Transient Stability Enhancement in Microgrids:
Critical Clearing Time Assessment for Sequential Symmetrical and Asymmetrical Faults with PSS-SVC Coordination
DOI:
https://doi.org/10.51646/jsesd.v14i1.478Keywords:
Sequential faults, Transient stability, CCT, PSS-SVC, PV-Wind.Abstract
The widespread integration of renewable energy sources, such as photovoltaic (PV) and wind power, poses significant challenges to power system stability. This study investigates the combined effect of a Power System Stabilizer (PSS) and a Static Var Compensator (SVC) in enhancing transient stability during sequential symmetrical and asymmetrical faults. A modified IEEE 9-bus system was used, with PV arrays connected to Buses 5 and 6 and a wind farm integrated at Bus 8. Simulations were conducted using ETAP 20.2, with Critical Clearing Time (CCT) calculated and frequency/voltage variations analyzed.
The results demonstrate that the coordinated use of PSS and SVC significantly improves system stability, increasing CCT values and damping critical oscillations. The system showed enhanced resilience to sequential faults, providing practical solutions for renewable energy integration challenges. The key conclusion is that PSS-SVC coordination effectively enhances the flexibility of power systems under high renewable energy penetration.
Downloads
Metrics
References
ATTAR, M. A., ransitionet Sécurité Energétique les Défisà L’horizon 2030, Revue Algérienne des Politiques Publiques, Vol 08 : nr 03, 2020.
Sonelgaz : Un Quatrième Nouveau Pic de consommation électrique enregistré Durant l’été 2024. Radio Algérienne n.d. http://news.radioalgerie.dz/fr/node/48902 (accessed August 18, 2024).
May, N. Eco-balance of a solar electricity transmission from North Africa to Europe. Unpublished Diploma thesis, Technical University of Braunschweig, 2005.
Nassima D. Le gouvernement s’inscrit “pleinement” Dans la Stratégie de la transition énergétique à l’horizon 2035. APS 2024. https://www.aps.dz/economie/166220-le-gouvernement-s-inscrit-pleinement-dans-la-strategie-de-la-transition-energetique-a-l-horizon-2035 (accessed August 18, 2024).
L. Chilakapati, “Microgrid power quality enhancement with Adaptive Control Strategies: A literature survey,” PRZEGLĄD ELEKTROTECHNICZNY, vol. 1, no. 3, pp. 115–119, Mar. 2024. https://doi:10.15199/48.2024.03.21 DOI: https://doi.org/10.15199/48.2024.03.21
T. RACHDI, “Performance enhancement of smart grid using an optimal placement of facts: Case of TCSC,” PRZEGLĄD ELEKTROTECHNICZNY, vol. 1, no. 2, pp. 281–287, Feb. 2024. https://doi:10.15199/48.2024.02.56 DOI: https://doi.org/10.15199/48.2024.02.56
L. Gan, P. Jiang, B. Lev, and X. Zhou, “Balancing of supply and demand of Renewable Energy Power System: A review and Bibliometric Analysis,” Sustainable Futures, vol. 2, p. 100013, 2020. https://doi:10.1016/j.sftr.2020.100013 DOI: https://doi.org/10.1016/j.sftr.2020.100013
Che, Y., & Chen, J. Research on design and control of microgrid system. Electrical Review ISSN, 33(2097), 83-86. 2012.
D. Maizana, A. Rezky, S. Muthia Putri, H. Satria, and M. Mungkin, “Stability Analysis of Smart Grid Management System on campus building,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 30, no. 3, p. 1321, Jun. 2023. https://doi:10.11591/ijeecs.v30.i3.pp1321-1330 DOI: https://doi.org/10.11591/ijeecs.v30.i3.pp1321-1330
M. Liaqat, T. Alsuwian, A. A. Amin, M. Adnan, and A. Zulfiqar, “Transient stability enhancement in renewable energy integrated multi-microgrids: A comprehensive and critical analysis,” Measurement and Control, vol. 57, no. 2, pp. 187–207, Sep. 2023. https://doi:10.1177/00202940231196193 DOI: https://doi.org/10.1177/00202940231196193
. H. Shayeghi, H. Aryanpour, M. Alilou, and A. Jalili, “Microgrid stability definition, analysis, and examples,” Power Systems, pp. 305–335, 2021. https://doi:10.1007/978-3-030-59750-4_13 DOI: https://doi.org/10.1007/978-3-030-59750-4_13
S. Krishnamurthy and E. I. Ogunwole, “Microgrid system design, modeling, and simulation,” Modeling and Control Dynamics in Microgrid Systems with Renewable Energy Resources, pp. 345–376, 2024. https://doi:10.1016/b978-0-323-90989-1.00009-9 DOI: https://doi.org/10.1016/B978-0-323-90989-1.00009-9
R. Majumder, “Some aspects of stability in microgrids,” IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 3243–3252, Aug. 2013. https://doi:10.1109/tpwrs.2012.2234146 DOI: https://doi.org/10.1109/TPWRS.2012.2234146
M. N. Absar, M. F. Islam, and A. Ahmed, “Power quality improvement of a proposed grid-connected hybrid system by load flow analysis using static VAR compensator,” Heliyon, vol. 9, no. 7, Jul. 2023. https://doi:10.1016/j.heliyon.2023.e17915 DOI: https://doi.org/10.1016/j.heliyon.2023.e17915
“ETAP: Energy Management Solution: Electrical Digital Twin Platform,” Default, https://www.etap.com/ (accessed Aug. 18, 2024).
