Multi-Port Converters for Interfacing Renewable Energy Sources:

State-of-the-Art

Authors

  • Alaa A. Mahmoud Sohag University, Faculty of Technology and Education, Electrical Department, Sohag, Egypt.
  • Mahmoud Aymen Ahmed Sohag University, Faculty of Technology and Education, Electrical Department, Sohag, Egypt.
  • Ahmed A. Hafez Assiut University, Faculty of Engineering, Electrical Engineering Department, Assiut, Egypt.

DOI:

https://doi.org/10.51646/jsesd.v13i2.246

Keywords:

EV, Hybrid Systems, Microgrid, Multi-port Converter, Renewable energy sources.

Abstract

Several power electronic converters are merged to fulfill different requirements such as interfacing Renewable Energy Sources (RESs) to energy storage systems (ESS), grid, and loads. Some applications would require several converters that reduce the efficiency, increase component counts and complicating the control strategies. The interfacing of separate energy sources utilized in electrical vehicles (EV) and grid-connected applications has drawn attention to Multiport Converters (MPC). Additionally, MPCs have a smaller component count and compact design compared to multiple independent DC-DC converters. This led to an increase in the power density and a decrease in complexity and cost of the converter. This article Introduce a comprehensive review for numerous numbers of publications regarding MPCs, advising a simple classification for MPCs. The classification introduced in the article is based on the applications. This classification would be a beneficial tool for researchers in the field while highlighting different control and modulation strategies used in MPCs and Discussing the limitations and boundaries of MPCs.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

REN21, Renewables 2020 Global Status Report http://www.ren21.net/resources/publications/. 2020. [Online]. Available: http://www.ren21.net/resources/publications/

R. K. Pandey, P. Tirkey, S. Kumar, and J. Nath Mahto, “A Review on DC-DC Converters Used in Electric Vehicles,” in 2022 IEEE 2nd International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC), Dec. 2022, pp. 1–6. doi: 10.1109/iSSSC56467.2022.10051498. DOI: https://doi.org/10.1109/iSSSC56467.2022.10051498

N. P. Besekar, “DC-DC Converters Topology,” J. Image Process. Intell. Remote Sens., no. 32, pp. 11–21, Feb. 2023, doi: 10.55529/jipirs.32.11.21. DOI: https://doi.org/10.55529/jipirs.32.11.21

M. Khalilian and E. Adib, “Soft-single-switched dual forward-flyback PWM DC-DC converter with non-dissipative LC circuit,” in 2015 23rd Iranian Conference on Electrical Engineering, 2015, pp. 1562–1567. doi: 10.1109/IranianCEE.2015.7146468. DOI: https://doi.org/10.1109/IranianCEE.2015.7146468

M. Şimşir and A. Ghayth, “Global Trends in Electric Vehicle Battery Efficiency and Impact on Sustainable Grid,” Sol. Energy Sustain. Dev. J., vol. 13, no. 2, pp. 1–17, Jun. 2024, doi: 10.51646/jsesd.v13i2.202. DOI: https://doi.org/10.51646/jsesd.v13i2.202

L. Ni, D. J. Patterson, and J. L. Hudgins, “Maximum power extraction from a small wind turbine using 4-phase interleaved boost converter,” 2009 IEEE Power Electron. Mach. Wind Appl. PEMWA 2009, 2009, doi: 10.1109/PEMWA.2009.5208329. DOI: https://doi.org/10.1109/PEMWA.2009.5208329

Y. Ahn, I. Jeon, and J. Roh, “A multiphase buck converter with a rotating phase-shedding scheme for efficient light-load control,” IEEE J. Solid-State Circuits, vol. 49, no. 11, pp. 2673–2683, 2014, doi: 10.1109/JSSC.2014.2360400. DOI: https://doi.org/10.1109/JSSC.2014.2360400

Y. C. Chuang and Y. L. Ke, “High-efficiency and low-stress ZVT-PWM DC-to-DC converter for battery charger,” IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 3030–3037, 2008, doi: 10.1109/TIE.2008.921218. DOI: https://doi.org/10.1109/TIE.2008.921218

P. D. Antoszczuk, R. G. Retegui, N. Wassinger, S. Maestri, M. Funes, and M. Benedetti, “Characterization of steady-state current ripple in interleaved power converters under inductance mismatches,” IEEE Trans. Power Electron., vol. 29, no. 4, pp. 1840–1849, 2014, doi: 10.1109/TPEL.2013.2270005. DOI: https://doi.org/10.1109/TPEL.2013.2270005

