Biomethane and Green Hydrogen Production Potential from Municipal Solid Waste :

In Cape Coast, Ghana.

Authors

  • Isiaka Alani West African Service Center for Climate Change and Adaptive Land Use (WASCAL), University of Lomé, Lomé, 01 BP 1515, Lomé1, Togo
  • Milohum Mikesokpo DZAGLI 2Laboratoire de Physique des Matériaux et Composants à Semi-conducteurs, University of Lomé, Lomé, 01 BP 1515, Lomé1, Togo 3Regional Centre of Excellence on Electricity Management (CERME), University of Lomé, Lomé, 01 BP 1515, Lomé1, Togo
  • Damgou Mani Kongnine West African Service Center for Climate Change and Adaptive Land Use (WASCAL), University of Lomé, Lomé, 01 BP 1515, Lomé1, Togo, Regional Centre of Excellence on Electricity Management (CERME), University of Lomé, Lomé, 01 BP 1515, Lomé1, Togo
  • Satyanarayana Narra Department of Waste and Resource Management, University of Rostock, 18059 Rostock, Germany, German Biomass Research Centre gGmbH, 04347 Leipzig, Germany
  • Zipporah Asiedu Department of Waste and Resource Management, University of Rostock, 18059 Rostock, Germany

DOI:

https://doi.org/10.51646/jsesd.v13i2.204

Keywords:

Biomethane, municipal solid waste, food waste management, green hydrogen, pollutant emissions, renewable energy.

Abstract

Biomethane and hydrogen are promising elements in the transition towards sustainable energy, due to their capacity to mitigate greenhouse gas emissions. In Ghana, efforts to promote sustainable waste valorization for energy production are underway; however, organic waste conversion into biomethane and hydrogen still needs to be expanded. This study aims to evaluate the potential of producing biomethane and hydrogen from the municipal solid waste in Cape Coast, and their injection into the national gas grid. The upgrading biogas obtained from anaerobic digestion of food/organic wastes was used to generate biomethane. The modified Buswell Equation and data from literature were used to estimate the amount of biomethane and hydrogen. The environmental impact was assessed using the CO2 equivalent emissions. The findings reveal that Cape Coast generated approximately 6,400 tons of food waste in 2021, with a projection to 11,000 tons by 2050. Biomethane and hydrogen quantities was estimated at 3,700,000 m³ and 784,000 kg in 2021, respectively. Their projection reaches to 6,600,000 m³ and 1,400,000 kg by 2050. Converting waste into biomethane and hydrogen is an eco-friendly method of their management and use for renewable energy in Ghana. Strategies can be integrated into Ghana national energy policies to encourage waste-to-energy projects.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

S. Chakraborty, S. Dash, R. Madurai Elavarasan, A. Kaur, D. Elangovan, S. Meraj, P. Kasinathan, Z. Said, “Hydrogen Energy as Future of Sustainable Mobility”, Frontiers in Energy Research, vol. 10, pp. 1–23, 2022. https://doi.org/10.3389/fenrg.2022.893475. DOI: https://doi.org/10.3389/fenrg.2022.893475

F. Mneimneh, H. Ghazzawi, M. Hejjeh, M. Manganelli, S. Ramakrishna, (2023), “Roadmap to Achieving Sustainable Development via Green Hydrogen”, Energies, vol. 16, no. 3, p. 1368. https://doi.org/10.3390/en16031368. DOI: https://doi.org/10.3390/en16031368

D. Prato-Garcia, A. Robayo-Avendaño, R. Vasquez-Medrano, “Hydrogen from natural gas and biogas: Building bridges for a sustainable transition to a green economy”, Gas Science and Engineering, vol. 111, p. 204918, 2023. https://doi.org/10.1016/j.jgsce.2023.204918. DOI: https://doi.org/10.1016/j.jgsce.2023.204918

O. Sarkar, J.A. Modestra, U. Rova, P. Christakopoulos, L. Matsakas, “Waste-Derived Renewable Hydrogen and Methane: Towards a Potential Energy Transition Solution”, Fermentation, vol. 9, p. 368, 2023. https://doi.org/10.3390/fermentation9040368. DOI: https://doi.org/10.3390/fermentation9040368

