Biomimetic Airfoils in Wind Turbine Design:
Innovations in Noise Mitigation and Aeroacoustic Performance Inspired by Avian Morphology
DOI:
https://doi.org/10.51646/jsesd.v14i2.589Keywords:
Biomimetic, Bioinspired airfoils, Wind turbine noise mitigation, Serrated airfoils, Aeroacoustics, CFD, Owl inspired design.Abstract
Wind turbines are a cornerstone of sustainable energy systems, yet their widespread adoption is often hindered by the aerodynamic noise generated by their blades, impacting both human settlements and wildlife. This review explores the emerging role of biomimicry in wind turbine airfoil design, with a particular focus on avian-inspired adaptations for aeroacoustic optimization. Drawing inspiration from owls and other silent-flying birds, features such as serrated leading and trailing edges, porous coatings, and flexible surfaces are examined for their ability to disrupt vortex shedding and stabilize boundary layers, leading to significant reductions in both tonal and broadband noise. Experimental and numerical studies have demonstrated sound pressure level reductions of 2–10 dB, with certain optimized designs achieving even greater attenuation at specific frequencies. This paper critically reviews the aerodynamic mechanisms, computational modeling techniques, and fabrication strategies used to implement these biomimetic features, while addressing the performance trade-offs and structural challenges involved in full-scale turbine integration. By synthesizing current research and identifying future opportunities, including advanced materials and additive manufacturing. The review highlights how nature-inspired solutions can enable the next generation of quieter, more efficient, and ecologically harmonious wind energy systems.
Downloads
Metrics
References
V. Fthenakis and H. C. Kim, “Land use and electricity generation: A life-cycle analysis,” Renewable and Sustainable Energy Reviews, vol. 13, no. 6–7, pp. 1465–1474, Aug. 2009, doi: 10.1016/j.rser.2008.09.017. DOI: https://doi.org/10.1016/j.rser.2008.09.017
P. Veers et al., “Grand challenges in the science of wind energy,” Science, vol. 366, no. 6464, p. eaau2027, Oct. 2019, doi: 10.1126/science.aau2027. DOI: https://doi.org/10.1126/science.aau2027
H. Shreif, W. El-Osta, and A. Yagub, “Wind Resource Assessment for southern part of Libya: Case Study of Hun,” jsesd, vol. 8, no. 1, pp. 12–33, Jun. 2019, doi: 10.51646/jsesd.v8i1.18. DOI: https://doi.org/10.51646/jsesd.v8i1.18
A. Ruggiero, J. Quartieri, C. Guarnaccia, and S. Hloch, “Noise Pollution Analysis of Wind Turbines in Rural Areas,” International Journal of Environmental Research, vol. 9, no. 4, Oct. 2015, doi: 10.22059/ijer.2015.1019.
X. Cheng et al., “Transcriptomic analysis reveals the immune response mechanisms of sea cucumber Apostichopus japonicus under noise stress from offshore wind turbine,” Science of The Total Environment, vol. 906, p. 167802, Jan. 2024, doi: 10.1016/j.scitotenv.2023.167802. DOI: https://doi.org/10.1016/j.scitotenv.2023.167802
S. Oerlemans, P. Sijtsma, and B. Méndez López, “Location and quantification of noise sources on a wind turbine,” Journal of Sound and Vibration, vol. 299, no. 4–5, pp. 869–883, Feb. 2007, doi: 10.1016/j.jsv.2006.07.032. DOI: https://doi.org/10.1016/j.jsv.2006.07.032
Con J. Doolan, Danielle J. Moreau, and Laura A. Brooks, “WIND TURBINE NOISE MECHANISMS AND SOME CONCEPTS FOR ITS CONTROL,” in Wind turbine noise mechanisms and some concepts for its control, vol. 40, 2012, pp. 7–13.
