Analysis of Cooling Methods to Improve the Electrical Performance of Photovoltaic Modules

Authors

  • Yao Kombate Regional Center of Excellence for Electricity Management, University of Lomé, P.O. Box 1515, Lomé https://orcid.org/0009-0001-2834-5743
  • Kokou N’wuitcha Regional Center of Excellence for Electricity Management, University of Lomé, P.O. Box 1515, Lomé, Togo https://orcid.org/0000-0001-8561-9459
  • Koffi Gagnon Apedanou Solar Energy Laboratory, Department of Physics, Faculty of Sciences, University of Lomé, P.O. Box 1515, Lomé, Togo
  • Yendouban Kolani Solar Energy Laboratory, Department of Physics, Faculty of Sciences, University of Lomé, P.O. Box 1515, Lomé, Togo https://orcid.org/0009-0003-5765-0725
  • Komlan Déla Donald Aoukou Solar Energy Laboratory, Department of Physics, Faculty of Sciences, University of Lomé, P.O. Box 1515, Lomé, Togo https://orcid.org/0000-0003-2550-462X
  • Bernard Obese Department of Science Education, University of Cape Coast, Cape Coast, Ghana https://orcid.org/0009-0002-0532-8526

DOI:

https://doi.org/10.51646/jsesd.v14i1.349

Keywords:

solar energy , photovoltaic solar modules, electrical efficiency, cooling methods, hybrid photovoltaic/thermal solar collector.

Abstract

The conversion of solar energy into electricity by photovoltaic solar modules causes the temperature of the photovoltaic solar cells to rise, reducing their electrical efficiency. The heat dissipation of photovoltaic solar modules allows them to be cooled and the recovered heat can be used for residential and industrial applications.  Many different cooling methods have been proposed to reduce the temperature of photovoltaic solar modules and improve electrical efficiency. These photovoltaic solar module cooling methods are classified into active, passive and hybrid cooling. Although most solar module air cooling techniques have been investigated, air cooling methods that optimise heat transfer through structural configuration have not been collectively studied. This paper reviews recent work on air-cooling methods for solar photovoltaic modules, focusing on natural and forced air circulation, efficient solar radiation collection and conversion, and improved heat transfer coefficient by air convection in a duct. These air-cooling methods are examined, analysed and compared, and the prospects for these different techniques are proposed. The results showed that forced-air cooling coupled with fins/baffles using phase-change materials and bifacial and thermoelectric photovoltaic modules are the most promising, despite their complex structures and very high investment costs. Thanks to their efficient heat transfer, their storage of excess heat and their significant reduction in the temperature of solar PV modules, these cooling techniques, which are recommended for promotion, can ensure rational use of energy.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

International Energy Agency (IEA), ‘The global power mix will be transformed by 2028’, IEA. https://www.iea.org/energy-system/renewables. [Accessed: Sep. 25, 2024].

H. Ritchie, P. Rosado, and M. Roser, ‘Fossil fuels’, Our World in Data, Jan. 2024, https://ourworldindata.org/fossil-fuels. [Accessed: Aug. 24, 2024].

B. Agrawal and G. N. Tiwari, Building integrated photovoltaic thermal systems: for sustainable developments. in Energy series, no. 4. Cambridge, UK: RSC Pub, 2011.

S. C. Bhatia, Advanced renewable energy systems., Woodhead Publishing India Pvt. Ltd., vol. Part I. in Woodhead Publishing India in Energy, vol. Part I. New Delhi: Vardaan House, 2014. www.woodheadpublishing.com

K. Kant, A. Shukla, A. Sharma, and P. H. Biwole, ‘Thermal response of poly-crystalline silicon photovoltaic panels: Numerical simulation and experimental study’, Solar Energy, vol. 134, pp. 147–155, 2016, doi: 10.1016/j.solener.2016.05.002. DOI: https://doi.org/10.1016/j.solener.2016.05.002

S. Kaplanis and E. Kaplani, ‘A new dynamic model to predict transient and steady state PV temperatures taking into account the environmental conditions’, Energies, vol. 12, no. 2, pp. 1–17, 2019, doi: 10.3390/en12010002. DOI: https://doi.org/10.3390/en12010002

I. Sarbu and C. Sebarchievici, ‘Solar collectors’, in Solar Heating and Cooling Systems, Elsevier, 2017, pp. 29–97. doi: 10.1016/B978-0-12-811662-3.00003-7. DOI: https://doi.org/10.1016/B978-0-12-811662-3.00003-7

Z. Ul Abdin and A. Rachid, ‘A survey on applications of hybrid PV/T panels’, Energies, vol. 14, no. 4, p. 1205, Feb. 2021, doi: 10.3390/en14041205. DOI: https://doi.org/10.3390/en14041205

A. Pandey, S. Chakrabarti, and P. Daghe, ‘A systematic approach for a better thermal management of photovoltaic systems: A review’, vol. 10, no. 1.

A. Maleki, A. Haghighi, M. El Haj Assad, I. Mahariq, and M. Alhuyi Nazari, ‘A review on the approaches employed for cooling PV cells’, Solar Energy, vol. 209, pp. 170–185, 2020, doi: 10.1016/j.solener.2020.08.083. DOI: https://doi.org/10.1016/j.solener.2020.08.083

S. J. Paul, U. Kumar, and S. Jain, ‘Photovoltaic cells cooling techniques for energy efficiency optimization’, Materials Today: Proceedings, vol. 46, pp. 5458–5463, 2021, doi: 10.1016/j.matpr.2020.09.197. DOI: https://doi.org/10.1016/j.matpr.2020.09.197

E. Kozak-Jagieła, P. Cisek, and P. Ocłoń, ‘Cooling techniques for PV panels: A review’, Sci. Rad, vol. 2, no. 1, pp. 47–68, Mar. 2023, doi: 10.58332/scirad2023v2i1a03. DOI: https://doi.org/10.58332/scirad2023v2i1a03

C. Babu and P. Ponnambalam, ‘The role of thermoelectric generators in the hybrid PV/T systems: A review’, Energy Conversion and Management, vol. 151, pp. 368–385, Nov. 2017, doi: 10.1016/j.enconman.2017.08.060. DOI: https://doi.org/10.1016/j.enconman.2017.08.060

I. Guarracino, ‘Hybrid photovoltaic and solar thermal (PVT) systems for solar combined heat and power’, Doctor of Philosophy, Imperial College London, Department of Chemical Engineering, 2017.

