Assessing the Influence of Grid-Connected PV Systems on Algeria's Low Voltage Distribution Network

Authors

  • Madjid Chikh Le Commissariat aux énergies renouvelables et à l'efficacité énergétique (CEREFE), B.P.23, Docteur Asselah Slimane, Alger Centre 16000.
  • Aicha DEGLA CDER https://orcid.org/0000-0002-0415-9479
  • Smain Berkane Unité de Développement des Equipements Solaires UDES, Algiers, Algeria, Route nationale N 11, BP 386, Boui-Smail, 42415, wilaya de Tipaza.
  • Achour Mahrane Unité de Développement des Equipements Solaires UDES, Algiers, Algeria, Route nationale N 11, BP 386, Boui-Smail, 42415, wilaya de Tipaza.
  • Abdalbaset Mnider Dept. of Electronic & Electrical Eng University of Strathclyde Bahrain, Manama, Bahrain. And Elmergib University AlKhums, Libya. https://orcid.org/0000-0002-7378-0883

DOI:

https://doi.org/10.51646/jsesd.v14i2.548

Keywords:

PV Grid-connected, Standard EN50160, Power quality, renewable energy, THD, power factor.

Abstract

The integration of renewable energy into power systems is a growing area of interest, particularly in regions with high solar potential. This study investigates the impact of a 12.5 kWp multi-technology photovoltaic (PV) power station on the local utility grid. The system comprises five PV arrays using different technologies, installed on the rooftop and façade of the UDES/CDER conference room in Tipaza, Algeria. Experimental data were collected to evaluate the grid voltage variations at the grid-connected point under real operating conditions. Voltage levels remained within the EN 50160 standard limits, with fluctuations typically ranging from 229 V to 236 V. The total harmonic distortion (THD) of current remained below 5% during peak injection periods, meeting IEC 61000-3-2 standards. Statistical analysis of THD and power factor (PF) distributions for three PV power output levels showed that more than 80% of current THD values were concentrated in the 5–10% range, with standard deviations decreasing as PV output increased. Voltage THD means decreased from 2.42 to 2.26 with rising PV generation, and over 96% of values were well below the EN 15160 limit.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

“What Is Iea Pvps,” pp. 1–16, 2015.

“MODEL FORMS Usage and Reproduction of IET Forms,” no. July, 2015.

A. Honrubia-Escribano, A. Molina-Garcia, E. Gomez-Lazaro, and E. Muljadi, “Power quality survey of a photovoltaic power plant,” Conf. Rec. IEEE Photovolt. Spec. Conf., pp. 1799–1804, 2013, doi: 10.1109/PVSC.2013.6744492. DOI: https://doi.org/10.1109/PVSC.2013.6744492

A. Canova, L. Giaccone, F. Spertino, and M. Tartaglia, “Electrical impact of photovoltaic plant in distributed network,” IEEE Trans. Ind. Appl., vol. 45, no. 1, pp. 341–347, 2009, doi: 10.1109/TIA.2009.2009726. DOI: https://doi.org/10.1109/TIA.2009.2009726

V. R. F. B. De Souza, M. A. Filho, and K. C. De Oliveira, “Analysis of power quality for photovoltaic systems connected to the grid,” Proc. Int. Conf. Harmon. Qual. Power, ICHQP, vol. 2016-Decem, no. 5, pp. 226–230, 2016, doi: 10.1109/ICHQP.2016.7783418. DOI: https://doi.org/10.1109/ICHQP.2016.7783418

P. González, E. Romero-Cadaval, E. González, and M. A. Guerrero, “Impact of grid connected photovoltaic system in the power quality of a distribution network,” IFIP Adv. Inf. Commun. Technol., vol. 349 AICT, pp. 466–473, 2011, doi: 10.1007/978-3-642-19170-1_51. DOI: https://doi.org/10.1007/978-3-642-19170-1_51

S. M. Ahsan, H. A. Khan, A. Hussain, S. Tariq, and N. A. Zaffar, “Harmonic analysis of grid-connected solar PV systems with nonlinear household loads in low-voltage distribution networks,” Sustain., vol. 13, no. 7, 2021, doi: 10.3390/su13073709. DOI: https://doi.org/10.3390/su13073709

I. Kim and M. Begovic, “On impact of randomly distributed PV systems on distribution networks,” Proc. Annu. Hawaii Int. Conf. Syst. Sci., vol. 2016-March, no. February, pp. 2418–2425, 2016, doi: 10.1109/HICSS.2016.302. DOI: https://doi.org/10.1109/HICSS.2016.302

M. J.-E. Alam, “Grid integration of solar photovoltaic resources: impact analysis and mitigation strategies,” p. 222, 2014, [Online]. Available: http://ro.uow.edu.au/theses/

M. Maghalseh, N. Iqteit, H. Alqadi, and S. Ajib, “Investigation of Grid-Tied Photovoltaic Power Plant on Medium-Voltage Feeder: Palestine Polytechnic University Case Study,” Solar, vol. 5, no. 1, 2025, doi: 10.3390/solar5010001. DOI: https://doi.org/10.3390/solar5010001

OBSERVATOIRE GÉOSTRATÉGIQUE DU SPORT, “Du Sport Impact De La Mondialisation Sur Le Sport : Impact De La Mondialisation Sur Le Sport,” no. December 2017, 2015.