Con Doolan and Danielle Moreau, “Airfoil Noise Mechanisms and Control,” in Flow noise, 1st ed., The University of New South Wales, Sydney, NSW, Australia: Springer Singapore, 2022. [Online]. Available: https://doi.org/10.1007/978-981-19-2484-2 DOI: https://doi.org/10.1007/978-981-19-2484-2_8
T. Liu, K. Kuykendoll, R. Rhew, and S. Jones, “Avian Wing Geometry and Kinematics,” AIAA Journal, vol. 44, no. 5, pp. 954–963, May 2006, doi: 10.2514/1.16224. DOI: https://doi.org/10.2514/1.16224
G. K. Ananda and M. S. Selig, “Design of Bird-Like Airfoils,” in 2018 AIAA Aerospace Sciences Meeting, Kissimmee, Florida: American Institute of Aeronautics and Astronautics, Jan. 2018. doi: 10.2514/6.2018-0310. DOI: https://doi.org/10.2514/6.2018-0310
A. Omar, R. Rahuma, and A. Emhemmed, “Numerical Investigation on Aerodynamic Performance of Bird’s Airfoils,” J.Aerosp. Technol. Manag., no. 12, p. e4620, Oct. 2020, doi: 10.5028/jatm.v12.1182. DOI: https://doi.org/10.5028/jatm.v12.1182
Anwar Ul-Haque, Waqar Asrar, Ashraf A. Omar, Erwin Suiaeman, and J. S. Mohamed Ali, “Cambered profile of a California sea lion’s body,” The Company of Biologists Ltd, no. The Journal of Experimental Biology, 2015. DOI: https://doi.org/10.1242/jeb.117556
R. Glenn, L. B. Dahlke, A. Engilis Jr., and C. Harvey, “Analysis of bird wing airfoil aerodynamic efficiency,” in AIAA SCITECH 2024 Forum, Orlando, FL: American Institute of Aeronautics and Astronautics, Jan. 2024. doi: 10.2514/6.2024-1127. DOI: https://doi.org/10.2514/6.2024-1127
L. L. Gamble and D. J. Inman, “Aeroelastic Design and Analysis of a Bioinspired Flexible Airfoil,” in AIAA Scitech 2020 Forum, Orlando, FL: American Institute of Aeronautics and Astronautics, Jan. 2020. doi: 10.2514/6.2020-1540. DOI: https://doi.org/10.2514/6.2020-1540
H. Bao, W. Yang, D. Ma, W. Song, and B. Song, “Numerical simulation of flapping airfoil with alula,” International Journal of Micro Air Vehicles, vol. 12, p. 175682932097798, Jan. 2020, doi: 10.1177/1756829320977989. DOI: https://doi.org/10.1177/1756829320977989
P. C. Withers, “An Aerodynamic Analysis of Bird Wings as Fixed Aerofoils,” Journal of Experimental Biology, vol. 90, no. 1, pp. 143–162, Feb. 1981, doi: 10.1242/jeb.90.1.143. DOI: https://doi.org/10.1242/jeb.90.1.143
M. A. Aldheeb, W. Asrar, E. Sulaeman, and A. A. Omar, “A Review on Aerodynamics of Non-Flapping Bird Wings,” J.Aerosp. Technol. Manag., vol. 8, no. 1, pp. 7–17, Mar. 2016, doi: 10.5028/jatm.v8i1.564. DOI: https://doi.org/10.5028/jatm.v8i1.564
C. Xie, N. Gao, Y. Meng, Y. Wu, and C. Yang, “A review of bird-like flapping wing with high aspect ratio,” Chinese Journal of Aeronautics, vol. 36, no. 1, pp. 22–44, Jan. 2023, doi: 10.1016/j.cja.2022.06.009. DOI: https://doi.org/10.1016/j.cja.2022.06.009
T. N. Sullivan, M. A. Meyers, and E. Arzt, “Scaling of bird wings and feathers for efficient flight,” Sci. Adv., vol. 5, no. 1, p. eaat4269, Jan. 2019, doi: 10.1126/sciadv.aat4269. DOI: https://doi.org/10.1126/sciadv.aat4269
M. Zhao, H. Cao, M. Zhang, C. Liao, and T. Zhou, “Optimal design of aeroacoustic airfoils with owl-inspired trailing-edge serrations,” Bioinspir. Biomim., vol. 16, no. 5, p. 056004, Sep. 2021, doi: 10.1088/1748-3190/ac03bd. DOI: https://doi.org/10.1088/1748-3190/ac03bd
D. Li, X. Liu, L. Wang, F. Hu, and G. Xi, “Numerical study on the airfoil self-noise of three owl-based wings with the trailing-edge serrations,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 235, no. 14, pp. 2003–2016, Nov. 2021, doi: 10.1177/0954410020988229. DOI: https://doi.org/10.1177/0954410020988229
R. R. Graham, “The Silent Flight of Owls,” J. R. Aeronaut. Soc., vol. 38, no. 286, pp. 837–843, Oct. 1934, doi: 10.1017/S0368393100109915. DOI: https://doi.org/10.1017/S0368393100109915
G. Lilley, “A study of the silent flight of the owl,” in 4th AIAA/CEAS Aeroacoustics Conference, Toulouse,France: American Institute of Aeronautics and Astronautics, Jun. 1998. doi: 10.2514/6.1998-2340. DOI: https://doi.org/10.2514/6.1998-2340
R. Boucetta, P. Romaniuk, and K. Saeed, “A Novel Unmanned Near Surface Aerial Vehicle Design Inspired by Owls for Noise-Free Flight,” in Applied Computing for Software and Smart Systems, vol. 555, R. Chaki, A. Cortesi, K. Saeed, and N. Chaki, Eds., in Lecture Notes in Networks and Systems, vol. 555. , Singapore: Springer Nature Singapore, 2023, pp. 271–283. doi: 10.1007/978-981-19-6791-7_17. DOI: https://doi.org/10.1007/978-981-19-6791-7_17