Y. Gu and D. Zhang, “Interleaved boost converter with ripple cancellation network,” IEEE Trans. Power Electron., vol. 28, no. 8, pp. 3860–3869, 2013, doi: 10.1109/TPEL.2012.2228505. DOI: https://doi.org/10.1109/TPEL.2012.2228505

O. García, P. Zumel, A. De Castro, and J. A. Cobos, “Automotive DC–DC Bidirectional Converter.pdf,” IEEE Trans. Power Electron., vol. 21, no. 3, pp. 578–586, 2006. DOI: https://doi.org/10.1109/TPEL.2006.872379

M. Carbajal-Retana et al., “Interleaved buck converter for inductive wireless power transfer in dc–dc converters,” Electron., vol. 9, no. 6, pp. 1–15, 2020, doi: 10.3390/electronics9060949. DOI: https://doi.org/10.3390/electronics9060949

A. S. Valarmathy and M. Prabhakar, “Comparison of coupled-inductor based interleaved high gain dc-dc converter topologies,” Proc. 7th Int. Conf. Electr. Energy Syst. ICEES 2021, pp. 364–369, 2021, doi: 10.1109/ICEES51510.2021.9383644. DOI: https://doi.org/10.1109/ICEES51510.2021.9383644

P. Li, X. Li, and T. Zeng, “A fast and simple fault diagnosis method for interleaved dc-dc converters based on output voltage analysis,” Electron., vol. 10, no. 12, pp. 1–14, 2021, doi: 10.3390/electronics10121451. DOI: https://doi.org/10.3390/electronics10121451

M. D. Siddique et al., “Switched-capacitor-based boost multilevel inverter topology with higher voltage gain,” IET Power Electron., vol. 13, no. 14, pp. 3026–3031, 2020, doi: 10.1049/iet-pel.2020.0446. DOI: https://doi.org/10.1049/iet-pel.2020.0446

S. Bala, T. Tengner, P. Rosenfeld, and F. Delince, “The effect of low frequency current ripple on the performance of a Lithium Iron Phosphate (LFP) battery energy storage system,” 2012 IEEE Energy Convers. Congr. Expo. ECCE 2012, pp. 3485–3492, 2012, doi: 10.1109/ECCE.2012.6342318. DOI: https://doi.org/10.1109/ECCE.2012.6342318

A. Shenkman, Y. Berkovich, and B. Axelrod, “Novel AC-DC and DC-DC converters with a diode-capacitor multiplier,” IEEE Trans. Aerosp. Electron. Syst., vol. 40, no. 4, pp. 1286–1293, 2004, doi: 10.1109/TAES.2004.1386881. DOI: https://doi.org/10.1109/TAES.2004.1386881

B. Axelrod, Y. Berkovich, and A. Ioinovici, “Switched-capacitor/switched-inductor structures for getting transformerless hybrid DC-DC PWM converters,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 55, no. 2, pp. 687–696, 2008, doi: 10.1109/TCSI.2008.916403. DOI: https://doi.org/10.1109/TCSI.2008.916403

B. Axelrod, Y. Berkovich, A. Shenkman, and G. Golan, “Diode-capacitor voltage multipliers combined with boost-converters: Topologies and characteristics,” IET Power Electron., vol. 5, no. 6, pp. 873–884, 2012, doi: 10.1049/iet-pel.2011.0215. DOI: https://doi.org/10.1049/iet-pel.2011.0215

M. Evzelman and S. Ben-Yaakov, “Average-current-based conduction losses model of switched capacitor converters,” IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3341–3352, 2013, doi: 10.1109/TPEL.2012.2226060. DOI: https://doi.org/10.1109/TPEL.2012.2226060

M. Evzelman and S. Ben-Yaakov, “Simulation of hybrid converters by average models,” IEEE Trans. Ind. Appl., vol. 50, no. 2, pp. 1106–1113, 2014, doi: 10.1109/TIA.2013.2272286. DOI: https://doi.org/10.1109/TIA.2013.2272286

M. D. Seeman and S. R. Sanders, “Analysis and optimization of switched-capacitor DC-DC converters,” Proc. IEEE Work. Comput. Power Electron. COMPEL, vol. 23, no. 2, pp. 216–224, 2006, doi: 10.1109/COMPEL.2006.305678. DOI: https://doi.org/10.1109/COMPEL.2006.305678