M. Calero, V. Godoy, C.G. Heras, E. Lozano, S. Arjandas, M.A. Martín-Lara, “Current state of biogas and biomethane production and its implications for Spain”, Sustainable Energy and Fuels, vol. 7, pp. 3584–3602, 2023. https://doi.org/10.1039/D3SE00419H. DOI: https://doi.org/10.1039/D3SE00419H

International Energy Agency, “Renewables 2022 - Analysis and forecast to 2027”, OECD Publishing, Paris, 2022, https://doi.org/10.1787/96bc279a-en. DOI: https://doi.org/10.1787/96bc279a-en

Intergovernmental Panel on Climate Change (IPCC). “Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change”. Cambridge University Press; 2023. DOI: https://doi.org/10.1017/9781009157896

G. Basso, L. Pastore, A. Mojtahed,L. Santoli, “From landfill to hydrogen: Techno-economic analysis of hybridized hydrogen production systems integrating biogas reforming and Power-to-Gas technologies”, International Journal of Hydrogen Energy, vol. 48, pp. 37607–37624, 2023. https://doi.org/10.1016/j.ijhydene.2023.07.130. DOI: https://doi.org/10.1016/j.ijhydene.2023.07.130

M. Ozturk, I. Dincer, “An integrated system for clean hydrogen production from municipal solid wastes”, International Journal of Hydrogen Energy, vol. 46, pp. 6251–6261, 2021. https://doi.org/10.1016/j.ijhydene.2020.11.145. DOI: https://doi.org/10.1016/j.ijhydene.2020.11.145

L. Figueroa-Escamilla, S. Gonzalez-Martinez, R. Campuzano, I. Valdez-Vazquez, “Methane production and bromatological characteristics of the different fractions of organic municipal solid waste”, Detritus, vol. 15, pp. 13–23, 2021. https://doi.org/10.31025/2611-4135/2021.15095. DOI: https://doi.org/10.31025/2611-4135/2021.15095

E. Nocete, J. Perez, “A Simple Methodology for Estimating the Potential Biomethane Production in a Region: Application in a Case Study”, Sustainability, VOL. 14, p. 15978, 2022. https://doi.org/10.3390/su142315978. DOI: https://doi.org/10.3390/su142315978

D. Cudjoe, E. Nketiah, B. Zhu, “Evaluation of potential power production and reduction in GHG emissions from bio-compressed natural gas derived from food waste in Africa”, Sustainable Production and Consumption, vol. 42, pp. 2–13, 2023. https://doi.org/10.1016/j.spc.2023.09.004. DOI: https://doi.org/10.1016/j.spc.2023.09.004

B. Amponsem, E.C. Bensah, E. Antwi, J.C. Ahiekpor, B. Boahen, I.Mensah, S. Narra, “Electricity generation from biogas as resource recovery potential from solid waste composition in a mixed-income municipality”, Clean Waste Systems, vol. 4, p. 100067, 2023. https://doi.org/10.1016/j.clwas.2022.100067. DOI: https://doi.org/10.1016/j.clwas.2022.100067

J. Darmey, J.C. Ahiekpor, S. Narra, O.-W. Achaw, H.F. Ansah, “Municipal Solid Waste Generation Trend and Bioenergy Recovery Potential: A Review”, Energies, vol. 16, p. 7753, 2023. https://doi.org/10.3390/en16237753. DOI: https://doi.org/10.3390/en16237753

N. Nelson, J. Darkwa, J. Calautit, “Prospects of Bioenergy Production for Sustainable Rural Development in Ghana”, Journal of Sustainable Bioenergy Systems, vol. 11, pp. 227–259, 2021. https://doi.org/10.4236/jsbs.2021.114015. DOI: https://doi.org/10.4236/jsbs.2021.114015

L.E. Agbefe, E.T. Lawson, D. Yirenya-Tawiah, “Awareness on waste segregation at source and willingness to pay for collection service in selected markets in Ga West Municipality, Accra, Ghana”, Journal of Material Cycles and Waste Management, vol. 21, pp. 905–914, 2019. https://doi.org/10.1007/s10163-019-00849-x. DOI: https://doi.org/10.1007/s10163-019-00849-x

P. Owusu-Ansah, A.A.Obiri-Yeboah, E.K. Nyantakyi, S.K. Woangbah, S.I.I.K. Yeboah, “Ghanaian inclination towards household waste segregation for sustainable waste management”, Scientific African, vol. 17, p. e01335, 2022. https://doi.org/10.1016/j.sciaf.2022.e01335. DOI: https://doi.org/10.1016/j.sciaf.2022.e01335