M. M. Rahman, M. Hasanuzzaman, and N. A. Rahim, ‘Effects of various parameters on PV-module power and efficiency’, Energy Conversion and Management, vol. 103, pp. 348–358, 2015, doi: 10.1016/j.enconman.2015.06.067. DOI: https://doi.org/10.1016/j.enconman.2015.06.067

A. R. Amelia, Y. M. Irwan, W. Z. Leow, M. Irwanto, I. Safwati, and M. Zhafarina, ‘Investigation of the effect temperature on photovoltaic (PV) panel output performance’, International Journal on Advanced Science, Engineering and Information Technology, vol. 6, no. 5, pp. 682–688, Oct. 2016, doi: 10.18517/ijaseit.6.5.938. DOI: https://doi.org/10.18517/ijaseit.6.5.938

A. Rouholamini, H. Pourgharibshahi, R. Fadaeinedjad, and M. Abdolzadeh, ‘Temperature of a photovoltaic module under the influence of different environmental conditions-experimental investigation’, International Journal of Ambient Energy, vol. 37, no. 3, pp. 266–272, 2016, doi: 10.1080/01430750.2014.952842. DOI: https://doi.org/10.1080/01430750.2014.952842

D. Koita, C.-V. Popa, B. Robert, and C.-D. Galatanu, ‘Numerical study of the effect of wind on the cooling of photovoltaic panels’, E3S Web Conf., vol. 111, pp. 1–15, 2019, doi: 10.1051/e3sconf/201911101057. DOI: https://doi.org/10.1051/e3sconf/201911101057

J. Zhou, Q. Yi, Y. Wang, and Z. Ye, ‘Temperature distribution of photovoltaic module based on finite element simulation’, Solar Energy, vol. 111, pp. 97–103, 2015, doi: 10.1016/j.solener.2014.10.040. DOI: https://doi.org/10.1016/j.solener.2014.10.040

H. Goverde et al., ‘Spatial and temporal analysis of wind effects on PV module temperature and performance’, Sustainable Energy Technologies and Assessments, vol. 11, pp. 36–41, 2015, doi: 10.1016/j.seta.2015.05.003. DOI: https://doi.org/10.1016/j.seta.2015.05.003

A. Dhaundiyal and D. Atsu, ‘The effect of wind on the temperature distribution of photovoltaic modules’, Solar Energy, vol. 201, pp. 259–267, May 2020, doi: 10.1016/j.solener.2020.03.012. DOI: https://doi.org/10.1016/j.solener.2020.03.012

D. P. N. Nguyen, K. Neyts, and J. Lauwaert, ‘Proposed models to improve predicting the operating temperature of different photovoltaic module technologies under various climatic conditions’, Applied Sciences, vol. 11, no. 15, pp. 1–14, 2021, doi: 10.3390/app11157064. DOI: https://doi.org/10.3390/app11157064

D. Atsu and A. Dhaundiyal, ‘Effect of ambient parameters on the temperature distribution of photovoltaic (PV) modules’, Resources, vol. 8, no. 2, pp. 1–12, 2019, doi: 10.3390/resources8020107. DOI: https://doi.org/10.3390/resources8020107

A. A. A. Al-Khazzar, ‘Behavior of four solar PV modules with temperature variation’, IJRER, vol. 6, no. 3, pp. 1091–1099, 2016, doi: 10.20508/ijrer.v6i3.4188.g6892. DOI: https://doi.org/10.20508/ijrer.v6i3.4188.g6892

P. K. Dash and N. C. Gupta, ‘Effect of temperature on power output from different commercially available photovoltaic modules’, Int. Journal of Engineering Research and Applications, vol. 5, no. 1, pp. 1–4, 2015.

D. Magare, O. Sastry, R. Gupta, H. Mohammed, B. Bora, and Y. Singh, ‘Estimation of operating condition frequency distribution and power prediction by extending application of IEC 61853-1 standard for different technology photovoltaic modules’, Journal of Renewable and Sustainable Energy, vol. 10, no. 3, pp. 1–15, 2018, doi: 10.1063/1.5023084. DOI: https://doi.org/10.1063/1.5023084

D. N. Dang, T. L. Viet, H. Takano, and T. N. Duc, ‘Estimating parameters of photovoltaic modules based on current–voltage characteristics at operating conditions’, Energy Reports, vol. 9, pp. 18–26, 2023, doi: 10.1016/j.egyr.2022.10.361. DOI: https://doi.org/10.1016/j.egyr.2022.10.361

H. G. Teo, P. S. Lee, and M. N. A. Hawlader, ‘An active cooling system for photovoltaic modules’, Applied Energy, vol. 90, no. 1, pp. 309–315, 2012, doi: 10.1016/j.apenergy.2011.01.017. DOI: https://doi.org/10.1016/j.apenergy.2011.01.017

M. Sani and A. Sule, ‘Effect of temperature on the performance of photovoltaic module’, IJISRT, vol. 5, no. 9, pp. 670–676, Sep. 2020, doi: 10.38124/IJISRT20SEP533. DOI: https://doi.org/10.38124/IJISRT20SEP533

N. Dabaghzadeh and M. Eslami, ‘Temperature distribution in a photovoltaic module at various mounting and wind conditions: A complete CFD modeling’, Journal of Renewable and Sustainable Energy, vol. 11, no. 5, pp. 1–12, 2019, doi: 10.1063/1.5114895. DOI: https://doi.org/10.1063/1.5114895

M. Al-Damook, K. Waleed Abid, A. Mumtaz, D. Dixon-Hardy, P. J. Heggs, and M. Al Qubeissi, ‘Photovoltaic module efficiency evaluation: The case of Iraq’, Alexandria Engineering Journal, vol. 61, no. 8, pp. 6151–6168, 2022, doi: 10.1016/j.aej.2021.11.046. DOI: https://doi.org/10.1016/j.aej.2021.11.046

A. K. Abdulrazzaq, B. Plesz, and G. Bognár, ‘A novel method for thermal modelling of photovoltaic modules/cells under varying environmental conditions’, Energies, vol. 13, no. 13, pp. 1–22, 2020, doi: 10.3390/en13133318. DOI: https://doi.org/10.3390/en13133318

C. G. Popovici, S. V. Hudişteanu, T. D. Mateescu, and N.-C. Cherecheş, ‘Efficiency improvement of photovoltaic panels by using air cooled heat sinks’, Energy Procedia, vol. 85, pp. 425–432, 2016, doi: 10.1016/j.egypro.2015.12.223. DOI: https://doi.org/10.1016/j.egypro.2015.12.223

S. V. Hudișteanu, F. E. Țurcanu, N. C. Cherecheș, C. G. Popovici, M. Verdeș, and I. Huditeanu, ‘Enhancement of PV panel power production by passive cooling using heat sinks with perforated fins’, Applied Sciences, vol. 11, no. 23, pp. 1–20, 2021, doi: 10.3390/app112311323. DOI: https://doi.org/10.3390/app112311323

