Role of Embedded Systems in Smart Energy Management:

Challenges, Innovations, and Future Trends

Authors

  • Sachin Srivastava Department of Aerospace Engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun-248007, Uttarakhand, India. https://orcid.org/0000-0001-8658-5596
  • G. Sai Satyanarayana Department of Aerospace Engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun-248007, Uttarakhand, India. and Department of Aeronautical Engineering, MRCET, Hyderabad-500100, Telangana, India.
  • Abhay Dhasmana Department of Aerospace Engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun-248007, Uttarakhand, India.
  • Vineet Rawat Department of Aerospace Engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun-248007, Uttarakhand, India.
  • Aditya Singh Rana Department of Aerospace Engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun-248007, Uttarakhand, India. https://orcid.org/0009-0007-5066-5245
  • Yashwant Singh Bisht Department of Mechanical Engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun-248007, Uttarakhand, India. https://orcid.org/0000-0002-3195-6625

DOI:

https://doi.org/10.51646/jsesd.v14iSTR2E.797

Keywords:

Renewable Energy, Artificial Intelligence, Internet of Things, Machine Learning, Embedded System.

Abstract

With smart grids, renewable power, and efficient energy management transforming the energy sector, embedded systems are the prime impetus for real-time monitoring, control, and optimization. Energy efficiency, scalability, reliability, cybersecurity, and cost are, however, areas of concern. Power consumption is reduced by 30–50% by optimized embedded controllers, and battery management systems extend EV life by 20–40%. Scalability is essential, with smart grids capable of handling 100,000 nodes. Reliability in rugged environments (-40°C to 85°C) is paramount, and 1.5 million attacks per year carry financial risks of over $10 billion. Cost factors ($50–500 per unit) limit deployment in developing countries. This paper discusses embedded system architecture, application, and challenges in energy systems, namely smart grids, renewable integration, and EV infrastructure which is displayed in figure 1. It discusses AI-based edge computing and novel communication protocols to address limitations. Based on case studies, the research estimates embedded systems' contribution to energy efficiency and reliability and predicts future advancements, including hardware evolution, machine learning for predictive management, and IoT-based smart ecosystems, which will improve efficiency by 15–25% within the next decade.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

. Mellit, A., Benghanem, M., Kalogirou, S., & Pavan, A. M. (2023). An embedded system for remote monitoring and fault diagnosis of photovoltaic arrays using machine learning and the internet of things. Renewable Energy, 208, 399-408. https://doi.org/10.1016/j.renene.2023.03.096 DOI: https://doi.org/10.1016/j.renene.2023.03.096

. Chehouri, A., Younes, R., Ilinca, A., & Perron, J. (2015). Review of performance optimization techniques applied to wind turbines. Applied Energy, 142, 361-388. https://doi.org/10.1016/j.apenergy.2014.12.043 DOI: https://doi.org/10.1016/j.apenergy.2014.12.043

. Omer, A. M. (2008). Energy, environment and sustainable development. Renewable and sustainable energy reviews, 12(9), 2265-2300. https://doi.org/10.1016/j.rser.2007.05.001 DOI: https://doi.org/10.1016/j.rser.2007.05.001

. Bayindir, R., Colak, I., Fulli, G., & Demirtas, K. (2016). Smart grid technologies and applications. Renewable and sustainable energy reviews, 66, 499-516. https://doi.org/10.1016/j.rser.2016.08.002

. Omer, A. M. (2008). Focus on low carbon technologies: The positive solution. Renewable and Sustainable Energy Reviews, 12(9), 2331-2357. https://doi.org/10.1016/j.rser.2007.04.015 DOI: https://doi.org/10.1016/j.rser.2007.04.015

. Hassan, Q., Hsu, C. Y., Mounich, K., Algburi, S., Jaszczur, M., Telba, A. A., ... & Barakat, M. (2024). Enhancing smart grid integrated renewable distributed generation capacities: Implications for sustainable energy transformation. Sustainable Energy Technologies and Assessments, 66, 103793. https://doi.org/10.1016/j.seta.2024.103793 DOI: https://doi.org/10.1016/j.seta.2024.103793