M. Mourad Mabrook, A. A. Donkol, A. M. Mabrouk, A. I. Hussein, and M. Barakat, “Enhanced the Hosting Capacity of a Photovoltaic Solar System Through the Utilization of a Model Predictive Controller,” IEEE Access, vol. 12, no. January, pp. 62480–62491, 2024, doi: 10.1109/ACCESS.2024.3392645. DOI: https://doi.org/10.1109/ACCESS.2024.3392645

F. Peprah, S. Gyamfi, M. Amo-Boateng, and E. Effah-Donyina, “Impact assessment of grid tied rooftop PV systems on LV distribution network,” Sci. African, vol. 16, no. April, p. e01172, 2022, doi: 10.1016/j.sciaf.2022.e01172. DOI: https://doi.org/10.1016/j.sciaf.2022.e01172

P. Phukpattaranont, M. S. Janthong, and P. Phukpattaranont, “Grid-Connected Residential PV Systems: Assessing Power Quality Disturbance Impacts,” no. December, 2024, [Online]. Available: https://www.researchgate.net/publication/387292214

C. Gandikoti, S. K. Jha, B. M. Jha, and P. Mishra, “Distributed voltage unbalance mitigation in islanded microgrid using moth flame optimization and firebug swarm optimization,” Int. J. Power Electron. Drive Syst., vol. 15, no. 2, pp. 824–834, 2024, doi: 10.11591/ijpeds.v15.i2.pp824-834. DOI: https://doi.org/10.11591/ijpeds.v15.i2.pp824-834

M. Værbak, J. D. Billanes, B. N. Jørgensen, and Z. Ma, “A Digital Twin Framework for Simulating Distributed Energy Resources in Distribution Grids,” Energies , vol. 17, no. 11, 2024, doi: 10.3390/en17112503. DOI: https://doi.org/10.3390/en17112503

L. E. S. e. Silva et al., “Probabilistic operational costs assessment of combined PV–PEV connections in LV distribution networks,” Electr. Power Syst. Res., vol. 214, no. PB, p. 108906, 2023, doi: 10.1016/j.epsr.2022.108906. DOI: https://doi.org/10.1016/j.epsr.2022.108906

EN 50160, “Voltage characteristics of electricity supplied by public electricity networks,” Eur. Comm. Electrotech. Stand., vol. 33, no. 0, 2010.

ISO 5167-2:2003(E), “International Standard IEC 61000-4-30,” 61010-1 © Iec2001, vol. 2003, p. 13, 2021.

EN 50160, “Voltage characteristics of electricity supplied by public electricity networks,” Eur. Comm. Electrotech. Stand., 2010.

S. Australia, “Australian Standard TM Standard Voltages IEC60038:1983,” pp. 5–9, 2000, [Online]. Available: www.standards.com.au

BSI, “Requirements for electrical installations,” IET wiring Regul. 18th Ed., vol. 2, no. 2, p. 560, 2018.

ANSI Standard Publication, “American National Standard for Electric Power Systems and Equipment-Voltage Ratings(60Hertz),” ANSI Stand Z17. 1, no. March 10, pp. 1–7, 2020.

A. Satyanand, “Electricity ( Safety ) Regulations 2010 Order in Council,” 2010.

N. Anang and W. M. W. Muda, “Analysis of total harmonic distortion in single-phase single-stage grid-connected photovoltaic system,” Int. J. Power Electron. Drive Syst., vol. 14, no. 1, pp. 471–479, 2023, doi: 10.11591/ijpeds.v14.i1.pp471-479. DOI: https://doi.org/10.11591/ijpeds.v14.i1.pp471-479

Standards Association of Australia, AS 2926 — Standard Voltages, Standards Association of Australia, Sydney, Australia, 1987.

Standards Australia, AS 60038-2012 — Standard Voltages, Standards Australia International Ltd., Sydney, Australia, 2012.

Downloads

Published

2026-02-14

How to Cite

Chikh, M. ., DEGLA, A., Berkane, S., Mahrane, A., & Mnider, A. (2026). Assessing the Influence of Grid-Connected PV Systems on Algeria’s Low Voltage Distribution Network. Solar Energy and Sustainable Development Journal, 14(2), 167–186. https://doi.org/10.51646/jsesd.v14i2.548

Issue

Section

Articles