I. A. Hasan, S. R. Faraj, and I. A. Mohammad, ‘Performance improvement of photovoltaic module using an air-cooling micro finned heat sink’, IOP Conf. Ser.: Mater. Sci. Eng., vol. 765, pp. 1–11, 2020, doi: 10.1088/1757-899X/765/1/012021. DOI: https://doi.org/10.1088/1757-899X/765/1/012021

E. Z. Ahmad, K. Sopian, A. Ibrahim, C. K. Gan, and M. S. A. Razak, ‘Experimental investigation of passively cooled photovoltaic modules on the power output performance’, IJPEDS, vol. 13, no. 1, pp. 520–527, 2022, doi: 10.11591/ijpeds.v13.i1.pp520-527. DOI: https://doi.org/10.11591/ijpeds.v13.i1.pp520-527

K. P. Amber, W. Akram, M. A. Bashir, M. S. Khan, and A. Kousar, ‘Experimental performance analysis of two different passive cooling techniques for solar photovoltaic installations’, J Therm Anal Calorim, vol. 143, no. 3, pp. 2355–2366, 2020, doi: 10.1007/s10973-020-09883-6. DOI: https://doi.org/10.1007/s10973-020-09883-6

B. Srimanickam, M. M. Vijayalakshmi, and E. Natarajan, ‘Thermal analysis on photovoltaic thermal hybrid system with cooling channel with V-baffles’, Indian Journal of Science and Technology, vol. 8, no. 36, pp. 1–5, 2015, doi: 10.17485/ijst/2015/v8i36/87643. DOI: https://doi.org/10.17485/ijst/2015/v8i36/87643

B. Srimanickam, M. M. Vijayalakshmi, and E. Natarajan, ‘Energy and exergy efficiency of flat plate PVT collector with forced convection’, Journal of Testing and Evaluation, vol. 46, no. 2, pp. 783–797, 2018, doi: 10.1520/JTE20160290. DOI: https://doi.org/10.1520/JTE20160290

K. A. Omer and A. M. Zala, ‘Experimental investigation of PV/thermal collector with theoretical analysis’, Renewable Energy Focus, vol. 27, pp. 67–77, 2018, doi: 10.1016/j.ref.2018.09.004. DOI: https://doi.org/10.1016/j.ref.2018.09.004

J.-H. Kim, J.-G. Ahn, and J.-T. Kim, ‘Demonstration of the performance of an air-type photovoltaic thermal (PVT) system coupled with a heat-recovery ventilator’, vol. 9, pp. 1–15, 2016, doi: doi:10.3390/en9090728. DOI: https://doi.org/10.3390/en9090728

S. Golzari, ‘Experimental investigation of the effects of Corona wind on the performance of an air-cooled PV/T’, RenewableEnergy, vol. 18, pp. 1–31, 2018, doi: 10.1016/j.renene.2018.04.029. DOI: https://doi.org/10.1016/j.renene.2018.04.029

İ. Ceylan, A. E. Gürel, H. Demircan, and B. Aksu, ‘Cooling of a photovoltaic module with temperature controlled solar collector’, Energy and Buildings, vol. 72, pp. 96–101, 2014, doi: 10.1016/j.enbuild.2013.12.058. DOI: https://doi.org/10.1016/j.enbuild.2013.12.058

M. Al-Damook, M. Al Qubeissi, Z. Khatir, D. Dixon-Hardy, and P. J. Heggs, ‘Thermal and electrical performance evaluation and design optimization of hybrid PV/T systems’, in Proceedings of the 16th UK Heat Transfer Conference (UKHTC2019) 8-10 September 2019, Nottingham, Singapore: Springer Singapore, 2019, pp. 805–813. doi: 10.1007/978-981-33-4765-6_137. DOI: https://doi.org/10.1007/978-981-33-4765-6_137

M. Lyes, K. Tahar, H. Ouided, and C. Hamid, ‘Effect of Air Channel Depth and Mass Flow Rate on the Efficiency of Hybrid Thermal - Photovoltaic Sensor’, IJM, vol. 12, no. 2, pp. 147–168, 2018, doi: 10.21152/1750-9548.12.2.147. DOI: https://doi.org/10.21152/1750-9548.12.2.147

H. B. C. El Hocine, K. Touafek, F. Kerrour, A. Khelifa, I. Tabet, and Haloui, ‘A three-dimensional modeling of photovoltaic thermal collector’, IJRER, vol. 6, no. 2, pp. 384–391, 2016, doi: 10.20508/ijrer.v6i2.3365.g6843. DOI: https://doi.org/10.20508/ijrer.v6i2.3365.g6843

H. B. C. El Hocine, A. Gama, and K. Touafek, ‘The feasibility of new design of hybrid photovoltaic-thermal system-A theoretical approach’, International Journal of Ambient Energy, vol. 39, no. 5, pp. 1–29, 2017, doi: 10.1080/01430750.2017.1318778. DOI: https://doi.org/10.1080/01430750.2017.1318778

R. Nasrin, M. Hasanuzzaman, and N. A. Rahim, ‘Effect of high irradiation and cooling on power, energy and performance of a PVT system’, Renewable Energy, vol. 116, pp. 552–569, 2017, doi: 10.1016/j.renene.2017.10.004. DOI: https://doi.org/10.1016/j.renene.2017.10.004

R. Nasrin, M. Hasanuzzaman, and N. A. Rahim, ‘Effect of high irradiation on photovoltaic power and energy’, Int J Energy Res, vol. 42, no. 3, pp. 1–17, 2017, doi: 10.1002/er.3907. DOI: https://doi.org/10.1002/er.3907

W. E. Ewe et al., ‘Jet impingement cooling applications in solar energy technologies: Systematic literature review’, Thermal Science and Engineering Progress, vol. 34, pp. 1–21, 2022, doi: 10.1016/j.tsep.2022.101445. DOI: https://doi.org/10.1016/j.tsep.2022.101445

B. Markal and R. Varol, ‘The effect of jet impingement on the performance of a photovoltaic module’.

W. E. Ewe, A. Fudholi, K. Sopian, N. Asim, Y. Ahmudiarto, and A. Salim, ‘Overview on Recent PVT Systems with Jet Impingement’, IJHT, vol. 39, no. 6, pp. 1951–1956, 2021, doi: 10.18280/ijht.390633. DOI: https://doi.org/10.18280/ijht.390633