H. Wagner, M. Weger, M. Klaas, and W. Schröder, “Features of owl wings that promote silent flight,” Interface Focus., vol. 7, no. 1, p. 20160078, Feb. 2017, doi: 10.1098/rsfs.2016.0078. DOI: https://doi.org/10.1098/rsfs.2016.0078
K. Chen et al., “The Sound Suppression Characteristics of Wing Feather of Owl (Bubo bubo),” J Bionic Eng, vol. 9, no. 2, pp. 192–199, Jun. 2012, doi: 10.1016/S1672-6529(11)60109-1. DOI: https://doi.org/10.1016/S1672-6529(11)60109-1
L. Wang, X. Liu, and D. Li, “Noise reduction mechanism of airfoils with leading-edge serrations and surface ridges inspired by owl wings,” Physics of Fluids, vol. 33, no. 1, p. 015123, Jan. 2021, doi: 10.1063/5.0035544. DOI: https://doi.org/10.1063/5.0035544
M. Aldheeb, W. Asrar, A. A. Omar, A. Altaf, and E. Sulaeman, “Aerodynamics of symmetric permeable airfoils and wings: CFD simulation,” PCFD, vol. 20, no. 6, p. 349, 2020, doi: 10.1504/PCFD.2020.111397. DOI: https://doi.org/10.1504/PCFD.2020.111397
L. Kilian, F. Shahid, J.-S. Zhao, and C. N. Nayeri, “Bioinspired morphing wings: mechanical design and wind tunnel experiments,” Bioinspir. Biomim., vol. 17, no. 4, p. 046019, Jul. 2022, doi: 10.1088/1748-3190/ac72e1. DOI: https://doi.org/10.1088/1748-3190/ac72e1
Y. Murayama, T. Nakata, and H. Liu, “Flexible Flaps Inspired by Avian Feathers Can Enhance Aerodynamic Robustness in low Reynolds Number Airfoils,” Front. Bioeng. Biotechnol., vol. 9, p. 612182, May 2021, doi: 10.3389/fbioe.2021.612182. DOI: https://doi.org/10.3389/fbioe.2021.612182
H. Williams, “Air flow over a flapping bird’s wing at low Reynolds numbers: discussions in a teaching demonstration,” Eur. J. Phys., vol. 43, no. 5, p. 055801, Sep. 2022, doi: 10.1088/1361-6404/ac78a8. DOI: https://doi.org/10.1088/1361-6404/ac78a8
T. AHMED, “UNSTEADY AERODYNAMICS OF CAMBERED AIRFOILS AT LOW REYNOLDS NUMBER,” M.S, Middle East Technical University, 2022. [Online]. Available: https://hdl.handle.net/11511/96363
A. Esmaeili, M. Darbandi, and G. E. Schneider, “Effect of Active Feather Length on Aerodynamic Performance of Airfoils at Low Reynolds Number Flow,” in AIAA AVIATION 2020 FORUM, VIRTUAL EVENT: American Institute of Aeronautics and Astronautics, Jun. 2020. doi: 10.2514/6.2020-3289. DOI: https://doi.org/10.2514/6.2020-3289
S. M. Walker, A. L. R. Thomas, and G. K. Taylor, “Photogrammetric reconstruction of high-resolution surface topographies and deformable wing kinematics of tethered locusts and free-flying hoverflies,” J. R. Soc. Interface., vol. 6, no. 33, pp. 351–366, Apr. 2009, doi: 10.1098/rsif.2008.0245. DOI: https://doi.org/10.1098/rsif.2008.0245
W. Tian et al., “Bionic Design of Wind Turbine Blade Based on Long-Eared Owl’s Airfoil,” Applied Bionics and Biomechanics, vol. 2017, pp. 1–10, 2017, doi: 10.1155/2017/8504638. DOI: https://doi.org/10.1155/2017/8504638
H. Cao, M. Zhang, Y. Zhang, and T. Zhou, “A general model for trailing edge serrations simulation on wind turbine airfoils,” Theoretical and Applied Mechanics Letters, vol. 11, no. 4, p. 100284, May 2021, doi: 10.1016/j.taml.2021.100284. DOI: https://doi.org/10.1016/j.taml.2021.100284
Schaffarczyk and Alois Peter, Introduction to wind turbine aerodynamics. Springer Nature, 2020. DOI: https://doi.org/10.1007/978-3-030-41028-5
W. Thielicke and E. J. Stamhuis, “The influence of wing morphology on the three-dimensional flow patterns of a flapping wing at bird scale,” J. Fluid Mech., vol. 768, pp. 240–260, Apr. 2015, doi: 10.1017/jfm.2015.71. DOI: https://doi.org/10.1017/jfm.2015.71
M. Wang and X. Liu, “Numerical investigation of aerodynamic and acoustic characteristics of bionic airfoils inspired by bird wing,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 233, no. 11, pp. 4004–4016, Sep. 2019, doi: 10.1177/0954410018812617. DOI: https://doi.org/10.1177/0954410018812617
Audubon Staff, “Saving North Carolina’s Climate Threatened Birds,” Audubon, Sep. 23, 2014. [Online]. Available: https://nc.audubon.org/news/saving-north-carolinas-climate-threatened-birds
A. Sieradzki, “Designed for Darkness: The Unique Physiology and Anatomy of Owls,” in Owls - Clever Survivors, H. Mikkola, Ed., IntechOpen, 2023. doi: 10.5772/intechopen.102397. DOI: https://doi.org/10.5772/intechopen.102397
Thomas Willem Bachmann, “Anatomical, Morphometrical and Biomechanical Studies of Barn Owls’ and Pigeons’ Wings,” Doktors der Naturwissenschaften (Doctor of Natural Sciences), RWTH Aachen University, 2010.