E. Amo-Asamoah, D.-G. Owusu-Manu, G. Asumadu, F.A. Ghansah, D.J. Edwards, “Potential for waste to energy generation of municipal solid waste (MSW) in the Kumasi metropolis of Ghana”, International Journal of Energy Sector Management, vol. 14, pp. 1315–1331, 2020. https://doi.org/10.1108/IJESM-12-2019-0005. DOI: https://doi.org/10.1108/IJESM-12-2019-0005

A. Mertins, M. Heiker, S. Rosenberger, T. Wawer, “Competition in the conversion of the gas grid: Is the future of biogas biomethane or hydrogen?” International Journal of Hydrogen Energy, vol. 48, pp. 32469–32484, 2023. https://doi.org/10.1016/j.ijhydene.2023.04.270. DOI: https://doi.org/10.1016/j.ijhydene.2023.04.270

E. Kumi, “The Electricity Situation in Ghana: Challenges and Opportunities” [Internet], CGD Policy Paper. Washington, DC: Center for Global Development, 2017. Available at: https://www.cgdev.org/publication/electricity-situation-ghana-challenges-and-opportunities. (Accessed: 21 December 2023)

A. Afful-Dadzie, S.K. Mensah, E. Afful-Dadzie, “Ghana renewable energy master plan: The benefits of private sector participation”, Scientific African, vol. 17, p. e01353, 2022. https://doi.org/10.1016/j.sciaf.2022.e01353. DOI: https://doi.org/10.1016/j.sciaf.2022.e01353

Ghana Energy Commission, “Annual Report and Audited Financial Statements for 2019” [Internet]. p126, 2019. Available at: http://www.energycom.gov.gh/about/annual-reports?download=152:annual-report-for-2019.(Accessed: 11 December 2023)

C.C. Ajaero, C.C. Okafor, F.A. Otunomo, N.N. Nduji, J.A. Adedapo, “Energy production potential of organic fraction of municipal solid waste (OFMSW) and its implications for Nigeria”, Clean Technologies and Recycling, vol. 3, 44–65, 2023. https://doi.org/10.3934/ctr.2023003. DOI: https://doi.org/10.3934/ctr.2023003

B. Gungor, I. Dincer, “Development of a sustainable community with an integrated renewable and waste to energy system for multiple useful outputs”, Journal of Cleaner Production, vol. 312, p. 127704, 2021. https://doi.org/10.1016/j.jclepro.2021.127704. DOI: https://doi.org/10.1016/j.jclepro.2021.127704

Ghana Statistical Service, “Population and Housing Census”, Population of Regions and Districts General Report, vol. 3A. p. 128, 2021.

Ghana Meteorological Agency, “Ghana Meteorological Agency’s Seasonal Forecast for The Northern Sector and Seasonal Forecast Update for The Southern Sector of Ghana: June-Aug (Jja) And July - Sept (Jas) For The Country”. Ref. No: Met. 9.3/207, 2023. [Inernet]. Available at: https://www.meteo.gov.gh/gmet/wp-content/uploads/2022/05/JJA_JAS-Seasonal-Forecast_North-2022.pdf (Accessed: 14 January 2024).

Ghana Web, “Ghana Gas set to construct major 290-kilometre gas pipeline” – MP, 2022. [Internet]. GhanaWeb. Available at: https://www.ghanaweb.com/GhanaHomePage/business/Ghana-Gas-set-to-construct-major-290-kilometre-gas-pipeline-MP-1601444 (Accessed: 11 December 2023).

Ministry of Petroleum, “Gas Master Plan”, 2016. [Internet]. Available at: https://uploads-ssl.webflow.com/5a92987328c28c00011db053/5bbf7dca7a04d6da6a45aa82_GMP-Final-Jun16.pdf (Accessed: 14 January 2024).

A. Kwarteng, “Changing face of estate housing development in the Cape Coast Metropolis” [dissertation], 2016. Cape Coast: Univ. of Cape Coast, Ghana.

UN-Habitat, “City waste data collected with the Waste Wise Cities Tool”. Step by Step Guide to Assess a City’s Municipal Solid Waste Management Performance through SDG indicator 11.6.1 Monitoring. p. 84, 2021. [Internet]. Avaliable at: URL https://unh.rwm.global/Map (Accessed: 06 December 2023).