S. A. Brideau and M. R. Collins, ‘Experimental model validation of a hybrid PV/thermal air based collector with impinging jets’, Energy Procedia, vol. 30, pp. 44–54, 2012, doi: 10.1016/j.egypro.2012.11.007. DOI: https://doi.org/10.1016/j.egypro.2012.11.007

Z. Ul-Abdin, M. Zeman, O. Isabella, and R. Santbergen, ‘Investigating the annual performance of air-based collectors and novel bi-fluid based PV-thermal system’, Solar Energy, vol. 276, p. 112687, 2024, doi: 10.1016/j.solener.2024.112687. DOI: https://doi.org/10.1016/j.solener.2024.112687

A. G. Lupu, V. M. Homutescu, D. T. Balanescu, and A. Popescu, ‘A review of solar photovoltaic systems cooling technologies’, IOP Conf. Ser.: Mater. Sci. Eng., vol. 444, pp. 1–24, 2018, doi: 10.1088/1757-899X/444/1/011001. DOI: https://doi.org/10.1088/1757-899X/444/8/082016

S. Khanna, K. S. Reddy, and T. K. Mallick, ‘Performance analysis of tilted photovoltaic system integrated with phase change material under varying operating conditions’, Energy, vol. 133, pp. 887–899, 2017, doi: 10.1016/j.energy.2017.05.150. DOI: https://doi.org/10.1016/j.energy.2017.05.150

S. Kiwan, H. Ahmad, A. Alkhalidi, W. O. Wahib, and W. Al-Kouz, ‘Photovoltaic cooling utilizing phase change materials’, E3S Web Conf., vol. 160, pp. 1–7, 2020, doi: 10.1051/e3sconf/202016002004. DOI: https://doi.org/10.1051/e3sconf/202016002004

I. Lamaamar, A. Tilioua, Z. Benzaid, A. Ait Msaad, and M. A. H. Alaoui, ‘Heat transfer study of poly-c PV system integrated with phase change material under semi-arid area (Errachidia-Drâa Tafilalet)’, E3S Web Conf., vol. 297, pp. 1–9, 2021, doi: 10.1051/e3sconf/202129701008. DOI: https://doi.org/10.1051/e3sconf/202129701008

H. Mahamudul et al., ‘Temperature regulation of photovoltaic module using phase change material: A numerical analysis and experimental investigation’, International Journal of Photoenergy, vol. 2016, pp. 1–8, 2016, doi: 10.1155/2016/5917028. DOI: https://doi.org/10.1155/2016/5917028

S. Khanna, K. S. Reddy, and T. K. Mallick, ‘Optimization of finned solar photovoltaic phase change material (finned pv pcm) system’, International Journal of Thermal Sciences, vol. 130, pp. 313–322, 2018, doi: 10.1016/j.ijthermalsci.2018.04.033. DOI: https://doi.org/10.1016/j.ijthermalsci.2018.04.033

D. Su, Y. Jia, X. Huang, G. Alva, Y. Tang, and G. Fang, ‘Dynamic performance analysis of photovoltaic-thermal solar collector with dual channels for different fluids’, Energy Conversion and Management, vol. 120, pp. 13–24, 2016, doi: 10.1016/j.enconman.2016.04.095. DOI: https://doi.org/10.1016/j.enconman.2016.04.095

S. V. Chavan and D. Devaprakasam, ‘Improving the performance of solar photovoltaic thermal system using phase change materials - Review’, IJASE, vol. 4, no. 3, pp. 687–697, 2018, doi: 10.29294/IJASE.4.3.2018.687-697. DOI: https://doi.org/10.29294/IJASE.4.3.2018.687-697

Akshayveer, A. Kumar, A. P. Singh, and O. P. Singh, ‘Effect of novel PCM encapsulation designs on electrical and thermal performance of a hybrid photovoltaic solar panel’, Solar Energy, vol. 205, pp. 320–333, 2020, doi: 10.1016/j.solener.2020.05.062. DOI: https://doi.org/10.1016/j.solener.2020.05.062

M. Carmona, A. Palacio Bastos, and J. D. García, ‘Experimental evaluation of a hybrid photovoltaic and thermal solar energy collector with integrated phase change material (PVT-PCM) in comparison with a traditional photovoltaic (PV) module’, Renewable Energy, vol. 172, pp. 680–696, 2021, doi: 10.1016/j.renene.2021.03.022. DOI: https://doi.org/10.1016/j.renene.2021.03.022

M. Jurčević et al., ‘Investigation of heat convection for photovoltaic panel towards efficient design of novel hybrid cooling approach with incorporated organic phase change material’, Sustainable Energy Technologies and Assessments, vol. 47, pp. 1–12, 2021, doi: 10.1016/j.seta.2021.101497. DOI: https://doi.org/10.1016/j.seta.2021.101497

Y. T. He, L. X. Xiao, F. Y. Wang, and J. Q. Wang, ‘Design and experimental study of thermal storage PV/T/PCM solar collector’, IOP Conf. Ser.: Earth Environ. Sci., vol. 354, no. 1, pp. 1–7, 2019, doi: 10.1088/1755-1315/354/1/012014. DOI: https://doi.org/10.1088/1755-1315/354/1/012014

H. A. Kazem, M. T. Chaichan, and K. Sopian, ‘Design and experimental evaluation of a PV/T system cooled by advanced methods’, Intl J of Energy Research, vol. 46, no. 7, pp. 1–26, 2022, doi: 10.1002/er.7838. DOI: https://doi.org/10.1002/er.7838

R. Ahmed and K. A. I. Nabil, ‘Computational analysis of phase change material and fins effects on enhancing PV/T panel performance’, J Mech Sci Technol, vol. 31, no. 6, pp. 3083–3090, 2017, doi: 10.1007/s12206-017-0552-z. DOI: https://doi.org/10.1007/s12206-017-0552-z

O. K. Ahmed and Z. A. Mohammed, ‘Influence of porous media on the performance of hybrid PV/Thermal collector’, Renewable Energy, vol. 112, pp. 378–387, Nov. 2017, doi: 10.1016/j.renene.2017.05.061. DOI: https://doi.org/10.1016/j.renene.2017.05.061

M. Tahmasbi, M. Siavashi, A. M. Norouzi, and M. H. Doranehgard, ‘Thermal and electrical efficiencies enhancement of a solar photovoltaic-thermal/air system (PVT/air) using metal foams’, Journal of the Taiwan Institute of Chemical Engineers, vol. 124, pp. 276–289, 2021, doi: 10.1016/j.jtice.2021.03.045. DOI: https://doi.org/10.1016/j.jtice.2021.03.045

J. Duan, ‘The PCM-porous system used to cool the inclined PV panel’, Renewable Energy, vol. 180, pp. 1315–1332, 2021, doi: 10.1016/j.renene.2021.08.097. DOI: https://doi.org/10.1016/j.renene.2021.08.097

Y. Nougblega et al., ‘Conception et réalisation des capteurs hybrides photovoltaïque-thermiques sous vide ou avec lame d’air confinée’, Afrique Science : Revue Internationale des Sciences et Technologie, vol. 11, no. 2, Art. no. 2, 2015, doi: 10.4314/afsci.v11i2.