C. S. Kamble and Prof. R. Rewatkar, “Load-flow analysis of distribution systems using ETAP,” ICSESD-2017, 2017. https://doi:10.24001/ijaems.icsesd2017.95 DOI: https://doi.org/10.24001/ijaems.icsesd2017.95
N. M. Khoa, N. H. Hieu, and D. T. Viet, “A study of SVC’s impact simulation and analysis for distance protection relay on transmission lines,” International Journal of Electrical and Computer Engineering (IJECE), vol. 7, no. 4, p. 1686, Aug. 2017. https://doi:10.11591/ijece.v7i4.pp1686-1695 DOI: https://doi.org/10.11591/ijece.v7i4.pp1686-1695
PARTON, John E. A note on the equal-area stability criterion. Proceedings of the IEE-Part IV: Institution Monographs, 1952, vol. 99, no 3, p. 187-193. DOI: https://doi.org/10.1049/pi-4.1952.0020
Rebhaoui, A. Emplacement Optimal Multi-objectif des Compensateurs Shunts dans les Réseaux Electriques de Distribution. Unpublished Diploma thesis, Ecole Nationale Polytechnique, 2018.
M. Al Hazza, H. Attia, and K. Hossin, “Solar photovoltaic power prediction using statistical approach-based analysis of variance,” Solar Energy and Sustainable Development Journal, vol. 13, no. 2, pp. 45–61, Jun. 2024. https://doi:10.51646/jsesd.v13i2.181 DOI: https://doi.org/10.51646/jsesd.v13i2.181
Han, H., Luo, S., Chen, S., Yuan, L., Shi, G., Yang, Y., & Fei, L. A transient stability enhancement framework based on rapid fault-type identification for virtual synchronous generators. International Journal of Electrical Power & Energy Systems, 155, 109545. https://doi.org/10.1016/j.ijepes.2023.109545 (2024) DOI: https://doi.org/10.1016/j.ijepes.2023.109545
Seyedi, Y., Mahseredjian, J., & Karimi, H.. Impact of fault impedance and duration on transient response of Hybrid AC/DC Microgrid. Electric Power Systems Research, 197, 107298 (2021). https://doi.org/10.1016/j.epsr.2021.107298 DOI: https://doi.org/10.1016/j.epsr.2021.107298
Hu, S., Yang, J., Wang, Y., Zhao, Y., & Chao, C. (2023). Inertia and primary frequency response requirement assessment for high-penetration renewable power systems based on planning perspective. Sustainability, 15(23), 16191. https://doi.org/10.3390/su152316191 DOI: https://doi.org/10.3390/su152316191
M. Aslan et al., “Performance enhancement of microgrid systems using backstepping control for grid side converter and MPPT optimization,” Solar Energy and Sustainable Development Journal, vol. 14, no. 1, pp. 19–41, Dec. 2024. doi:10.51646/jsesd.v14i1.367 [25] DOI: https://doi.org/10.51646/jsesd.v14i1.367
Z. SHUAI, Transient Characteristics, Modelling and Stability Analysis of MICROGRID. S.l.: SPRINGER VERLAG, SINGAPOR, 2021. DOI: https://doi.org/10.1007/978-981-15-8403-9
Q. Wang, A. Xue, T. Bi, and Y. Zheng, “Impact of DFIG-based wind farm on transient stability of Single Machine Infinite Bus System,” 2013 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), pp. 1–5, Dec. 2013. doi:10.1109/appeec.2013.6837199 DOI: https://doi.org/10.1109/APPEEC.2013.6837199
T. K. Yudhantomo, L. M. Putranto, B. Sugiyantoro, and Tiyono, “Transient stability analysis in grid integrated solar farm,” 2019 5th International Conference on Science and Technology (ICST), pp. 1–6, Jul. 2019. doi:10.1109/icst47872.2019.9166213 DOI: https://doi.org/10.1109/ICST47872.2019.9166213
S. R. Paital, P. K. Ray, and A. Mohanty, “Firefly-swarm optimized fuzzy adaptive PSS in power system for Transient Stability Enhancement,” 2017 Progress in Electromagnetics Research Symposium - Fall (PIERS - FALL), pp. 1969–1976, Nov. 2017. doi:10.1109/piers-fall.2017.8293460 DOI: https://doi.org/10.1109/PIERS-FALL.2017.8293460
Z. Liu et al., “Research the influence of PSS on power system transient stability,” 2022 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), pp. 134–138, Jun. 2022. doi:10.1109/icaica54878.2022.9844499. DOI: https://doi.org/10.1109/ICAICA54878.2022.9844499

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Solar Energy and Sustainable Development Journal

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.