P. Gyimah, S. Mariwah, K.B. Antwi, K. Ansah-Mensah, “Households’ solid waste separation practices in the Cape Coast Metropolitan area, Ghana”, GeoJournal, vol. 86, pp. 567–583, 2021. https://doi.org/10.1007/s10708-019-10084-4. DOI: https://doi.org/10.1007/s10708-019-10084-4

V. Seshie, K. Obiri-Danso, K. Miezah, “Municipal Solid Waste Characterisation and Quantification as a measure towards Effective Waste Management in the Takoradi Sub-Metro, Ghana”, Ghana Mining Journal, vol. 20 no 2, pp. 86-98, 2020. DOI: https://doi.org/10.4314/gm.v20i2.10

K. Miezah, K. Obiri-Danso, Z. Kádár, B. Fei-Baffoe, M. Y. Mensah, “Municipal solid waste characterization and quantification as a measure towards effective waste management in Ghana”, Waste Management, Vol. 46, pp. 15-27, 2015. https://doi.org/10.1016/j.wasman.2015.09.009. DOI: https://doi.org/10.1016/j.wasman.2015.09.009

P.A. Seglah, Y. Wang, H. Wang, K.A. Wobuibe Neglo, K. Zhou, N. Sun, J. Shao, J. Xie, Y. Bi, C. Gao, “Utilization of food waste for hydrogen-based power generation: Evidence from four cities in Ghana”, Heliyon, vol. 9, p. e14373, 2023. https://doi.org/10.1016/j.heliyon.2023.e14373 DOI: https://doi.org/10.1016/j.heliyon.2023.e14373

A.S.O. Ogunjuyigbe, T.R. Ayodele, M.A. Alao, “Electricity generation from municipal solid waste in some selected cities of Nigeria: an assessment of feasibility, potential and technologies”, Renew. Sustain. Energy Rev. Vol 80, pp. 149–162, 2017, https://doi.org/10.1016/j.rser.2017.05.177. DOI: https://doi.org/10.1016/j.rser.2017.05.177

C. Morales-Polo, M. Del Mar Cledera-Castro, B.Y. Moratilla Soria, “Reviewing the Anaerobic Digestion of Food Waste: From Waste Generation and Anaerobic Process to Its Perspectives”, Applied Sciences, vol. 8, 1804, 2018. https://doi.org/10.3390/app8101804. DOI: https://doi.org/10.3390/app8101804

T.R. Ayodele, M.A. Alao, A.S.O. Ogunjuyigbe, J.L. Munda, “Electricity generation prospective of hydrogen derived from biogas using food waste in south-western Nigeria”, Biomass and Bioenergy, vol. 127, p. 105291, 2019. https://doi.org/10.1016/j.biombioe.2019.105291. DOI: https://doi.org/10.1016/j.biombioe.2019.105291

A.M Yousef., W.M. El-Maghlany, Y.A. Eldrainy, A. Attia, “Upgrading biogas to biomethane and liquid CO2: A novel cryogenic process”, Fuel, vol. 251, pp. 611–628, 2019. https://doi.org/10.1016/j.fuel.2019.03.127 DOI: https://doi.org/10.1016/j.fuel.2019.03.127

A. Nielfa, R. Cano, M. Fdz-Polanco, “Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge”, Biotechnology Reports, vol. 5, pp. 14–21, 2015. https://doi.org/10.1016/j.btre.2014.10.005. DOI: https://doi.org/10.1016/j.btre.2014.10.005

A. Magrinho, V. Semiao, “Estimation of residual MSW heating value as a function of waste component recycling”, Waste Management, vol. 28, pp. 2675–2683, 2008. https://doi.org/10.1016/j.wasman.2007.12.011 DOI: https://doi.org/10.1016/j.wasman.2007.12.011

J. E Castellanos-Sánchez, F. A. Aguilar-Aguilar, R. Hernández‐Altamirano, José Apolonio Venegas Venegas, Deb Raj Aryal. “Biogas Purification Processes: Review and Prospects”. Biofuels vol. 15 no. 2, pp. 215–27, 2023. doi:10.1080/17597269.2023.2223801. DOI: https://doi.org/10.1080/17597269.2023.2223801

L. Salami, A.A Susu., R.J. Patinvoh, O.A. Olafadehan, “Characterization study of solid wastes: a case of Lagos state”, International Journal of Applied Science and Technology, vol. 1, no. 3, pp. 47-52, 2011.