W. Fan, G. Kokogiannakis, and Z. Ma, ‘Optimisation of life cycle performance of a double-pass photovoltaic thermal-solar air heater with heat pipes’, Renewable Energy, vol. 138, pp. 90–105, 2019, doi: 10.1016/j.renene.2019.01.078. DOI: https://doi.org/10.1016/j.renene.2019.01.078

J. Zhou, W. Zhong, D. Wu, Y. Yuan, W. Ji, and W. He, ‘A review on the heat pipe photovoltaic/thermal (PV/T) system’, J. Therm. Sci., vol. 30, no. 5, pp. 1469–1490, 2021, doi: 10.1007/s11630-021-1434-3. DOI: https://doi.org/10.1007/s11630-021-1434-3

P. Gang, F. Huide, Z. Tao, and J. Jie, ‘A numerical and experimental study on a heat pipe PV/T system’, Solar Energy, vol. 85, no. 5, pp. 911–921, 2011, doi: 10.1016/j.solener.2011.02.006. DOI: https://doi.org/10.1016/j.solener.2011.02.006

E. Akerboom, T. Veeken, C. Hecker, J. van de Groep, and A. Polman, ‘Passive radiative cooling of silicon solar modules with photonic silica microcylinders’, ACS Photonics, vol. 9, p. 3831−3840, 2022, doi: 10.1021/acsphotonics.2c01389. DOI: https://doi.org/10.1021/acsphotonics.2c01389

D. Zhao et al., ‘Radiative sky cooling: Fundamental principles, materials, and applications’, Applied Physics Reviews, vol. 6, no. 2, pp. 1–40, 2019, doi: 10.1063/1.5087281. DOI: https://doi.org/10.1063/1.5087281

J. Dumoulin, E. Drouard, and M. Amara, ‘Radiative sky cooling of solar cells: fundamental modelling and cooling potential of single-junction devices’, Sustainable Energy Fuels, vol. 5, no. 7, pp. 2085–2096, 2021, doi: 10.1039/D0SE01536A. DOI: https://doi.org/10.1039/D0SE01536A

B. Zhao et al., ‘Performance analysis of a hybrid system combining photovoltaic and nighttime radiative cooling’, Applied Energy, vol. 252, pp. 1–9, 2019. DOI: https://doi.org/10.1016/j.apenergy.2019.113432

G. Perrakis, A. C. Tasolamprou, G. Kenanakis, E. N. Economou, S. Tzortzakis, and M. Kafesaki, ‘Passive radiative cooling and other photonic approaches for the temperature control of photovoltaics: a comparative study for crystalline silicon-based architectures’, Opt. Express, vol. 28, no. 13, p. 18548, Jun. 2020, doi: 10.1364/OE.388208. DOI: https://doi.org/10.1364/OE.388208

A. Gordon, B. Cross, and O. Evans, ‘Using photonic cooling systems to improve the efficiency of photovoltaic cells and their means of electricity production’, PAMR, vol. 5, pp. 80–88, 2018, doi: 10.5130/pamr.v5i0.1498. DOI: https://doi.org/10.5130/pamr.v5i0.1498

B. Zhao, M. Hu, X. Ao, Q. Xuan, and G. Pei, ‘Comprehensive photonic approach for diurnal photovoltaic and nocturnal radiative cooling’, Solar Energy Materials and Solar Cells, vol. 178, pp. 266–272, 2018, doi: 10.1016/j.solmat.2018.01.023. DOI: https://doi.org/10.1016/j.solmat.2018.01.023

M. Amara and E. Drouard, ‘Améliorer l’efficacité des cellules photovoltaïques grâce au refroidissement radiatif avec le ciel’, INL CNRS. https://inl.cnrs.fr/ameliorer-lefficacite-des-cellules-photovoltaiques-grace-au-refroidissement-radiatif-avec-le-ciel/. [Accessed: Dec. 29, 2022].

R. Senthil Kumar, N. Puja Priyadharshini, and E. Natarajan, ‘Experimental and numerical analysis of photovoltaic solar panel using thermoelectric cooling’, Indian Journal of Science and Technology, vol. 8, no. 36, pp. 1–9, 2015, doi: 10.17485/ijst/2015/v8i36/87646. DOI: https://doi.org/10.17485/ijst/2015/v8i36/87646

R. Salehi, A. Jahanbakhshi, M. Reza Golzarian, and M. Khojastehpour, ‘Evaluation of solar panel cooling systems using anodized heat sink equipped with thermoelectric module through the parameters of temperature, power and efficiency’, Energy Conversion and Management: X, vol. 11, p. 100102, Sep. 2021, doi: 10.1016/j.ecmx.2021.100102. DOI: https://doi.org/10.1016/j.ecmx.2021.100102

C. Babu and P. Ponnambalam, ‘The theoretical performance evaluation of hybrid PV-TEG system’, Energy Conversion and Management, vol. 173, pp. 450–460, Oct. 2018, doi: 10.1016/j.enconman.2018.07.104. DOI: https://doi.org/10.1016/j.enconman.2018.07.104

W. Pang, H. Yu, Y. Zhang, and H. Yan, ‘Electrical characteristics of a hybrid photovoltaic/thermoelectric generator system’, Energy Tech, vol. 6, no. 7, pp. 1248–1254, 2018, doi: 10.1002/ente.201700801. DOI: https://doi.org/10.1002/ente.201700801

R. Bjørk and K. K. Nielsen, ‘The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system’, Solar Energy, vol. 120, pp. 187–194, Oct. 2015, doi: 10.1016/j.solener.2015.07.035. DOI: https://doi.org/10.1016/j.solener.2015.07.035

A. Salari, A. Parcheforosh, A. Hakkaki-Fard, and A. Amadeh, ‘A numerical study on a photovoltaic thermal system integrated with a thermoelectric generator module’, Renewable Energy, vol. 153, pp. 1261–1271, 2020, doi: 10.1016/j.renene.2020.02.018. DOI: https://doi.org/10.1016/j.renene.2020.02.018