A. Bodling, B. R. Agrawal, A. Sharma, I. Clark, W. N. Alexander, and W. J. Devenport, “Numerical Investigations of Bio-Inspired Blade Designs to Reduce Broadband Noise in Aircraft Engines and Wind Turbines,” in 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas: American Institute of Aeronautics and Astronautics, Jan. 2017. doi: 10.2514/6.2017-0458. DOI: https://doi.org/10.2514/6.2017-0458
C. Rao, T. Ikeda, T. Nakata, and H. Liu, “Owl-inspired leading-edge serrations play a crucial role in aerodynamic force production and sound suppression,” Bioinspir. Biomim., vol. 12, no. 4, p. 046008, Jul. 2017, doi: 10.1088/1748-3190/aa7013. DOI: https://doi.org/10.1088/1748-3190/aa7013
L. Wang, X. Liu, L. Wu, and D. Li, “Effect of the asymmetric bio-inspired trailing-edge serrations on sound suppression in a coupled owl-based airfoil,” Applied Acoustics, vol. 191, p. 108667, Mar. 2022, doi: 10.1016/j.apacoust.2022.108667. DOI: https://doi.org/10.1016/j.apacoust.2022.108667
I. A. Clark et al., “Bio-inspired canopies for the reduction of roughness noise,” Journal of Sound and Vibration, vol. 385, pp. 33–54, Dec. 2016, doi: 10.1016/j.jsv.2016.08.027. DOI: https://doi.org/10.1016/j.jsv.2016.08.027
M. W. Hermann Wagner, “Morphological Variations of Leading-Edge Serrations in Owls (Strigiformes),” PLOS ONE, Mar. 2016, doi: 10.1371/journal.pone.0149236. DOI: https://doi.org/10.1371/journal.pone.0149236
X. Lang, B. Song, W. Yang, and W. Song, “Aerodynamic performance of owl-like airfoil undergoing bio-inspired flapping kinematics,” Chinese Journal of Aeronautics, vol. 34, no. 5, pp. 239–252, May 2021, doi: 10.1016/j.cja.2020.10.017. DOI: https://doi.org/10.1016/j.cja.2020.10.017
Y. Xing, X. Wang, W. Chen, F. Tong, and W. Qiao, “Experimental Study on Wind Turbine Airfoil Trailing Edge Noise Reduction Using Wavy Leading Edges,” Energies, vol. 16, no. 16, Art. no. 16, Aug. 2023, doi: 10.3390/en16165865. DOI: https://doi.org/10.3390/en16165865
Y. Xing, W. Chen, X. Wang, F. Tong, and W. Qiao, “Effect of Wavy Leading Edges on Airfoil Trailing-Edge Bluntness Noise,” Aerospace, vol. 10, no. 4, p. 353, Apr. 2023, doi: 10.3390/aerospace10040353. DOI: https://doi.org/10.3390/aerospace10040353
Y. Wei, F. Xu, S. Bian, and D. Kong, “Noise Reduction of UAV Using Biomimetic Propellers with Varied Morphologies Leading-edge Serration,” J Bionic Eng, vol. 17, no. 4, pp. 767–779, Jul. 2020, doi: 10.1007/s42235-020-0054-z. DOI: https://doi.org/10.1007/s42235-020-0054-z
Y. Gu et al., “Numerical and experimental studies on the owl-inspired propellers with various serrated trailing edges,” Applied Acoustics, vol. 220, p. 109948, Apr. 2024, doi: 10.1016/j.apacoust.2024.109948. DOI: https://doi.org/10.1016/j.apacoust.2024.109948
W. Feng, K. Chen, H. Gui, P. Zhao, R. Gao, and Y. Li, “Aerodynamic Noise Reduction Based on Bionic Blades with Non-Smooth Leading Edges and Curved Serrated Trailing Edges,” JAFM, vol. 16, no. 7, Jul. 2023, doi: 10.47176/jafm.16.07.1660. DOI: https://doi.org/10.47176/jafm.16.07.1660
M. Gruber, P. Joseph, and T. Chong, “On the mechanisms of serrated airfoil trailing edge noise reduction,” in 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference), Portland, Oregon: American Institute of Aeronautics and Astronautics, Jun. 2011. doi: 10.2514/6.2011-2781. DOI: https://doi.org/10.2514/6.2011-2781
