Elmnifi, M., & Nyasapoh, M. A. (2025). Sensitivity of global solar irradiance to transposition models: Assessing risks associated with model discrepancies. E-Prime - Advances in Electrical Engineering, Electronics and Energy, 11, 100887. https://doi.org/10.1016/j.prime.2024.100887 DOI: https://doi.org/10.1016/j.prime.2024.100887

. Nuclear Engineering International. (2023). Ghana selects potential sites for first NPP. https://www.neimagazine.com/news/newsghana-selects-potential-sites-for-first-npp-11174091

. Nyasapoh, M. A. (2018). Modelling Energy Supply Options for Long-term Electricity Generation A Case Study of Ghana Power System, Issue 10551085, University of Ghana.http://ugspace.ug.edu.gh/bitstream/handle/123456789/34942/Modelling Energy Supply Options for Long-Term Electricity Generation - A Case Study of Ghana Power .

. Nyasapoh, M. A., & Debrah, S. K. (2020). Nuclear Power Contribution Towards a Low-Carbon Electricity Generation for Ghana. Climate Change and the Role of Nuclear Power. Proceedings of an International Conference. Supplementary Files. https://inis.iaea.org/search/search.aspx?orig_q=RN:52004321

. Nyasapoh, M. A., Debrah, S. K., Anku, N. E. L., & Yamoah, S. (2022). Estimation of CO2 Emissions of Fossil-Fueled Power Plants in Ghana: Message Analytical Model. Journal of Energy, 2022, 1–10. https://doi.org/10.1155/2022/5312895 DOI: https://doi.org/10.1155/2022/5312895

. Nyasapoh, M. A., Debrah, S. K., & Twerefou, D. K. (2023). Long-term electricity generation analysis and policy implications – the case of Ghana. Cogent Engineering, 10(1). https://doi.org/10.1080/23311916.2023.2209996 DOI: https://doi.org/10.1080/23311916.2023.2209996

. Nyasapoh, M. A., Debrah, S. K., Twerefou, D. K., Gyamfi, S., & Kholi, F. K. (2022). An Overview of Energy Resource and Future Concerns for Ghana’s Electricity Generation Mix. Journal of Energy, 2022, 1–16. https://doi.org/10.1155/2022/1031044 DOI: https://doi.org/10.1155/2022/1031044

. Nyasapoh, M. A., Elorm, M. D., & Derkyi, N. S. A. (2022). The Role of Renewable Energies in Sustainable Development of Ghana. Scientific African, e01199. https://doi.org/10.1016/j.sciaf.2022.e01199 DOI: https://doi.org/10.1016/j.sciaf.2022.e01199

. Nyasapoh, M. A., Gyamfi, S., Debrah, S. K., Gabber, H. A., & Agyemang-Derkyi, N. S. (2024). Advancing Access to Affordable and Reliable Electricity Through Nuclear and Renewable Hybrid Energy Systems. In C. Aigbavboa, W. Thwala, J. N. Mojekwu, L. Atepor, E. Adinyira, G. Nani, & E. Bamfo-Agyei (Eds.), Sustainable Education and Development—Clean Energy. ARCA 2023. (pp. 775–788). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-65357-5_51 DOI: https://doi.org/10.1007/978-3-031-65357-5_51

. Nyasapoh, M. A., Gyamfi, S., Debrah, S. K., Gabber, H. A., & Derkyi, N. S. A. (2024). Advancing Africa’s Sustainable Energy Development Through Small Modular Reactors (SMRs) as Low-Carbon Power Solution. 2024 IEEE 12th International Conference on Smart Energy Grid Engineering (SEGE), 103–108. https://doi.org/10.1109/SEGE62220.2024.10739595 DOI: https://doi.org/10.1109/SEGE62220.2024.10739595

. Nyasapoh, M. A., Gyamfi, S., Debrah, S. K., Gaber, H. A., & Derkyi, N. S. A. (2023). Evaluating the Effectiveness of Clean Energy Technologies (Renewables and Nuclear) and External Support for Climate Change Mitigation in Ghana. 2023 IEEE 11th International Conference on Smart Energy Grid Engineering (SEGE), 167–171. https://doi.org/10.1109/SEGE59172.2023.10274595 DOI: https://doi.org/10.1109/SEGE59172.2023.10274595

. Nyasapoh, M. A., Gyamfi, S., Debrah, S. K., Gaber, H., & Derkyi, N. S. A. (2022). Assessment of the Economic Viability of Nuclear-Renewable Hybrid Energy Systems: Case for Ghana. 2022 IEEE 10th International Conference on Smart Energy Grid Engineering (SEGE), 74–80. https://doi.org/10.1109/SEGE55279.2022.9889765 DOI: https://doi.org/10.1109/SEGE55279.2022.9889765

. Odunayo Adewunmi Adelekan, Bamidele Segun Ilugbusi, Olawale Adisa, Ogugua Chimezie Obi, Kehinde Feranmi Awonuga, Onyeka Franca Asuzu, & Ndubuisi Leonard Ndubuisi. (2024). ENERGY TRANSITION POLICIES: A GLOBAL REVIEW OF SHIFTS TOWARDS RENEWABLE SOURCES. Engineering Science & Technology Journal, 5(2), 272–287. https://doi.org/10.51594/estj.v5i2.752 DOI: https://doi.org/10.51594/estj.v5i2.752

. Panagoda, L., Sandeepa, R., Perera, W., Sandunika, D. M. I., Siriwardhana, S., Alwis, M., & Dilka, S. H. S. (2023). Advancements In Photovoltaic (Pv) Technology for Solar Energy Generation. Journal of Research Technology and Ingeneering.