M. Dhananjaya and S. Pattnaik, “Review on Multi-Port DC–DC Converters,” IETE Tech. Rev. (Institution Electron. Telecommun. Eng. India), vol. 39, no. 3, pp. 586–599, 2022, doi: 10.1080/02564602.2021.1882343. DOI: https://doi.org/10.1080/02564602.2021.1882343

J. G. Kassakian and T. M. Jahns, “Evolving and emerging applications of power electronics in systems,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 1, no. 2, pp. 47–58, 2013, doi: 10.1109/JESTPE.2013.2271111. DOI: https://doi.org/10.1109/JESTPE.2013.2271111

Ó. Lucía, I. Cvetkovic, H. Sarnago, D. Boroyevich, P. Mattavelli, and F. C. Lee, “Design of home appliances for a DC-based nanogrid system: An induction range study case,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 1, no. 4, pp. 315–326, 2013, doi: 10.1109/JESTPE.2013.2283224. DOI: https://doi.org/10.1109/JESTPE.2013.2283224

J. Carr, J. C. Balda, and A. Mantooth, “A high frequency link multiport converter utility interface for renewable energy resources with integrated energy storage,” 2010 IEEE Energy Convers. Congr. Expo. ECCE 2010 - Proc., pp. 3541–3548, 2010, doi: 10.1109/ECCE.2010.5617702. DOI: https://doi.org/10.1109/ECCE.2010.5617702

W. Qiao, A. Sharma, J. L. Hudgins, and E. G. Jones, “Wind / Solar Hybrid Generation-Based Roadway Microgrids,” pp. 1–7, 2011. DOI: https://doi.org/10.1109/PES.2011.6039884

Z. Qian, O. Abdel-Rahman, and I. Batarseh, “An integrated four-port DC/DC converter for renewable energy applications,” IEEE Trans. Power Electron., vol. 25, no. 7, pp. 1877–1887, 2010, doi: 10.1109/TPEL.2010.2043119. DOI: https://doi.org/10.1109/TPEL.2010.2043119

S. Y. Yu and A. Kwasinski, “Analysis of soft-switching isolated time-sharing multiple-input converters for DC distribution systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1783–1794, 2013, doi: 10.1109/TPEL.2012.2211040. DOI: https://doi.org/10.1109/TPEL.2012.2211040

A. A. Mahmoud, O. A. Albadry, M. I. Mohamed, H. El-Khozondar, Y. Nassar, and A. A. Hafez, “Charging Systems/Techniques of Electric Vehicle:,” Sol. Energy Sustain. Dev. J., vol. 13, no. 2, pp. 18–44, Jun. 2024, doi: 10.51646/jsesd.v13i2.203. DOI: https://doi.org/10.51646/jsesd.v13i2.203

H. Tao, A. Kotsopoulos, J. L. Duarte, and M. A. M. Hendrix, “Family of multiport bidirectional DC–DC converters,” IEE Proc. - Electr. Power Appl., vol. 153, no. 3, p. 451, Feb. 2006, doi: 10.1049/ip-epa:20050362. DOI: https://doi.org/10.1049/ip-epa:20050362

M. Qiang, X. Zhen-lin, and W. Wei-Yang, “A novel multi-port DC-DC converter for hybrid renewable energy distributed generation systems connected to power grid,” Proc. IEEE Int. Conf. Ind. Technol., pp. 1–5, 2008, doi: 10.1109/ICIT.2008.4608555. DOI: https://doi.org/10.1109/ICIT.2008.4608555

J. Zeng, W. Qiao, and L. Qu, “An isolated multiport DC-DC converter for simultaneous power management of multiple renewable energy sources,” 2012 IEEE Energy Convers. Congr. Expo. ECCE 2012, pp. 3741–3748, 2012, doi: 10.1109/ECCE.2012.6342470. DOI: https://doi.org/10.1109/ECCE.2012.6342470

H. Tao, J. L. Duarte, and M. A. M. Hendrix, “Multiport converters for hybrid power sources,” PESC Rec. - IEEE Annu. Power Electron. Spec. Conf., pp. 3412–3418, 2008, doi: 10.1109/PESC.2008.4592483. DOI: https://doi.org/10.1109/PESC.2008.4592483

E. Babaei, K. Varesi, and N. Vosoughi, “Calculation of critical inductance in n-input buck dc–dc converter,” IET Power Electron., vol. 9, no. 12, pp. 2434–2444, Oct. 2016, doi: 10.1049/IET-PEL.2016.0104.