A. Vathylakis, C. C. Paruchuri, T. P. Chong, and P. Joseph, “Sensitivity of aerofoil self-noise reductions to serration flap angles,” in 22nd AIAA/CEAS Aeroacoustics Conference, Lyon, France: American Institute of Aeronautics and Astronautics, May 2016. doi: 10.2514/6.2016-2837. DOI: https://doi.org/10.2514/6.2016-2837
L. T. Lima Pereira, F. Avallone, D. Ragni, and F. Scarano, “A parametric study of serration design for trailing–edge broadband noise reduction,” Applied Acoustics, vol. 211, p. 109470, Aug. 2023, doi: 10.1016/j.apacoust.2023.109470. DOI: https://doi.org/10.1016/j.apacoust.2023.109470
L. T. Lima Pereira, D. Ragni, F. Avallone, and F. Scarano, “Aeroacoustics of sawtooth trailing-edge serrations under aerodynamic loading,” Journal of Sound and Vibration, vol. 537, p. 117202, Oct. 2022, doi: 10.1016/j.jsv.2022.117202. DOI: https://doi.org/10.1016/j.jsv.2022.117202
F. Avallone, W. C. P. Van Der Velden, and D. Ragni, “Benefits of curved serrations on broadband trailing-edge noise reduction,” Journal of Sound and Vibration, vol. 400, pp. 167–177, Jul. 2017, doi: 10.1016/j.jsv.2017.04.007. DOI: https://doi.org/10.1016/j.jsv.2017.04.007
J. Gaitan-Aroca, F. Sierra, and J. U. Castellanos Contreras, “Bio-Inspired Rotor Design Characterization of a Horizontal Axis Wind Turbine,” Energies, vol. 13, no. 14, p. 3515, Jul. 2020, doi: 10.3390/en13143515. DOI: https://doi.org/10.3390/en13143515
M. S. R. Siddiqi and M. Bilal, “Design, Manufacturing and CFD Analysis of Diffuser Augmented Wind Turbine Incorporating Bio-inspired Leading-edge Tubercles,” in 2022 19th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan: IEEE, Aug. 2022, pp. 743–750. doi: 10.1109/IBCAST54850.2022.9990129. DOI: https://doi.org/10.1109/IBCAST54850.2022.9990129
R. Zha and K. Wang, “Numerical simulation of flow-induced noise generation and propagation of a floating offshore wind turbine with prescribed pitch motion,” The Journal of the Acoustical Society of America, vol. 154, no. 4_supplement, pp. A283–A283, Oct. 2023, doi: 10.1121/10.0023533. DOI: https://doi.org/10.1121/10.0023533
G. Bangga, “Numerical studies on dynamic stall characteristics of a wind turbine airfoil,” J Mech Sci Technol, vol. 33, no. 3, pp. 1257–1262, Mar. 2019, doi: 10.1007/s12206-019-0225-1. DOI: https://doi.org/10.1007/s12206-019-0225-1
I. Solís-Gallego, K. M. Argüelles Díaz, J. M. Fernández Oro, and S. Velarde-Suárez, “Wall-Resolved LES Modeling of a Wind Turbine Airfoil at Different Angles of Attack,” JMSE, vol. 8, no. 3, p. 212, Mar. 2020, doi: 10.3390/jmse8030212. DOI: https://doi.org/10.3390/jmse8030212
Shiva Prasad Uppu and R. Naren Shankar, “Noise Reduction in a Bird Inspired Aero Foil using Trailing-Edge Serrations,” Engineering Science, vol. 10(9), pp. 951–961, 2023.
D. Li and C. Wei, “Numerical Study on Aerodynamic and Aeroacoustic Performances of Bioinspired Wings,” Applied Bionics and Biomechanics, vol. 2023, pp. 1–16, Nov. 2023, doi: 10.1155/2023/9930841. DOI: https://doi.org/10.1155/2023/9930841
Shengqiong Qin, Lang Cheng, and Zhanqi He, “Bionic Fan Blade Shape Design Based on Owl Airfoil and Analysis of Its Effect on Noise,” in Advances in Mechanical Design, Changsha, China: Springer, Singapore, Mar. 2022, pp. 665–672. DOI: https://doi.org/10.1007/978-981-16-7381-8_43
Yehia Salama, “Experimental and Numerical Investigation of Bio-Inpired Airfoil Trailing-Edge Designs for Noise Reduction,” Master of Applied Science, Carleton University, Ottawa, Ontario, 2021.