. Plantec, Q., Deval, M. A., Hooge, S., & Weil, B. (2023). Big data as an exploration trigger or problem-solving patch: Design and integration of AI-embedded systems in the automotive industry. Technovation, 124, 102763. https://doi.org/10.1016/j.technovation.2023.102763 DOI: https://doi.org/10.1016/j.technovation.2023.102763

. Taiwo, O., & Ezugwu, A. E. (2021). Internet of Things‐Based Intelligent Smart Home Control System. Security and Communication Networks, 2021(1), 9928254. https://doi.org/10.1155/2021/9928254 DOI: https://doi.org/10.1155/2021/9928254

. Andoni, M., Robu, V., Flynn, D., Abram, S., Geach, D., Jenkins, D., ... & Peacock, A. (2019). Blockchain technology in the energy sector: A systematic review of challenges and opportunities. Renewable and sustainable energy reviews, 100, 143-174. https://doi.org/10.1016/j.rser.2018.10.014 DOI: https://doi.org/10.1016/j.rser.2018.10.014

. Jun, H. J., & Yang, H. S. (2021). Performance of the XMPP and the MQTT protocols on IEC 61850-based micro grid communication architecture. Energies, 14(16), 5024. https://doi.org/10.3390/en14165024 DOI: https://doi.org/10.3390/en14165024

. Bayindir, R., Colak, I., Fulli, G., & Demirtas, K. (2016). Smart grid technologies and applications. Renewable and sustainable energy reviews, 66, 499-516.

a. https://doi.org/10.1016/j.rser.2016.08.002 DOI: https://doi.org/10.1016/j.rser.2016.08.002

. Ellabban, O., Abu-Rub, H., & Blaabjerg, F. (2014). Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and sustainable energy reviews, 39, 748-764.

a. https://doi.org/10.1016/j.rser.2014.07.113 DOI: https://doi.org/10.1016/j.rser.2014.07.113

. Das, H. S., Rahman, M. M., Li, S., & Tan, C. W. (2020). Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review. Renewable and Sustainable Energy Reviews, 120, 109618.

a. https://doi.org/10.1016/j.rser.2019.109618

. Hemmati, R., & Saboori, H. (2016). Emergence of hybrid energy storage systems in renewable energy and transport applications–A review. Renewable and Sustainable Energy Reviews, 65, 11-23.

a. https://doi.org/10.1016/j.rser.2016.06.029 DOI: https://doi.org/10.1016/j.rser.2016.06.029

. Kailas, A., Cecchi, V., & Mukherjee, A. (2012). A survey of communications and networking technologies for energy management in buildings and home automation. Journal of Computer Networks and Communications, 2012(1), 932181.

a. https://doi.org/10.1155/2012/932181 DOI: https://doi.org/10.1155/2012/932181

. Koohi-Kamali, S., Tyagi, V. V., Rahim, N. A., Panwar, N. L., & Mokhlis, H. (2013). Emergence of energy storage technologies as the solution for reliable operation of smart power systems: A review. Renewable and Sustainable Energy Reviews, 25, 135-165. https://doi.org/10.1016/j.rser.2013.03.056 DOI: https://doi.org/10.1016/j.rser.2013.03.056

. Borgia, E. (2014). The Internet of Things vision: Key features, applications and open issues. Computer Communications, 54, 1-31. https://doi.org/10.1016/j.comcom.2014.09.008 DOI: https://doi.org/10.1016/j.comcom.2014.09.008

. Zha, X. F., & Sriram, R. D. (2005, January). Distributed Modeling and Framework for Collaborative Embedded System Design. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Vol. 47411, pp. 61-74). https://doi.org/10.1115/DETC2005-85608 DOI: https://doi.org/10.1115/DETC2005-85608

. Mutlu, O., Ghose, S., Gómez-Luna, J., & Ausavarungnirun, R. (2019). Processing data where it makes sense: Enabling in-memory computation. Microprocessors and Microsystems, 67, 28-41. https://doi.org/10.1016/j.micpro.2019.01.009 DOI: https://doi.org/10.1016/j.micpro.2019.01.009