N. Dimri, A. Tiwari, and G. N. Tiwari, ‘Thermal modelling of semitransparent photovoltaic thermal (PVT) with thermoelectric cooler (TEC) collector’, Energy Conversion and Management, vol. 146, pp. 68–77, 2017, doi: 10.1016/j.enconman.2017.05.017. DOI: https://doi.org/10.1016/j.enconman.2017.05.017

N. Syakirah Nazri, A. Fudholi, M. Hafidz Ruslan, and K. Sopian, ‘Mathematical modeling of photovoltaic thermal-thermoelectric (PVT-TE) air collector’, IJPEDS, vol. 9, no. 2, p. 795, Jun. 2018, doi: 10.11591/ijpeds.v9.i2.pp795-802. DOI: https://doi.org/10.11591/ijpeds.v9.i2.pp795-802

S. Diwania, S. Agrawal, A. S. Siddiqui, and S. Singh, ‘Photovoltaic–thermal (PV/T) technology: a comprehensive review on applications and its advancement’, Int J Energy Environ Eng, vol. 11, no. 1, pp. 33–54, 2020, doi: 10.1007/s40095-019-00327-y. DOI: https://doi.org/10.1007/s40095-019-00327-y

B. Zouak and M. S. Belkaïd, ‘Etude et simulation d’un système de refroidissement’, Revue des Energies Renouvelables, vol. 22, no. 2, pp. 171–178, 2019. DOI: https://doi.org/10.54966/jreen.v22i2.735

A. Fudholi, M. Mustapha, I. Taslim, F. Aliyah, A. Gani Koto, and K. Sopian, ‘Photovoltaic thermal (PVT) air collector with monofacial and bifacial solar cells: a review’, IJPEDS, vol. 10, no. 4, p. 2021, Dec. 2019, doi: 10.11591/ijpeds.v10.i4.pp2021-2028. DOI: https://doi.org/10.11591/ijpeds.v10.i4.pp2021-2028

J. Appelbaum, ‘Bifacial photovoltaic panels field’, Renewable Energy, vol. 85, pp. 338–343, Jan. 2016, doi: 10.1016/j.renene.2015.06.050. DOI: https://doi.org/10.1016/j.renene.2015.06.050

G. Badran and M. Dhimish, ‘A comparative study of bifacial versus monofacial PV systems at the UK’s largest solar plant’, Clean Energy, vol. 8, no. 4, pp. 248–260, Aug. 2024, doi: 10.1093/ce/zkae043. DOI: https://doi.org/10.1093/ce/zkae043

P. Ooshaksaraei, K. Sopian, R. Zulkifli, and S. H. Zaidi, ‘Characterization of air-based photovoltaic thermal panels with bifacial solar cells’, International Journal of Photoenergy, vol. 2013, pp. 1–10, 2013, doi: 10.1155/2013/978234. DOI: https://doi.org/10.1155/2013/978234

T. A. Hamed, A. Alshare, and H. El-Khalil, ‘Passive cooling of building-integrated photovoltaics in desert conditions: Experiment and modeling’, Energy, vol. 170, pp. 131–138, 2019, doi: 10.1016/j.energy.2018.12.153. DOI: https://doi.org/10.1016/j.energy.2018.12.153

Y. Liu et al., ‘Experimental and numerical analyses of parameter optimization of photovoltaic cooling system’, Energy, vol. 215, p. 119159, Jan. 2021, doi: 10.1016/j.energy.2020.119159. DOI: https://doi.org/10.1016/j.energy.2020.119159

Y. Wang, W. Tian, J. Ren, L. Zhu, and Q. Wang, ‘Influence of a building’s integrated-photovoltaics on heating and cooling loads’, Applied Energy, vol. 83, no. 9, pp. 989–1003, Sep. 2006, doi: 10.1016/j.apenergy.2005.10.002. DOI: https://doi.org/10.1016/j.apenergy.2005.10.002

J.-H. Kim, S.-M. Kim, and J.-T. Kim, ‘Experimental performance of an advanced air-type photovoltaic/thermal (PVT) collector with direct expansion air handling unit (AHU)’, Sustainability, vol. 13, no. 2, pp. 1–10, 2021, doi: 10.3390/su13020888. DOI: https://doi.org/10.3390/su13020888

K. Vats, V. Tomar, and G. N. Tiwari, ‘Effect of packing factor on the performance of a building integrated semitransparent photovoltaic thermal (BISPVT) system with air duct’, Energy and Buildings, vol. 53, pp. 159–165, 2012, doi: 10.1016/j.enbuild.2012.07.004. DOI: https://doi.org/10.1016/j.enbuild.2012.07.004

T. Yang, ‘A numerical and experimental investigation of enhanced open-loop air-based building-integrated photovoltaic/thermal (BIPV/T) systems’, Doctor of Philosophy, Concordia University, Department of Building, Civil and Environmental Engineering, Montreal, Quebec, Canada, 2015.

G. N. Tiwari, H. Saini, A. Tiwari, A. Deo, N. Gupta, and P. S. Saini, ‘Periodic theory of building integrated photovoltaic thermal (BIPVT) system’, Solar Energy, vol. 125, pp. 373–380, 2016, doi: 10.1016/j.solener.2015.12.028. DOI: https://doi.org/10.1016/j.solener.2015.12.028

A. Ndiho, ‘Numerical study of natural convection through a photovoltaic-thermal (PV/T) building solar chimney suitable for natural cooling’, International Journal of Scientific & Technology Research, vol. 3, no. 12, p. 8, 2014.

Y. Nougbléga, K. Kpode, K. N’Wuitcha, and M. Banna, ‘Thermal efficiency of a hybrid photovoltaic-thermal chimney integrated into a building’, AJMP, vol. 8, no. 4, pp. 50–65, 2019, doi: 10.11648/j.ajmp.20190804.11. DOI: https://doi.org/10.11648/j.ajmp.20190804.11

A. A. Jadallah, M. K. Alsaadi, and S. A. Hussien, ‘The hybrid Photovoltaic-Thermal double-pass solar system for drying applications’, IOP Conf. Ser.: Mater. Sci. Eng., vol. 765, pp. 1–15, 2020, doi: 10.1088/1757-899X/765/1/012024. DOI: https://doi.org/10.1088/1757-899X/765/1/012024

J. Lukasik and J. Wajs, ‘Experimental and numerical study of thermal and electrical potential of BIPV/T collector in the form of air-cooled photovoltaic roof tile’, International Journal of Heat and Mass Transfer, vol. 227, p. 125554, 2024, doi: 10.1016/j.ijheatmasstransfer.2024.125554. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2024.125554

Q. Yu et al., ‘Global estimation of building-integrated facade and rooftop photovoltaic potential by integrating 3D building footprint and spatio-temporal datasets’, Nexus, vol. 2, no. 2, p. 100060, Jun. 2025, doi: 10.1016/j.ynexs.2025.100060. DOI: https://doi.org/10.1016/j.ynexs.2025.100060

C. Deline, S. Ayala, B. Marion, B. Sekulic, M. Woodhouse, and J. Stein, ‘Bifacial PV System Performance: Separating Fact from Fiction’, National Renewable Energy Labs. (NREL), Golden, CO (United States), 2019.