S. Boughou, A. A. Omar, O. A. Elsayed, and M. Aldheeb, “Numerical investigation on the aerodynamics of high-lift and bird-like low Reynolds number airfoils,” PCFD, vol. 23, no. 3, p. 146, 2023, doi: 10.1504/PCFD.2023.131027. DOI: https://doi.org/10.1504/PCFD.2023.131027
S. Qin, L. Cheng, and Z. He, “Bionic Fan Blade Shape Design Based on Owl Airfoil and Analysis of Its Effect on Noise,” in Advances in Mechanical Design, vol. 111, J. Tan, Ed., in Mechanisms and Machine Science, vol. 111. , Singapore: Springer Nature Singapore, 2022, pp. 665–672. doi: 10.1007/978-981-16-7381-8_43. DOI: https://doi.org/10.1007/978-981-16-7381-8_43
S. Boughou, A. A. Omar, O. Elsayed, R. Boukharfane, and M. Aldheeb, “Low Reynolds Number effect on CFD prediction of Bio Inspired Aerodynamics,” in AIAA SCITECH 2022 Forum, San Diego, CA & Virtual: American Institute of Aeronautics and Astronautics, Jan. 2022. doi: 10.2514/6.2022-1965. DOI: https://doi.org/10.2514/6.2022-1965
X. Wang, J. Kou, and W. Zhang, “A new dynamic stall prediction framework based on symbiosis of experimental and simulation data,” Physics of Fluids, vol. 33, no. 12, p. 127119, Dec. 2021, doi: 10.1063/5.0075083. DOI: https://doi.org/10.1063/5.0075083
X. Liu, S. Liang, G. Li, A. Godbole, and C. Lu, “An improved dynamic stall model and its effect on wind turbine fatigue load prediction,” Renewable Energy, vol. 156, pp. 117–130, Aug. 2020, doi: 10.1016/j.renene.2020.04.040. DOI: https://doi.org/10.1016/j.renene.2020.04.040
M. Angelino, P. Fernández-Yáñez, H. Xia, and G. J. Page, “Large-Eddy Simulation with Modeled Wall Stress for Complex Aerodynamics and Stall Prediction,” AIAA Journal, vol. 59, no. 4, pp. 1225–1237, Apr. 2021, doi: 10.2514/1.J059481. DOI: https://doi.org/10.2514/1.J059481
L. Wang and X. Liu, “Aeroacoustic investigation of asymmetric oblique trailing-edge serrations enlighted by owl wings,” Physics of Fluids, vol. 34, no. 1, p. 015113, Jan. 2022, doi: 10.1063/5.0076272. DOI: https://doi.org/10.1063/5.0076272
J. Rong and H. Liu, “Effects of owl-inspired leading-edge serrations on tandem wing aeroacoustics,” AIP Advances, vol. 12, no. 11, p. 115103, Nov. 2022, doi: 10.1063/5.0128543. DOI: https://doi.org/10.1063/5.0128543
J. Rong and H. Liu, “Aeroacoustic interaction between owl-inspired trailing-edge fringes and leading-edge serrations,” Physics of Fluids, vol. 34, no. 1, p. 011907, Jan. 2022, doi: 10.1063/5.0078974. DOI: https://doi.org/10.1063/5.0078974
K. Güzey, U. E. Aylı, E. Kocak, and S. Aradag, “Investigation of aerodynamic and aeroacoustic behavior of bio-inspired airfoils with numerical and experimental methods,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, p. 09544062231185495, Jul. 2023, doi: 10.1177/09544062231185495. DOI: https://doi.org/10.1177/09544062231185495
Mohamed Ibren Hassan, Amelda Dianne Andan, Waqar Asrar, and Mohd Azan Mohammed Sapardi, “Large Eddy Simulation of Low Reynolds Number Flow Around a NACA0015 Airfoil with Modified Trailing Edges,” ARAM, vol. 112, no. 1, pp. 57–79, Dec. 2023, doi: 10.37934/aram.112.1.5779. DOI: https://doi.org/10.37934/aram.112.1.5779
W. Xue and B. Yang, “Experimental Investigation of Airfoil Trailing Edge Noise Reduction by using TE Serrations,” Jul. 22, 2023, arXiv: arXiv:2307.12188. Accessed: Feb. 15, 2024. [Online]. Available: http://arxiv.org/abs/2307.12188
D. J. Moreau and C. J. Doolan, “The generation of tonal noise from sawtooth trailing-edge serrations at low Reynolds numbers,” Aeronaut. j., vol. 120, no. 1228, pp. 971–983, Jun. 2016, doi: 10.1017/aer.2016.39. DOI: https://doi.org/10.1017/aer.2016.39
J. Wang et al., “Aeroacoustic characteristics of owl-inspired blade designs in a mixed flow fan: effects of leading- and trailing-edge serrations,” Bioinspir. Biomim., vol. 16, no. 6, p. 066003, Nov. 2021, doi: 10.1088/1748-3190/ac1309. DOI: https://doi.org/10.1088/1748-3190/ac1309