. Benghanem, M. (2009). Measurement of meteorological data based on wireless data acquisition system monitoring. Applied energy, 86(12), 2651-2660. https://doi.org/10.1016/j.apenergy.2009.03.026 DOI: https://doi.org/10.1016/j.apenergy.2009.03.026

. Jawad, H. M., Nordin, R., Gharghan, S. K., Jawad, A. M., & Ismail, M. (2017). Energy-efficient wireless sensor networks for precision agriculture: A review. Sensors, 17(8), 1781. https://doi.org/10.3390/s17081781 DOI: https://doi.org/10.3390/s17081781

. Rathor, S. K., & Saxena, D. (2020). Energy management system for smart grid: An overview and key issues. International Journal of Energy Research, 44(6), 4067-4109. https://doi.org/10.1002/er.4883 DOI: https://doi.org/10.1002/er.4883

. Arshad, J., Aziz, M., Al-Huqail, A. A., Zaman, M. H. U., Husnain, M., Rehman, A. U., & Shafiq, M. (2022). Implementation of a LoRaWAN based smart agriculture decision support system for optimum crop yield. Sustainability, 14(2), 827. https://doi.org/10.3390/su14020827 DOI: https://doi.org/10.3390/su14020827

. Rahman, M. M., Selvaraj, J., Rahim, N. A., & Hasanuzzaman, M. (2018). Global modern monitoring systems for PV based power generation: A review. Renewable and Sustainable Energy Reviews, 82, 4142-4158. https://doi.org/10.1016/j.rser.2017.10.111

. Li, X., Xu, D., Zhu, H., Chen, Z., Yang, Z., Cheng, X., ... & Ng, W. T. (2017). A high voltage multiplexer with rail to rail output swing for battery management system applications. IEICE Electronics Express, 14(1), 20161144-20161144.

https://doi.org/10.1587/elex.13.20161144 DOI: https://doi.org/10.1587/elex.13.20161144

. Gabbar, H. A., Othman, A. M., & Abdussami, M. R. (2021). Review of battery management systems (BMS) development and industrial standards. Technologies, 9(2), 28. https://doi.org/10.3390/technologies9020028 DOI: https://doi.org/10.3390/technologies9020028

. Savari, G. F., Krishnasamy, V., Sathik, J., Ali, Z. M., & Aleem, S. H. A. (2020). Internet of Things based real-time electric vehicle load forecasting and charging station recommendation. ISA transactions, 97, 431-447. https://doi.org/10.1016/j.isatra.2019.08.011 DOI: https://doi.org/10.1016/j.isatra.2019.08.011

. Ma, K., Li, X., Liu, H., Sheng, X., Wang, Y., Swaminathan, K., ... & Narayanan, V. (2017). Dynamic power and energy management for energy harvesting nonvolatile processor systems. ACM Transactions on Embedded Computing Systems (TECS), 16(4), 1-23. https://doi.org/10.1145/3077575 DOI: https://doi.org/10.1145/3077575

. Lipu, M. H., Ansari, S., Miah, M. S., Meraj, S. T., Hasan, K., Shihavuddin, A. S. M., ... & Hussain, A. (2022). Deep learning enabled state of charge, state of health and remaining useful life estimation for smart battery management system: Methods, implementations, issues and prospects. Journal of Energy Storage, 55, 105752. https://doi.org/10.1016/j.est.2022.105752 DOI: https://doi.org/10.1016/j.est.2022.105752

. Venkatachalam, V., & Franz, M. (2005). Power reduction techniques for microprocessor systems. ACM Computing Surveys (CSUR), 37(3), 195-237. https://doi.org/10.1145/1108956.1108957 DOI: https://doi.org/10.1145/1108956.1108957

. Polonelli, T. (2021). Ultra-low power iot applications: from transducers to wireless protocols. 10.6092/unibo/amsdottorato/9604

. Rahman, M. M., Selvaraj, J., Rahim, N. A., & Hasanuzzaman, M. (2018). Global modern monitoring systems for PV based power generation: A review. Renewable and Sustainable Energy Reviews, 82, 4142-4158. https://doi.org/10.1016/j.rser.2017.10.111 DOI: https://doi.org/10.1016/j.rser.2017.10.111