L.B. Braga, J.L. Silveira, M.E. Da Silva, C.E. Tuna, E.B. Machin, D.T. Pedroso, “Hydrogen production by biogas steam reforming: A technical, economic and ecological analysis”, Renewable and Sustainable Energy Reviews, vol. 28, pp. 166–173, 2013. https://doi.org/10.1016/j.rser.2013.07.060 DOI: https://doi.org/10.1016/j.rser.2013.07.060

P. Bajpai, V. Dash, “Hybrid renewable energy systems for power generation in stand-alone applications: A review”, Renewable and Sustainable Energy Reviews, vol. 16, pp. 2926–2939, 2012. https://doi.org/10.1016/j.rser.2012.02.009. DOI: https://doi.org/10.1016/j.rser.2012.02.009

D. Cudjoe, W. Chen, B. Zhu, “Valorization of food waste into hydrogen: energy potential, economic feasibility and environmental impact analysis”, Fuel, vol. 324, Article 124476, 2022. 10.1016/j.fuel.2022.124476. DOI: https://doi.org/10.1016/j.fuel.2022.124476

C.H. Tan, S. Nomanbhay, A.H. Shamsuddin, Y.-K. Park, H. Hernández-Cocoletzi, P.L. Show, “Current Developments in Catalytic Methanation of Carbon Dioxide—A Review”, Frontiers in Energy Research, vol. 9, p. 795423, 2022. https://doi.org/10.3389/fenrg.2021.795423. DOI: https://doi.org/10.3389/fenrg.2021.795423

C.H. Tan, M.Y. Ong, S.M. Nomanbhay, A.H. Shamsuddin, P.L. Show, “The Influence of COVID-19 on Global CO2 Emissions and Climate Change: A Perspective from Malaysia”, Sustainability, vol. 13, p. 8461, 2021. https://doi.org/10.3390/su13158461. DOI: https://doi.org/10.3390/su13158461

A.J.K. Newman, G.R.M. Dowson, E.G.Platt, H.J. Handford-Styring, P. Styring, “Custodians of carbon: creating a circular carbon economy”, Frontiers in Energy Research, vol. 11, p. 1124072, 2023. https://doi.org/10.3389/fenrg.2023.1124072. DOI: https://doi.org/10.3389/fenrg.2023.1124072

M. Tommasi, S. N. Degerli, G. Ramis, I. Rossetti, “Advancements in CO2 methanation: comprehensive review of catalysis, reactor design and process optimization”, Chemical Engineering Research and Design, Vol. 201, pp. 457-482, 2024, https://doi.org/10.1016/j.cherd.2023.11.060. DOI: https://doi.org/10.1016/j.cherd.2023.11.060

T. Schaaf, J. Grünig, M.R. Schuster, T. Rothenfluh, A. Orth, “Methanation of CO2 - storage of renewable energy in a gas distribution system”, Energy, Sustainability and Society, vol. 4, Article number 2, pp. 1-14, 2014, https://doi.org/10.1186/s13705-014-0029-1 DOI: https://doi.org/10.1186/s13705-014-0029-1

R. Wahid, D.G. Mulat, J.C. Gaby, S.J. Horn, “Effects of H2: CO2 ratio and H2 supply fluctuation on methane content and microbial community composition during in-situ biological biogas upgrading”, Biotechnology for Biofuels, vol. 12, p. 104, 2019. https://doi.org/10.1186/s13068-019-1443-6. DOI: https://doi.org/10.1186/s13068-019-1443-6

M.M. Jaffar, M.A. Nahil, P.T. Williams, “Parametric Study of CO2 Methanation for Synthetic Natural Gas Production”, Energy Technology, vol. 7, p.1900795, 2019. https://doi.org/10.1002/ente.201900795 DOI: https://doi.org/10.1002/ente.201900795

D.W. Kweku, O. Bismark, A. Maxwell, K.A. Desmond, K.B. Danso, E.A. Oti-Mensah, A.T. Quachie, B.B. Adormaa, “Greenhouse Effect: Greenhouse Gases and Their Impact on Global Warming”, Journal of Scientific Research and Reports, vol. 17, pp. 1–9, 2018. https://doi.org/10.9734/JSRR/2017/39630 DOI: https://doi.org/10.9734/JSRR/2017/39630