X. Liu, H. Kamliya Jawahar, M. Azarpeyvand, and R. Theunissen, “Aerodynamic Performance and Wake Development of Airfoils with Serrated Trailing-Edges,” AIAA Journal, vol. 55, no. 11, pp. 3669–3680, Nov. 2017, doi: 10.2514/1.J055817. DOI: https://doi.org/10.2514/1.J055817
R. G. W. Feng, “Aerodynamic Noise Reduction Based on Bionic Blades with Non-Smooth Leading Edges and Curved Serrated Trailing Edges,” JAFM, vol. 16, no. 7, Jul. 2023, doi: 10.47176/jafm.16.07.1660. DOI: https://doi.org/10.47176/jafm.16.07.1660
Y. Li, K. Chen, R. Gao, J. Wei, and W. Yao, “Noise reduction of bionic coupling blades of horizontal axis wind turbine,” noise cont engng j, vol. 70, no. 2, pp. 169–187, Mar. 2022, doi: 10.3397/1/377015. DOI: https://doi.org/10.3397/1/377015
J. T. J. Gao, “Coupling Bionic Design and Numerical Simulation of the Wavy Leading-Edge and Seagull Airfoil of Axial Flow Blade for Air-conditioner,” JAFM, vol. 16, no. 7, Jul. 2023, doi: 10.47176/jafm.16.07.1634. DOI: https://doi.org/10.47176/jafm.16.07.1634
Gao Ruibiao, Chen Kun, Li Yixiao, and Yao Weiwei, “Investigation on aerodynamic performance of wind turbine blades coupled with airfoil and herringbone groove structure,” AIP Publishing LLCAIP Publishing, vol. 13, no. 5, Sep. 2021. DOI: https://doi.org/10.1063/5.0051729
S. Oerlemans, J.G. Schepers, G. Guidati, and S. Wagner, “Experimental demonstration of wind turbine noise reduction through optimized airfoil noise reduction through optimized airfoil shape and trailing-edge serrations,” in The European Wind Energy Conference and Exhibition, Copenhagen: National Aerospace Laboratory, Jul. 2001.
A. Bodling and A. Sharma, “Numerical investigation of low-noise airfoils inspired by the down coat of owls,” Bioinspir. Biomim., vol. 14, no. 1, p. 016013, Dec. 2018, doi: 10.1088/1748-3190/aaf19c. DOI: https://doi.org/10.1088/1748-3190/aaf19c
A. B. Anupam Sharma, “Noise Reduction Mechanisms due to Bio-Inspired Airfoil Designs,” presented at the 17th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC2017), Maui, USA: HAL, Nov. 2020. [Online]. Available: https://hal.science/hal-03004943
S. Oerlemans, M. Fisher, T. Maeder, and K. Kögler, “Reduction of Wind Turbine Noise Using Optimized Airfoils and Trailing-Edge Serrations,” AIAA Journal, vol. 47, no. 6, pp. 1470–1481, Jun. 2009, doi: 10.2514/1.38888. DOI: https://doi.org/10.2514/1.38888
Vel Tech Rangarajan, S. P. U. U, N. S. R, and Dr. Sagunthala, “Noise Reduction in a Bird Inspired Aero Foil using Trailing-Edge Serrations,” Eng. Sci., 2023, doi: 10.30919/es951. DOI: https://doi.org/10.30919/es951
K. El Harti, M. Touil, R. Saadani, and M. Rahmoune, “Vibration Control of Tapering E-FGM Porous Wind Turbine Blades Using Piezoelectric Materials,” jsesd, pp. 67–77, Dec. 2024, doi: 10.51646/jsesd.v14iSI_MSMS2E.402. DOI: https://doi.org/10.51646/jsesd.v14iSI_MSMS2E.402
H. R. Kaviani and M. Moshfeghi, “Power Generation Enhancement of Horizontal Axis Wind Turbines Using Bioinspired Airfoils: A CFD Study,” Machines, vol. 11, no. 11, p. 998, Oct. 2023, doi: 10.3390/machines11110998. DOI: https://doi.org/10.3390/machines11110998
A. Abdelrahman, A. Emam, I. Adam, H. Hassan, S. Ookawara, and A. El-wardany, “A Numerical Study Into the Influence of Leading Edge Tubercles on the Aerodynamic Performance of a Highly Cambered High Lift Airfoil Wing at Different Reynolds Numbers,” in Volume 4: Advances in Aerospace Technology, Virtual, Online: American Society of Mechanical Engineers, Nov. 2020, p. V004T04A001. doi: 10.1115/IMECE2020-23634. DOI: https://doi.org/10.1115/IMECE2020-23634
Shreyas Anand, Akash Pandey, Arpit Sharma, and Chandrakant R Kini, “Effect Of Trailing Edge Roundness On Fx 63-137 And Selig S1223 Airfoil,” ARPN, vol. 12, no. 19, pp. 5494–5499, Oct. 2017.