. Ntafalias, A., Tsakanikas, S., Skarvelis-Kazakos, S., Papadopoulos, P., Skarmeta-Gómez, A. F., González-Vidal, A., ... & Vlachou, M. C. (2022). Design and Implementation of an Interoperable Architecture for Integrating Building Legacy Systems into Scalable Energy Management Systems. Smart Cities, 5(4), 1421-1440. https://doi.org/10.3390/smartcities5040073 DOI: https://doi.org/10.3390/smartcities5040073

. Ancillotti, E., Bruno, R., & Conti, M. (2013). The role of communication systems in smart grids: Architectures, technical solutions and research challenges. Computer Communications, 36(17-18), 1665-1697. https://doi.org/10.1016/j.comcom.2013.09.004 DOI: https://doi.org/10.1016/j.comcom.2013.09.004

. Jaen-Cuellar, A. Y., Elvira-Ortiz, D. A., Osornio-Rios, R. A., & Antonino-Daviu, J. A. (2022). Advances in fault condition monitoring for solar photovoltaic and wind turbine energy generation: A review. Energies, 15(15), 5404. https://doi.org/10.3390/en15155404 DOI: https://doi.org/10.3390/en15155404

. Panahi, M., Hanson, A., Maddipatla, D., Masihi, S., Narakathu, B., Bazuin, B., ... & Atashbar, M. (2024). Condition monitoring system: a flexible hybrid electronics approach for sealed container applications. Journal of Surface Mount Technology, 37(2), 6-18. https://doi.org/10.37665/631d5y77 DOI: https://doi.org/10.37665/631d5y77

. Ratasich, D., Khalid, F., Geissler, F., Grosu, R., Shafique, M., & Bartocci, E. (2019). A roadmap toward the resilient internet of things for cyber-physical systems. IEEE Access, 7, 13260-13283. https://doi.org/10.1109/ACCESS.2019.2891969 DOI: https://doi.org/10.1109/ACCESS.2019.2891969

. Aslan, Ö., Aktuğ, S. S., Ozkan-Okay, M., Yilmaz, A. A., & Akin, E. (2023). A comprehensive review of cyber security vulnerabilities, threats, attacks, and solutions. Electronics, 12(6), 1333. https://doi.org/10.3390/electronics12061333 DOI: https://doi.org/10.3390/electronics12061333

. Alzaabi, F. R., & Mehmood, A. (2024). A review of recent advances, challenges, and opportunities in malicious insider threat detection using machine learning methods. IEEE Access, 12, 30907-30927. https://doi.org/10.1109/ACCESS.2024.3369906 DOI: https://doi.org/10.1109/ACCESS.2024.3369906

. Faisal, M., Hannan, M. A., Ker, P. J., Hussain, A., Mansor, M. B., & Blaabjerg, F. (2018). Review of energy storage system technologies in microgrid applications: Issues and challenges. Ieee Access, 6, 35143-35164. 10.1109/ACCESS.2018.2841407 DOI: https://doi.org/10.1109/ACCESS.2018.2841407

. Gunasekaran, V., & Harmantzis, F. C. (2007). Emerging wireless technologies for developing countries. Technology in society, 29(1), 23-42. https://doi.org/10.1016/j.techsoc.2006.10.001 DOI: https://doi.org/10.1016/j.techsoc.2006.10.001

. Tuli, S., Mirhakimi, F., Pallewatta, S., Zawad, S., Casale, G., Javadi, B., ... & Jennings, N. R. (2023). AI augmented Edge and Fog computing: Trends and challenges. Journal of Network and Computer Applications, 216, 103648. https://doi.org/10.1016/j.jnca.2023.103648 DOI: https://doi.org/10.1016/j.jnca.2023.103648

. Afridi, Y. S., Ahmad, K., & Hassan, L. (2022). Artificial intelligence based prognostic maintenance of renewable energy systems: A review of techniques, challenges, and future research directions. International Journal of Energy Research, 46(15), 21619-21642. https://doi.org/10.1002/er.7100 DOI: https://doi.org/10.1002/er.7100