K.O. Yoro, M.O. Daramola, “CO2 emission sources, greenhouse gases, and the global warming effect, in: Advances in Carbon Capture”. Editor(s): M. R. Rahimpour, M. Farsi, M. A. Makarem, Woodhead Publishing, pp. 3–28, 2020. https://doi.org/10.1016/B978-0-12-819657-1.00001-3 DOI: https://doi.org/10.1016/B978-0-12-819657-1.00001-3

S.J. Mandley, B. Wicke, M. Junginger, D.P. Van Vuuren, V. Daioglou, “The implications of geopolitical, socioeconomic, and regulatory constraints on European bioenergy imports and associated greenhouse gas emissions to 2050”, Biofuels, Bioproducts and Biorefining, vol. 16, pp. 1551–1567, 2022. https://doi.org/10.1002/bbb.2421. DOI: https://doi.org/10.1002/bbb.2421

P. Sulewski, W. Ignaciuk, M. Szymańska, A. Wąs, “Development of the Biomethane Market in Europe”, Energies, vol. 16, p. 2001, 2023. https://doi.org/10.3390/en16042001 DOI: https://doi.org/10.3390/en16042001

J.L. Silveira, W.Q. Lamas, C.E. Tuna, I.A.C. Villela, L.S. Miro, “Ecological efficiency and thermoeconomic analysis of a cogeneration system at a hospital”, Renewable and Sustainable Energy Reviews, vol. 16, pp. 2894–2906, 2012. https://doi.org/10.1016/j.rser.2012.02.007. DOI: https://doi.org/10.1016/j.rser.2012.02.007

EPA, “Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2021” [Internet]. U.S. Environmental Protection Agency, EPA 430-R-23-002, 2023. Available at: https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2021 (Accessed: 11 December 2023).

C. Ryu, “Potential of Municipal Solid Waste for Renewable Energy Production and Reduction of Greenhouse Gas Emissions in South Korea”, Journal of the Air and Waste Management Association, vol. 60, p. 176–183, 2010. https://doi.org/10.3155/1047-3289.60.2.176. DOI: https://doi.org/10.3155/1047-3289.60.2.176

D. Cudjoe, E. Nketiah, B. Obuobi, G. Adu-Gyamfi, M.Adjei, B. Zhu, “Forecasting the potential and economic feasibility of power generation using biogas from food waste in Ghana: Evidence from Accra and Kumasi”, Energy, vol. 226, p. 120342, 2021. https://doi.org/10.1016/j.energy.2021.120342. DOI: https://doi.org/10.1016/j.energy.2021.120342

S.Y. Danso, Y. Ma, Y.D.A. Adjakloe, I.Y. Addo, “Application of an Index-Based Approach in Geospatial Techniques for the Mapping of Flood Hazard Areas: A Case of Cape Coast Metropolis in Ghana”, Water, vol. 12, p. 3483, 2020. https://doi.org/10.3390/w12123483. DOI: https://doi.org/10.3390/w12123483

Energy Commission, “Ghana Key Energy Statistics Handbook”, 2021 edition, [Internet].. Available at: https://www.energycom.gov.gh/files/Key%20Energy%20Statistics%20Handbook%2021.pdf. (Accessed: 11 Juin 2024)

N. Abdalla, S. Bürck, H. Fehrenbach, S. Köppen, T. Janosch Staigl, “Biomethane in Europe”. ifeu – Institut für Energie- und Umweltforschung Heidelberg gGmbH, 2022, Wilckensstr 3, D-69120 Heidelberg, Germany.

REPSOL, “Repsol produces renewable hydrogen with biomethane for the first time”, 2021, [Internet]. REPSOL. Available at: https://www.repsol.com/en/press-room/press-releases/2021/repsol-produces-renewable-hydrogen-with-biomethane-for-the-first-time/index.cshtml (Accessed: 8 August, 2023).

F.S.D. Carvalho, L.C.B.D.S. Reis, P.T. Lacava, F.H.M.D. Araújo, Jr. J.A.D. Carvalho, “Substitution of Natural Gas by Biomethane: Operational Aspects in Industrial Equipment”, Energies, vol. 16, p. 839, 2023. https://doi.org/10.3390/en16020839. DOI: https://doi.org/10.3390/en16020839

Energy Commission, “Energy Statistics and Balances” [Internet]. National Energy Statistical Bulletin, 2023. Available at: http://energycom.gov.gh/newsite/files/2023-energy-Statistics.pdf. (Accessed: 20 December 2023).

