Economic Optimization of Grid-Connected Photovoltaic Solar Systems in Industrial Energy:

Case Study SULFO Ltd - Rwanda

Authors

  • Eustache Hakizimana Department of Mechanical and Energy Engineering, School of Engineering, University of Rwanda, PoBox 3900 Kigali, Rwanda.
  • Honorine Umuhoza Department of Mechanical and Energy Engineering, School of Engineering, University of Rwanda, PoBox 3900 Kigali, Rwanda.
  • Emmanuel Manishimwe Department of Mechanical and Energy Engineering, School of Engineering, University of Rwanda, PoBox 3900 Kigali, Rwanda.
  • Venant Kayibanda Department of Mechanical and Energy Engineering, School of Engineering, University of Rwanda, PoBox 3900 Kigali, Rwanda.

DOI:

https://doi.org/10.51646/jsesd.v13i2.242

Keywords:

Solar Energy Technology, Energy Optimization, Environmental Impact Assessment.

Abstract

This research investigates the economic optimization of grid-connected photovoltaic (PV) solar systems through a case study at SULFO Industry, specifically its soap manufacturing department. It addresses the urgent need for sustainable energy solutions in industrial settings to cut greenhouse gas emissions and achieve financial savings, focusing on high energy consumption issues. The study aims to optimize energy usage, financial efficiency, and environmental sustainability by integrating solar PV technology. The cost-benefit analysis of the PV system evaluates initial costs, payback period, return on investment (ROI), levelized cost of energy (LCOE), and net present value (NPV). Findings reveal a payback period of approximately 10 years with an anticipated total profit of around $768,767 over 30 years. The system generates 502.2 MWh annually, reducing energy costs to 51,726,600 RWF from 120,519,000 RWF, and decreases CO2 emissions by 6,555.1 tons. These results support existing research on the economic and environmental benefits of solar PV systems, validating their effectiveness in reducing costs and emissions. The study confirms that solar PV systems are a viable and practical option for enhancing energy sustainability in industrial operations.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

D. F. Birol, ‘Key World Energy Statistics 2021’.

‘Electricity_Statistics_Report_as_of_the_Fourth_Quarter_2023.pdf’.

S. Ashok and R. Banerjee, ‘An optimization mode for industrial load management’, IEEE Trans. Power Syst., vol. 16, no. 4, pp. 879–884, Nov. 2001, doi: 10.1109/59.962440. DOI: https://doi.org/10.1109/59.962440

D. Buoro, M. Casisi, A. De Nardi, P. Pinamonti, and M. Reini, ‘Multicriteria optimization of a distributed energy supply system for an industrial area’, Energy, vol. 58, pp. 128–137, Sep. 2013, doi: 10.1016/j.energy.2012.12.003. DOI: https://doi.org/10.1016/j.energy.2012.12.003

O. B. Mousa and R. A. Taylor, ‘Global solar technology optimization for factory rooftop emissions mitigation’, Environ. Res. Lett., vol. 15, no. 4, p. 044013, Apr. 2020, doi: 10.1088/1748-9326/ab702a. DOI: https://doi.org/10.1088/1748-9326/ab702a

M. K. Anser, M. Mohsin, Q. Abbas, and I. S. Chaudhry, ‘Assessing the integration of solar power projects: SWOT-based AHP–F-TOPSIS case study of Turkey’, Environ. Sci. Pollut. Res., vol. 27, no. 25, pp. 31737–31749, Sep. 2020, doi: 10.1007/s11356-020-09092-6. DOI: https://doi.org/10.1007/s11356-020-09092-6

A. Pino, F. J. Pino, and J. Guerra, ‘Integration of solar energy in Small-scale Industries: Application to microbreweries’, Sustain. Energy Technol. Assess., vol. 57, p. 103276, Jun. 2023, doi: 10.1016/j.seta.2023.103276. DOI: https://doi.org/10.1016/j.seta.2023.103276

S. Mekhilef, R. Saidur, and A. Safari, ‘A review on solar energy use in industries’, Renew. Sustain. Energy Rev., vol. 15, no. 4, pp. 1777–1790, May 2011, doi: 10.1016/j.rser.2010.12.018. DOI: https://doi.org/10.1016/j.rser.2010.12.018