. Faheem, M., Shah, S. B. H., Butt, R. A., Raza, B., Anwar, M., Ashraf, M. W., ... & Gungor, V. C. (2018). Smart grid communication and information technologies in the perspective of Industry 4.0: Opportunities and challenges. Computer Science Review, 30, 1-30. https://doi.org/10.1016/j.cosrev.2018.08.001 DOI: https://doi.org/10.1016/j.cosrev.2018.08.001

. Froiz-Míguez, I., Fernández-Caramés, T. M., Fraga-Lamas, P., & Castedo, L. (2018). Design, implementation and practical evaluation of an IoT home automation system for fog computing applications based on MQTT and ZigBee-WiFi sensor nodes. Sensors, 18(8), 2660. https://doi.org/10.2174/2210327913666221216152446

. Bayılmış, C., Ebleme, M. A., Çavuşoğlu, Ü., Küçük, K., & Sevin, A. (2022). A survey on communication protocols and performance evaluations for Internet of Things. Digital Communications and Networks, 8(6), 1094-1104. https://doi.org/10.1016/j.dcan.2022.03.013 DOI: https://doi.org/10.1016/j.dcan.2022.03.013

. Jia, K., Xiao, J., Fan, S., & He, G. (2018). A mqtt/mqtt-sn-based user energy management system for automated residential demand response: Formal verification and cyber-physical performance evaluation. Applied Sciences, 8(7), 1035. https://doi.org/10.3390/app8071035 DOI: https://doi.org/10.3390/app8071035

. Apanaviciene, R., Vanagas, A., & Fokaides, P. A. (2020). Smart building integration into a smart city (SBISC): Development of a new evaluation framework. Energies, 13(9), 2190. https://doi.org/10.3390/en13092190 DOI: https://doi.org/10.3390/en13092190

. Froiz-Míguez, I., Fernández-Caramés, T. M., Fraga-Lamas, P., & Castedo, L. (2018). Design, implementation and practical evaluation of an IoT home automation system for fog computing applications based on MQTT and ZigBee-WiFi sensor nodes. Sensors, 18(8), 2660. https://doi.org/10.3390/s18082660 DOI: https://doi.org/10.3390/s18082660

. Newell, D., & Duffy, M. (2019). Review of power conversion and energy management for low-power, low-voltage energy harvesting powered wireless sensors. IEEE Transactions on Power Electronics, 34(10), 9794-9805. https://doi.org/10.1109/TPEL.2019.2894465 DOI: https://doi.org/10.1109/TPEL.2019.2894465

. Das, H. S., Rahman, M. M., Li, S., & Tan, C. W. (2020). Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review. Renewable and Sustainable Energy Reviews, 120, 109618. https://doi.org/10.1016/j.rser.2019.109618 DOI: https://doi.org/10.1016/j.rser.2019.109618

. Ahmad, T., Madonski, R., Zhang, D., Huang, C., & Mujeeb, A. (2022). Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm. Renewable and Sustainable Energy Reviews, 160, 112128. https://doi.org/10.1016/j.rser.2022.112128

. Sedhom, B. E., El-Saadawi, M. M., El Moursi, M. S., Hassan, M. A., & Eladl, A. A. (2021). IoT-based optimal demand side management and control scheme for smart microgrid. International Journal of Electrical Power & Energy Systems, 127, 106674. https://doi.org/10.1016/j.ijepes.2020.106674 DOI: https://doi.org/10.1016/j.ijepes.2020.106674

. Pan, F., Lin, G., Yang, Y., Zhang, S., Xiao, J., & Fan, S. (2019). Data-driven demand-side energy management approaches based on the smart energy network. Journal of Algorithms & Computational Technology, 13, 1748302619891611. https://doi.org/10.1177/1748302619891 DOI: https://doi.org/10.1177/1748302619891611

. Kayastha, N., Niyato, D., Hossain, E., & Han, Z. (2014). Smart grid sensor data collection, communication, and networking: a tutorial. Wireless communications and mobile computing, 14(11), 1055-1087. https://doi.org/10.1002/wcm.2258 DOI: https://doi.org/10.1002/wcm.2258