C Sefa-Nyarko, “Ghana's National Energy Transition Framework: Domestic aspirations and mistrust in international relations complicate ‘justice and equity’”, Energy Research & Social Science, Vol. 110, p. 103465, 2024. https://doi.org/10.1016/j.erss.2024.103465. DOI: https://doi.org/10.1016/j.erss.2024.103465

IEA. “World Energy Outlook (Special Report 2020) Outlook for biogas and Biomethane. Prospects for organic growth”. Available at: https://www.iea.org/reports/outlook-for-biogas-and-biomethane-prospects-for-organic-growth/an-introduction-to-biogas-and-biomethane. (Accessed: 10 June 2024).

I. Moreno‐Andrade, M.J. Berrocal‐Bravo, I. Valdez‐Vazquez, “Biohydrogen production from food waste and waste activated sludge in codigestion: influence of organic loading rate and changes in microbial community”, Journal of Chemical Technology & Biotechnology, vol. 98, pp. 230–237, 2023. https://doi.org/10.1002/jctb.7238. DOI: https://doi.org/10.1002/jctb.7238

M. Farghali, A.I. Osman, K. Umetsu, D.W. Rooney, “Integration of biogas systems into a carbon zero and hydrogen economy: a review”, Environmental Chemistry Letters, vol. 20, pp. 2853–2927, 2022. https://doi.org/10.1007/s10311-022-01468-z. DOI: https://doi.org/10.1007/s10311-022-01468-z

U.S. Energy Information Administration - EIA, “Carbon dioxide Emissions Coefficient”, 2022. Available at: https://www.eia.gov/environment/emissions/co2_vol_mass.php (Accessed: 11 December 2023)

C. Antonini, K. Treyer, A. Streb, M. Van Der Spek, C. Bauer, M. Mazzotti, “Hydrogen production from natural gas and biomethane with carbon capture and storage – A techno-environmental analysis”, Sustainable Energy and Fuels, vol. 4, pp. 2967–2986, 2020. https://doi.org/10.1039/D0SE00222D. DOI: https://doi.org/10.1039/D0SE00222D

M. Bui, M. Fajardy, N. Mac Dowell, “Bio-energy with carbon capture and storage (BECCS): Opportunities for performance improvement”, Fuel, vol. 213, pp. 164–175, 2018. https://doi.org/10.1016/j.fuel.2017.10.100. DOI: https://doi.org/10.1016/j.fuel.2017.10.100

B. Dziejarski, R. Krzyżyńska, K. Andersson, “Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment”, Fuel, vol. 342, p. 127776, 2023. https://doi.org/10.1016/j.fuel.2023.127776 DOI: https://doi.org/10.1016/j.fuel.2023.127776

P. Gabrielli, M. Gazzani, M. Mazzotti, “The Role of Carbon Capture and Utilization, Carbon Capture and Storage, and Biomass to Enable a Net-Zero-CO2 Emissions”,Chemical Industry, Industrial & Engineering Chemistry Research, vol. 59, pp. 7033–7045, 2020. https://doi.org/10.1021/acs.iecr.9b06579. DOI: https://doi.org/10.1021/acs.iecr.9b06579

T. Cyrs, J. Feldmann, R. Gasper, “Renewable Natural Gas as A Climate Strategy: Guidance for State Policymakers, Working Paper”. Washington, DC: World, Resources Institute, 2020. Available online at http://www.wri.org/publication/renewable-natural-gas-guidance. http://dx.doi.org/10.46830/wriwp.19.00006, (Accessed: 04 December 2023). DOI: https://doi.org/10.46830/wriwp.19.00006

Downloads

Published

2024-08-04

How to Cite

Alani, I. ., DZAGLI, M. M., Mani Kongnine, D. ., Narra, S. ., & Asiedu, Z. . (2024). Biomethane and Green Hydrogen Production Potential from Municipal Solid Waste :: In Cape Coast, Ghana. Solar Energy and Sustainable Development Journal, 13(2), 102–119. https://doi.org/10.51646/jsesd.v13i2.204

Issue

Section

Articles