A. H. Lind, J. N. Lefebvre, and A. R. Jones, “Time-Averaged Aerodynamics of Sharp and Blunt Trailing-Edge Static Airfoils in Reverse Flow,” AIAA Journal, vol. 52, no. 12, pp. 2751–2764, Dec. 2014, doi: 10.2514/1.J052967. DOI: https://doi.org/10.2514/1.J052967
B. Shu, Z. Gao, L. Zhou, and S. Chen, “Numerical Investigations on Unsteady Features of Rounded Trailing Edge Airfoils,” International Journal of Aerospace Engineering, vol. 2022, pp. 1–17, Dec. 2022, doi: 10.1155/2022/4362331. DOI: https://doi.org/10.1155/2022/4362331
E. Llorente and D. Ragni, “Trailing-edge serrations effect on the performance of a wind turbine,” Renewable Energy, vol. 147, pp. 437–446, Mar. 2020, doi: 10.1016/j.renene.2019.08.128. DOI: https://doi.org/10.1016/j.renene.2019.08.128
Y. H. Yu, “Rotor blade–vortex interaction noise,” Progress in Aerospace Sciences, vol. 36, no. 2, pp. 97–115, Feb. 2000, doi: 10.1016/S0376-0421(99)00012-3. DOI: https://doi.org/10.1016/S0376-0421(99)00012-3
A. Laratro, M. Arjomandi, R. Kelso, and B. Cazzolato, “A discussion of wind turbine interaction and stall contributions to wind farm noise,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 127, pp. 1–10, Apr. 2014, doi: 10.1016/j.jweia.2014.01.007. DOI: https://doi.org/10.1016/j.jweia.2014.01.007
G. M. McNerney, C. P. Van Dam, and D. T. Yen-Nakafuji, “Blade-Wake Interaction Noise for Turbines With Downwind Rotors,” Journal of Solar Energy Engineering, vol. 125, no. 4, pp. 497–505, Nov. 2003, doi: 10.1115/1.1627830. DOI: https://doi.org/10.1115/1.1627830
Y. Sun, G. Xu, and Y. Shi, “Numerical investigation on noise reduction of rotor blade-vortex interaction using blade surface jet blowing,” Aerospace Science and Technology, vol. 116, p. 106868, Sep. 2021, doi: 10.1016/j.ast.2021.106868. DOI: https://doi.org/10.1016/j.ast.2021.106868
H. Wang and B. Chen, “Investigation on aerodynamic noise for leading edge erosion of wind turbine blade,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 240, p. 105484, Sep. 2023, doi: 10.1016/j.jweia.2023.105484. DOI: https://doi.org/10.1016/j.jweia.2023.105484
H. G. Parra, H. D. Ceron, W. Gomez, and E. E. Gaona, “Experimental Analysis of Bio-Inspired Vortex Generators on a Blade with S822 Airfoil,” Energies, vol. 16, no. 12, p. 4538, Jun. 2023, doi: 10.3390/en16124538. DOI: https://doi.org/10.3390/en16124538
A. Ermakova, A. Mehmanparast, and S. Ganguly, “A review of present status and challenges of using additive manufacturing technology for offshore wind applications,” Procedia Structural Integrity, vol. 17, pp. 29–36, 2019, doi: 10.1016/j.prostr.2019.08.005. DOI: https://doi.org/10.1016/j.prostr.2019.08.005
B. K. Post et al., “Big Area Additive Manufacturing Application in Wind Turbine Molds,” 2017, University of Texas at Austin. doi: 10.26153/TSW/16964.
G. E. Robles, E. C. R. Luna, R. G. Tayactac, J. P. Honra, and A. D. Calderon, “Design and Aerodynamic Analysis of a Bio-inspired HAWT with Albatross and Stork Airfoil for Low Wind Velocity using CFD,” in 2022 6th International Conference on Power and Energy Engineering (ICPEE), Shanghai, China: IEEE, Nov. 2022, pp. 37–46. doi: 10.1109/ICPEE56418.2022.10050316. DOI: https://doi.org/10.1109/ICPEE56418.2022.10050316
K. Chen, W. Yao, J. Wei, R. Gao, and Y. Li, “Bionic coupling design and aerodynamic analysis of horizontal axis wind turbine blades,” Energy Science & Engineering, vol. 9, no. 10, pp. 1826–1838, Oct. 2021, doi: 10.1002/ese3.953. DOI: https://doi.org/10.1002/ese3.953
Y. Nassar and S. Alsadi, “Wind Energy Potential in Gaza Strip-Palestine state,” jsesd, vol. 7, no. 2, pp. 41–57, Dec. 2018, doi: 10.51646/jsesd.v7i2.40. DOI: https://doi.org/10.51646/jsesd.v7i2.40
The United States Department of Energy, “Wind Turbine Interactions with Birds, Bats, and their Habitats.” The United States Department of Energy, Spring 2010. [Online]. Available: https://www1.eere.energy.gov/wind/pdfs/birds_and_bats_fact_sheet.pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Kenza Bouchaala, Yassine EL Qamch, Ashraf Ali Omar, Wafae Lahmili

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.