. Parliament of Ghana. (2020). The Renewable Energy (Amendment) Bill, 2020 Read the Third Time and Passed. https://www.parliament.gh/news?CO=98

. Pérez-Arriaga, I. (2012). Managing Large-Scale Penetration of Intermittent Renewables. MIT Energy Initiative Symposium on Managing Large-Scale. https://energy.mit.edu/wp-content/uploads/2012/03/MITEI-RP-2011-001.pdf

. Phan, H.-V. (2020). Prompting an energy transition: how policy entrepreneurs passed Peru’s first renewable energy legislation for the grid. In The Regulation and Policy of Latin American Energy Transitions (pp. 75–93). Elsevier. https://doi.org/10.1016/B978-0-12-819521-5.00005-X DOI: https://doi.org/10.1016/B978-0-12-819521-5.00005-X

. Quitzow, R., Thielges, S., Goldthau, A., Helgenberger, S., & Mbungu, G. (2019). Advancing a global transition to clean energy–the role of international cooperation. Economics, 13(1), 20190048. https://doi.org/http://dx.doi.org/10.5018/economics-ejournal.ja.2019-48 DOI: https://doi.org/10.5018/economics-ejournal.ja.2019-48

. Ramachandran, T., Mourad, A.-H. I., & Hamed, F. (2022). A Review on Solar Energy Utilization and Projects: Development in and around the UAE. Energies, 15(10), 3754. https://doi.org/10.3390/en15103754 DOI: https://doi.org/10.3390/en15103754

. Rao, S., Riahi, K., Stehfest, E., Van Vuuren, D. P., Cho, C., Den Elzen, M. G. J., Isaac, M., & van Vliet, J. (2008). IMAGE and MESSAGE scenarios limiting GHG concentration to low levels.

. Rečka, L. (2011). Electricity system optimization: A case of the Czech electricity system–application of model MESSAGE. Proceedings of the 5th International Days of Statistics and Economics.

. REN21. (2019). Renewable Energy Policy Network for the 21st Century Renewables 2017 Global Status Report. In REN21 Secretariat: Paris, France, 1-302 (Vol. 72, Issue October 2016). https://repository.usp.ac.fj/11648/1/gsr_2019_full_report_en.pdf

. Republic of Ghana. (2015). GH-INDC - Ghana’s intended nationally determined contribution (INDC) and accompanying explanatory note.

. Salem, M., Elmabruk, A., Irhouma, M., & Mangir, I. (2025). Assessment of Wind Energy Potential in Western Mountain: Nalut and Yefren as Case Study. Wadi Alshatti University Journal of Pure and Applied Sciences, 35–42. https://doi.org/https://orcid.org/0009-0006-7190-2396

. Schrattenholzer, L. (1981). The energy supply model MESSAGE (Issue December). http://pure.iiasa.ac.at/1542

. Scire, J. S., Strimaitis, D. G., & Yamartino, R. J. (2000). A User’s Guide for the CALPUFF Dispersion Model.

. Selvakkumaran, S., & Limmeechokchai, B. (2011). Assessment of Thailand’s energy policies on energy security. 2011 International Conference & Utility Exhibition on Power and Energy Systems: Issues and Prospects for Asia (ICUE), 1–6. https://doi.org/10.1109/ICUEPES.2011.6497739 DOI: https://doi.org/10.1109/ICUEPES.2011.6497739

. Tan, K. M., Babu, T. S., Ramachandaramurthy, V. K., Kasinathan, P., Solanki, S. G., & Raveendran, S. K. (2021). Empowering smart grid: A comprehensive review of energy storage technology and application with renewable energy integration. Journal of Energy Storage, 39, 102591. https://doi.org/10.1016/j.est.2021.102591 DOI: https://doi.org/10.1016/j.est.2021.102591

. The World Bank. (2022). Tracking SDG 7 – The Energy Progress Report 2022. https://www.worldbank.org/en/topic/energy/publication/tracking-sdg-7-the-energy-progress-report-2022

. United Nations Climate Change. (2022). The Paris Agreement. UNFCCC Process-and-Meetings. https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement

. World Nuclear News. (2024). IAEA commends Ghana on nuclear power programme progress.

Downloads

Published

2025-03-06

How to Cite

Nyasapoh, M., Gyamfi , S., Debrah , S. K. ., Gabbar , H., Derkyi , N. ., Nassar , Y., Djimasbe , R., Gbinu , J., Odoi-Yorke , F. ., & El-Khozondar , H. . (2025). Navigating Renewable Energy Transition Challenges for a Sustainable Energy Future in Ghana. Solar Energy and Sustainable Development Journal, 14(1), 237–257. https://doi.org/10.51646/jsesd.v14i1.479

Issue

Section

Articles