O. A. Olanrewaju, A. A. Jimoh, and P. A. Kholopane, ‘Integrated IDA–ANN–DEA for assessment and optimization of energy consumption in industrial sectors’, Energy, vol. 46, no. 1, pp. 629–635, Oct. 2012, doi: 10.1016/j.energy.2012.07.037. DOI: https://doi.org/10.1016/j.energy.2012.07.037

A. Ghasemi, H. Nikafshan Rad, N. Izadyar, and M. Marefati, ‘Optimizing industrial Energy: An Eco-Efficient system for integrated Power, Oxygen, and methanol production using coke plant waste heat and electrolysis’, Energy Convers. Manag. X, vol. 22, p. 100571, Apr. 2024, doi: 10.1016/j.ecmx.2024.100571. DOI: https://doi.org/10.1016/j.ecmx.2024.100571

H. Shang, Y. Feng, C.-C. Lu, and C.-Y. Yang, ‘The Impact of Optimizing Industrial Energy Efficiency on Agricultural Development in OECD Countries’, Sustainability, vol. 15, no. 7, p. 6084, Mar. 2023, doi: 10.3390/su15076084. DOI: https://doi.org/10.3390/su15076084

M. Karlsson, ‘The MIND method: A decision support for optimization of industrial energy systems – Principles and case studies’, Appl. Energy, vol. 88, no. 3, pp. 577–589, Mar. 2011, doi: 10.1016/j.apenergy.2010.08.021. DOI: https://doi.org/10.1016/j.apenergy.2010.08.021

B. Lu, G. Chen, D. Chen, and W. Yu, ‘An energy intensity optimization model for production system in iron and steel industry’, Appl. Therm. Eng., vol. 100, pp. 285–295, May 2016, doi: 10.1016/j.applthermaleng.2016.01.064. DOI: https://doi.org/10.1016/j.applthermaleng.2016.01.064

F. Shen, L. Zhao, W. Du, W. Zhong, and F. Qian, ‘Large-scale industrial energy systems optimization under uncertainty: A data-driven robust optimization approach’, Appl. Energy, vol. 259, p. 114199, Feb. 2020, doi: 10.1016/j.apenergy.2019.114199. DOI: https://doi.org/10.1016/j.apenergy.2019.114199

K. N. Nwaigwe, P. Mutabilwa, and E. Dintwa, ‘An overview of solar power (PV systems) integration into electricity grids’, Mater. Sci. Energy Technol., vol. 2, no. 3, pp. 629–633, Dec. 2019, doi: 10.1016/j.mset.2019.07.002. DOI: https://doi.org/10.1016/j.mset.2019.07.002

N. Dhlamini and S. P. Daniel Chowdhury, ‘Solar Photovoltaic Generation and its Integration Impact on the Existing Power Grid’, in 2018 IEEE PES/IAS PowerAfrica, Cape Town: IEEE, Jun. 2018, pp. 710–715. doi: 10.1109/PowerAfrica.2018.8521003. DOI: https://doi.org/10.1109/PowerAfrica.2018.8521003

S. Conti, S. Raiti, G. Tina, and U. Vagliasindi, ‘Integration of multiple PV units in urban power distribution systems’, Sol. Energy, vol. 75, no. 2, pp. 87–94, Aug. 2003, doi: 10.1016/S0038-092X(03)00249-4. DOI: https://doi.org/10.1016/S0038-092X(03)00249-4

Nassar, Y.F., El-Khozondar, H.J., Alatrash, A.A. et al. Assessing the Viability of Solar and Wind Energy Technologies in Semi-Arid and Arid Regions: A Case Study of Libya’s Climatic Conditions. Appl. Sol. Energy 60, 149–170 (2024). https://doi.org/10.3103/S0003701X24600218 DOI: https://doi.org/10.3103/S0003701X24600218

International Energy Agency (IEA). (2021). Renewables 2021: Analysis and forecast to 2026.