Y.-J. Kim, K.-S. Lee, L. Yang, E. Entchev, E.-C. Kang, and E.-J. Lee, ‘Validation and numerical sensitivity study of air baffle photovoltaic-thermal module’, vol. 13, pp. 1–13, 2020, doi: doi:10.3390/en13081990. DOI: https://doi.org/10.3390/en13081990

J.-S. Yu, J.-H. Kim, and J.-T. Kim, ‘Effect of triangular baffle arrangement on heat transfer enhancement of air-type PVT collector’, Sustainability, vol. 12, pp. 1–13, 2020, doi: doi:10.3390/su12187469. DOI: https://doi.org/10.3390/su12187469

J.-H. Kim, J.-S. Yu, and J.-T. Kim, ‘An experimental study on the energy and exergy performance of an air-type PVT collector with perforated baffle’, Energies, vol. 14, no. 10, pp. 1–13, 2021, doi: 10.3390/en14102919. DOI: https://doi.org/10.3390/en14102919

J.-G. Ahn, J.-S. Yu, F. E. Boafo, J.-H. Kim, and J.-T. Kim, ‘Simulation and performance analysis of air-type PVT collector with Interspaced baffle-PV cell design’, Energies, vol. 14, no. 17, pp. 1–12, 2021, doi: 10.3390/en14175372. DOI: https://doi.org/10.3390/en14175372

B.-H. An, K.-H. Choi, and H.-U. Choi, ‘Influence of triangle-shaped obstacles on the energy and exergy performance of an air-cooled photovoltaic thermal (PVT) collector’, Sustainability, vol. 14, no. 20, pp. 1–19, 2022, doi: 10.3390/su142013233. DOI: https://doi.org/10.3390/su142013233

M. Zohri, N. Nurato, and A. Fudholi, ‘Photovoltaic thermal (PVT) system with and without fins collector: theoretical approach’, IJPEDS, vol. 8, no. 4, pp. 1756–1763, 2017, doi: 10.11591/ijpeds.v8.i4.pp1756-1763. DOI: https://doi.org/10.11591/ijpeds.v8.i4.pp1756-1763

M. Zohri, S. Hadisaputra, and A. Fudholi, ‘Exergy and energy analysis of photovoltaic thermal (PVT)with and without fins collector’, ARPN Journal of Engineering and Applied Sciences, vol. 13, no. 3, pp. 803–808, 2018.

R. Kumar and M. A. Rosen, ‘A critical review of photovoltaic-thermal solar collectors for air heating’, Applied Energy, vol. 88, no. 11, pp. 3603–3614, 2011, doi: 10.1016/j.apenergy.2011.04.044. DOI: https://doi.org/10.1016/j.apenergy.2011.04.044

J. C. Mojumder, W. T. Chong, H. C. Ong, K. Y. Leong, and Abdullah-Al-Mamoon, ‘An experimental investigation on performance analysis of air type photovoltaic thermal collector system integrated with cooling fins design’, Energy and Buildings, vol. 130, pp. 272–285, 2016, doi: 10.1016/j.enbuild.2016.08.040. DOI: https://doi.org/10.1016/j.enbuild.2016.08.040

J. K. Tonui and Y. Tripanagnostopoulos, ‘Improved PV/T solar collectors with heat extraction by forced or natural air circulation’, Renewable Energy, vol. 32, no. 4, pp. 623–637, 2007, doi: 10.1016/j.renene.2006.03.006. DOI: https://doi.org/10.1016/j.renene.2006.03.006

C. Kalkan, M. A. Ezan, J. Duquette, Ş. Y. Balaman, and A. Yilanci, ‘Numerical study on photovoltaic/thermal systems with extended surfaces’, Int J Energy Res, vol. 43, no. 10, pp. 1–17, 2019, doi: 10.1002/er.4477. DOI: https://doi.org/10.1002/er.4477

I. Tabet, K. Touafek, N. Bellel, and A. Khelifa, ‘Thermal performances of vertical hybrid PV/T air collector’, Eur. Phys. J. Plus, vol. 131, no. 140, pp. 1–15, 2016, doi: 10.1140/epjp/i2016-16410-2. DOI: https://doi.org/10.1140/epjp/i2016-16410-2

M. Al-Damook et al., ‘CFD analysis of a one-pass photovoltaic/thermal air system with and without offset strip fins’, MATEC Web of Conferences, vol. 240, pp. 1–5, 2018, doi: 10.1051/matecconf/201824003002. DOI: https://doi.org/10.1051/matecconf/201824003002

M. Gholampour and M. Ameri, ‘Energy and exergy study of effective parameters on performance of photovoltaic/thermal natural air collectors’, Journal of Solar Energy Engineering, vol. 136, no. 3, pp. 1–11, 2014, doi: 10.1115/1.4026250. DOI: https://doi.org/10.1115/1.4026250

S. S. S. Dawal and J. O. Chandle, ‘Electrical efficiency improvement of PV cells’, International Journal of Scientific Development and Research (IJSDR), vol. 2, no. 5, 2017, [Online]. Available: www.ijsdr.org

R. K. Mehta, M. Rai, A. D. Gupta, and Y. Gupta, ‘Performance enhancement of photovoltaic solar cells by introducing circular ribs: A numerical analysis’, Numerical Analysis, vol. 11, no. 6, pp. 38861–38867, 2020, doi: http://dx.doi.org/10.24327/ijrsr.2020.1106.5391.

S. Saadi, S. Benissaad, S. Poncet, and Y. Kabar, ‘Effective cooling of photovoltaic solar cells by inserting triangular ribs: A numerical study’, International Journal of Energy and Environmental Engineering, vol. 12, no. 7, pp. 488–494, 2018.