. Ahmad, T., Madonski, R., Zhang, D., Huang, C., & Mujeeb, A. (2022). Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm. Renewable and Sustainable Energy Reviews, 160, 112128. https://doi.org/10.1016/j.rser.2022.112128 DOI: https://doi.org/10.1016/j.rser.2022.112128

. Al Mamun, M. A., & Yuce, M. R. (2019). Sensors and systems for wearable environmental monitoring toward IoT-enabled applications: A review. IEEE Sensors Journal, 19(18), 7771-7788. https://doi.org/10.3390/su13158120 DOI: https://doi.org/10.1109/JSEN.2019.2919352

. Ukoba, K., Olatunji, K. O., Adeoye, E., Jen, T. C., & Madyira, D. M. (2024). Optimizing renewable energy systems through artificial intelligence: Review and future prospects. Energy & Environment, 0958305X241256293. https://doi.org/10.1177/0958305X241256293 DOI: https://doi.org/10.1177/0958305X241256293

. Mahmud, K., Town, G. E., Morsalin, S., & Hossain, M. J. (2018). Integration of electric vehicles and management in the internet of energy. Renewable and Sustainable Energy Reviews, 82, 4179-4203. https://doi.org/10.1016/j.rser.2017.11.004 DOI: https://doi.org/10.1016/j.rser.2017.11.004

. Lukasiewycz, M., Steinhorst, S., Andalam, S., Sagstetter, F., Waszecki, P., Chang, W., ... & Chakraborty, S. (2013, May). System architecture and software design for electric vehicles. In Proceedings of the 50th Annual Design Automation Conference (pp. 1-6) https://doi.org/10.1145/2463209.248885 DOI: https://doi.org/10.1145/2463209.2488852

. Hassani, S., & Dackermann, U. (2023). A systematic review of advanced sensor technologies for non-destructive testing and structural health monitoring. Sensors, 23(4), 2204. https://doi.org/10.3390/s23042204 DOI: https://doi.org/10.3390/s23042204

. Civera, M., & Surace, C. (2022). Non-destructive techniques for the condition and structural health monitoring of wind turbines: A literature review of the last 20 years. Sensors, 22(4), 1627. https://doi.org/10.3390/s22041627 DOI: https://doi.org/10.3390/s22041627

. El-Afifi, M. I., Sedhom, B. E., Padmanaban, S., & Eladl, A. A. (2024). A review of IoT-enabled smart energy hub systems: Rising, applications, challenges, and future prospects. Renewable Energy Focus, 100634. https://doi.org/10.1016/j.ref.2024.100634 DOI: https://doi.org/10.1016/j.ref.2024.100634

. Kumar, T., Srinivasan, R., & Mani, M. (2022). An emergy-based approach to evaluate the effectiveness of integrating IoT-based sensing systems into smart buildings. Sustainable Energy Technologies and Assessments, 52, 102225. https://doi.org/10.1016/j.seta.2022.102225 DOI: https://doi.org/10.1016/j.seta.2022.102225

. Hafeez, G., Wadud, Z., Khan, I. U., Khan, I., Shafiq, Z., Usman, M., & Khan, M. U. A. (2020). Efficient energy management of IoT-enabled smart homes under price-based demand response program in smart grid. Sensors, 20(11), 3155. https://doi.org/10.3390/s20113155 DOI: https://doi.org/10.3390/s20113155

. Alhamrouni, I., Abdul Kahar, N. H., Salem, M., Swadi, M., Zahroui, Y., Kadhim, D. J., ... & Alhuyi Nazari, M. (2024). A comprehensive review on the role of artificial intelligence in power system stability, control, and protection: Insights and future directions. Applied Sciences, 14(14), 6214. https://doi.org/10.3390/app14146214. DOI: https://doi.org/10.3390/app14146214

Downloads

Published

2025-09-26

How to Cite

Srivastava, S. S., Satyanarayana, G. S. ., Dhasmana, A. ., Rawat, V. ., Singh Rana, A. ., & Singh Bisht, Y. . (2025). Role of Embedded Systems in Smart Energy Management: : Challenges, Innovations, and Future Trends. Solar Energy and Sustainable Development Journal, 14(STR2E), 27–50. https://doi.org/10.51646/jsesd.v14iSTR2E.797

Issue

Section

SI-STR2E