International Renewable Energy Agency (IRENA). (2021). Future of Solar Photovoltaic: Deployment, investment, technology, grid integration and socio-economic aspects.

‘How to Design Solar PV System - Guide for sizing your solar photovoltaic system’. Accessed: May 19, 2024. [Online]. Available: https://www.leonics.com/support/article2_12j/articles2_12j_en.php

‘Solar’. Accessed: May 13, 2024. [Online]. Available: https://www.reg.rw/what-we-do/generation/solar/

E. N. F. Ltd, ‘ENF Ltd.’ Accessed: May 24, 2024. [Online]. Available: https://www.enfsolar.com/pv/panel-datasheet/crystalline/60064

‘SMA Sunny Highpower Peak3 | SMA SHP 150-20 solar inverter | Europe Solar Store’. Accessed: May 24, 2024. [Online]. Available: https://www.europe-solarstore.com/sma-sunny-highpower-peak3-shp-150-20.html

Ricardo, ‘Maintenance Cost Of Solar Panels (2024)’, Ethical Energy Solar. Accessed: May 24, 2024. [Online]. Available: https://ethicalenergysolar.com/blog/maintenance-cost-of-solar-panels/

H. H. Pourasl, R. V. Barenji, and V. M. Khojastehnezhad, ‘Solar energy status in the world: A comprehensive review’, Energy Rep., vol. 10, pp. 3474–3493, Nov. 2023, doi: 10.1016/j.egyr.2023.10.022. DOI: https://doi.org/10.1016/j.egyr.2023.10.022

‘Solar PV installation cost worldwide 2022’, Statista. Accessed: May 24, 2024. [Online]. Available: https://www.statista.com/statistics/809796/global-solar-power-installation-cost-per-kilowatt/

Nesreen Ayad Aboudh, Integration of Photovoltaic Cells in Building Shading Devices: Enhancing Energy Efficiency and Indoor Environment in Administrative Building, Solar Energy and Sustainable Development, Volume (13) - No (2) . December 2024, doi: https://doi.org/10.51646/jsesd.v13i2.230 DOI: https://doi.org/10.51646/jsesd.v13i2.230

Nassar Yasser Fathi, Abubaker Awidat Salem, The reliability of the photovoltaic utilization in southern cities of Libya, N.Y. Fathi, A.A. Salem / Desalination 209 (2007) 86–90, doi:10.1016/j.desal.2007.04.013 DOI: https://doi.org/10.1016/j.desal.2007.04.013

E. N. F. Ltd, ‘ENF Ltd.’ Accessed: May 24, 2024. [Online]. Available: https://www.enfsolar.com/pv/panel-datasheet/crystalline/60064

‘SMA Sunny Highpower Peak3 | SMA SHP 150-20 solar inverter | Europe Solar Store’. Accessed: May 24, 2024. [Online]. Available: https://www.europe-solarstore.com/sma-sunny-highpower-peak3-shp-150-20.html

Nyasapoh, M. A., Elorm, M. D., & Derkyi, N. S. A. (2022). The role of renewable energies in sustainable development of Ghana. Scientific African, 16, e01199. doi: https://doi.org/10.1016/j.sciaf.2022.e01199 DOI: https://doi.org/10.1016/j.sciaf.2022.e01199

Nyasapoh, M. A., Debrah, S. K., Anku, N. E. L., & Yamoah, S. (2022). Estimation of CO2 Emissions of Fossil-Fueled Power Plants in Ghana: Message Analytical Model. Journal of Energy, 2022(5312895), 1-10. https://doi.org/10.1155/2022/5312895 DOI: https://doi.org/10.1155/2022/5312895

Published

2024-08-31

How to Cite

Hakizimana , E., Umuhoza, H., Manishimwe, E., & Kayibanda, V. (2024). Economic Optimization of Grid-Connected Photovoltaic Solar Systems in Industrial Energy:: Case Study SULFO Ltd - Rwanda. Solar Energy and Sustainable Development Journal, 13(2), 204–229. https://doi.org/10.51646/jsesd.v13i2.242

Issue

Section

Articles