B. Srimanickam and A. Saranya, ‘Thermal performance of single glazing flat plate photovoltaic thermal hybrid system with various air channels’, J. Test. Eval., vol. 49, no. 3, pp. 2119–2150, 2019, doi: 10.1520/JTE20170750. DOI: https://doi.org/10.1520/JTE20170750

T. Ma, J. Zhao, and Z. Li, ‘Mathematical modelling and sensitivity analysis of solar photovoltaic panel integrated with phase change material’, Applied Energy, vol. 228, pp. 1147–1158, 2018, doi: 10.1016/j.apenergy.2018.06.145. DOI: https://doi.org/10.1016/j.apenergy.2018.06.145

A. R. Abdulmunem and J. M. Jalil, ‘Indoor investigation and numerical analysis of PV cells temperature regulation using coupled PCM/Fins’, IJHT, vol. 36, no. 4, pp. 1212–1222, 2018, doi: 10.18280/ijht.360408. DOI: https://doi.org/10.18280/ijht.360408

M. Farshchimonfared, J. I. Bilbao, and A. B. Sproul, ‘Channel depth, air mass flow rate and air distribution duct diameter optimization of photovoltaic thermal (PV/T) air collectors linked to residential buildings’, Renewable Energy, vol. 76, pp. 27–35, 2015, doi: 10.1016/j.renene.2014.10.044. DOI: https://doi.org/10.1016/j.renene.2014.10.044

Amrizal, Y. P. Hidayat, and M. Irsyad, ‘Performance comparison of single and double pass PV/T solar collectors integrated with rectangular plate fin absorber’, IOP Conf. Ser.: Mater. Sci. Eng., vol. 1173, no. 1, pp. 1–8, 2021, doi: 10.1088/1757-899X/1173/1/012023. DOI: https://doi.org/10.1088/1757-899X/1173/1/012023

A. A. Hegazy, ‘Comparative study of the performances of four photovoltaic/thermal solar air collectors’, Energy Conversion and Management, vol. 41, no. 8, pp. 861–881, 2000, doi: 10.1016/S0196-8904(99)00136-3. DOI: https://doi.org/10.1016/S0196-8904(99)00136-3

J. Wu et al., ‘A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules’, Renewable and Sustainable Energy Reviews, pp. 1–16, 2016, doi: 10.1016/j.rser.2016.11.063. DOI: https://doi.org/10.1016/j.rser.2016.11.063

G. L. Jin et al., ‘Evaluation of single-pass photovoltaic-thermal air collector with rectangle tunnel absorber’, American Journal of Applied Sciences, vol. 7, no. 2, pp. 277–282, 2010. DOI: https://doi.org/10.3844/ajassp.2010.277.282

M. Y. H. Othman, F. Hussain, K. Sopian, B. Yatim, and H. Ruslan, ‘Performance study of air-based photovoltaic-thermal (PV/T) collector with different designs of heat exchanger’, Sains Malaysiana, vol. 42, no. 9, pp. 1319–1325, 2013.

F. Hussain, M. Y. H. Othman, B. Yatim, H. Ruslan, K. Sopian, and Z. Ibarahim, ‘A study of PV/T collector with honeycomb heat exchanger’, presented at the Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology, Selangor, Malaysia, 2013, pp. 10–16. doi: 10.1063/1.4858622. DOI: https://doi.org/10.1063/1.4858622

M. Zohri, A. Fudholi, M. H. Ruslan, and K. Sopian, ‘Mathematical modeling of photovoltaic thermal PV/T system with v-groove collector’, presented at the Proceedings of the 2nd International Symposium on Current Progress in Mathematics and Sciences 2016, Depok, Jawa Barat, Indonesia, 2017, pp. 1–7. doi: 10.1063/1.4991167. DOI: https://doi.org/10.1063/1.4991167

S. Diwania, A. S. Siddiqui, S. Agrawal, and R. Kumar, ‘Performance assessment of PVT-air collector with V-groove absorber: A theoretical and experimental analysis’, Heat Mass Transfer, vol. 57, no. 4, pp. 665–679, 2021, doi: 10.1007/s00231-020-02980-0. DOI: https://doi.org/10.1007/s00231-020-02980-0

C. Yu, H. Li, J. Chen, S. Qiu, F. Yao, and X. Liu, ‘Investigation of the thermal performance enhancement of a photovoltaic thermal (PV/T) collector with periodically grooved channels’, Journal of Energy Storage, vol. 40, pp. 1–12, 2021, doi: 10.1016/j.est.2021.102792. DOI: https://doi.org/10.1016/j.est.2021.102792

A. Fudholi et al., ‘Exergy and sustainability index of photovoltaic thermal (PVT) air collector: A theoretical and experimental study’, Renewable and Sustainable Energy Reviews, vol. 100, pp. 44–51, 2019, doi: 10.1016/j.rser.2018.10.019. DOI: https://doi.org/10.1016/j.rser.2018.10.019

S. Sandooghdar, S. Akbarzadeh, M. S. Valipour, and A. Arabkoohsar, ‘Performance improvement of air-based solar photovoltaic/thermal collectors using wavy channels’, Renewable Energy, vol. 211, pp. 831–845, Jul. 2023, doi: 10.1016/j.renene.2023.05.043. DOI: https://doi.org/10.1016/j.renene.2023.05.043

M. A. El-Hamid, G. Wei, M. Sherin, L. Cui, and X. Du, ‘Comparative study of different photovoltaic/thermal hybrid configurations from energetic and exergetic points of view: A numerical analysis’, Journal of Solar Energy Engineering, vol. 143, no. 6, pp. 1–12, 2021, doi: 10.1115/1.4051154. DOI: https://doi.org/10.1115/1.4051154

H.-U. Choi and K.-H. Choi, ‘Performance evaluation of PV/T air collector having a single-pass double-flow air channel and non-uniform cross-section transverse rib’, Energies, vol. 13, no. 9, pp. 1–13, 2020, doi: 10.3390/en13092203. DOI: https://doi.org/10.3390/en13092203

E. Dadioti, ‘Development of a pc-program for estimating the performance of water cooled photovoltaic/thermal systems’, M.Sc. in Renewable Energy and Architectur, The University of Nottingham, Department of Architecture and Built Environment, 2010.

A. Starczewska and M. Kępińska, ‘Photonic Crystal Structures for Photovoltaic Applications’, Materials, vol. 17, no. 5, p. 1196, 2024, doi: 10.3390/ma17051196. DOI: https://doi.org/10.3390/ma17051196

Downloads

Published

2025-05-17

How to Cite

Kombate, Y., N’wuitcha, K., Apedanou, K. G. ., Kolani, Y., Aoukou, K. D. D., & Obese, B. (2025). Analysis of Cooling Methods to Improve the Electrical Performance of Photovoltaic Modules. Solar Energy and Sustainable Development Journal, 14(1), 410–447. https://doi.org/10.51646/jsesd.v14i1.349

Issue

Section

Articles