Y. Yuan‐mao and K. W. E. Cheng, “Multi‐input voltage‐summation converter based on switched‐capacitor,” IET Power Electron., vol. 6, no. 9, pp. 1909–1916, 2013, doi: 10.1049/iet-pel.2013.0015. DOI: https://doi.org/10.1049/iet-pel.2013.0015

P. KhademiAstaneh, J. Javidan, K. Valipour, and A. Akbarimajd, “A bidirectional high step-up multi-input DC-DC converter with soft switching,” Int. Trans. Electr. Energy Syst., vol. 29, no. 1, p. e2699, 2018, doi: 10.1002/etep.2699. DOI: https://doi.org/10.1002/etep.2699

M. R. Banaei, H. Ardi, R. Alizadeh, and A. Farakhor, “Non‐isolated multi‐input–single‐output DC/DC converter for photovoltaic power generation systems,” IET Power Electron., vol. 7, no. 11, pp. 2806–2816, 2014, doi: 10.1049/iet-pel.2013.0977. DOI: https://doi.org/10.1049/iet-pel.2013.0977

A. Hintz, U. R. Prasanna, and K. Rajashekara, “Novel Modular Multiple-Input Bidirectional DC–DC Power Converter (MIPC) for HEV/FCV Application,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3163–3172, 2015, doi: 10.1109/tie.2014.2371778. DOI: https://doi.org/10.1109/TIE.2014.2371778

K. Varesi, S. Hossein Hosseini, M. Sabahi, E. Babaei, S. Saeidabadi, and N. Vosoughi, “Design and Analysis of a Developed Multiport High Step-Up DC–DC Converter With Reduced Device Count and Normalized Peak Inverse Voltage on the Switches/Diodes,” IEEE Trans. Power Electron., vol. 34, no. 6, pp. 5464–5475, 2019, doi: 10.1109/tpel.2018.2866492. DOI: https://doi.org/10.1109/TPEL.2018.2866492

K. Varesi, S. H. Hosseini, M. Sabahi, and E. Babaei, “Modular non‐isolated multi‐input high step‐up dc–dc converter with reduced normalised voltage stress and component count,” IET Power Electron., vol. 11, no. 6, pp. 1092–1100, 2018, doi: 10.1049/iet-pel.2017.0483. DOI: https://doi.org/10.1049/iet-pel.2017.0483

S. K. Haghighian, S. Tohidi, M. R. Feyzi, and M. Sabahi, “Design and analysis of a novel SEPIC‐based multi‐input DC/DC converter,” IET Power Electron., vol. 10, no. 12, pp. 1393–1402, 2017, doi: 10.1049/iet-pel.2016.0654. DOI: https://doi.org/10.1049/iet-pel.2016.0654

B. Wang, X. Zhang, and H. B. Gooi, “An SI-MISO Boost Converter With Deadbeat-Based Control for Electric Vehicle Applications,” IEEE Trans. Veh. Technol., vol. 67, no. 10, pp. 9223–9232, 2018, doi: 10.1109/tvt.2018.2853738. DOI: https://doi.org/10.1109/TVT.2018.2853738

H. Matsuo, W. Lin, F. Kurokawa, T. Shigemizu, and N. Watanabe, “Characteristics of the Multiple-Input DC–DC Converter,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 625–631, 2004, doi: 10.1109/tie.2004.825362.

Y.-M. M. Chen, Y.-C. C. Liu, and F.-Y. Y. Wu, “Multi-input DC/DC converter based on the multiwinding transformer for renewable energy applications,” IEEE Trans. Ind. Appl., vol. 38, no. 4, pp. 1096–1104, 2002, doi: 10.1109/tia.2002.800776.

D. Liu and H. Li, “A ZVS Bi-Directional DC–DC Converter for Multiple Energy Storage Elements,” IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1513–1517, 2006, doi: 10.1109/tpel.2006.882450.

C.-W. Chen, C.-Y. Liao, K.-H. Chen, and Y.-M. Chen, “Modeling and Controller Design of a Semiisolated Multiinput Converter for a Hybrid PV/Wind Power Charger System,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 4843–4853, 2015, doi: 10.1109/tpel.2014.2367594. DOI: https://doi.org/10.1109/TPEL.2014.2367594

K. Itoh, S. Inoue, M. Ishigaki, T. Sugiyama, and T. Umeno, “Power loss estimation for three-port DC/DC converter for 12-V/48-V dual-voltage hybrid electric vehicle subsystem,” IEEJ Trans. Electr. Electron. Eng., vol. 13, no. 7, pp. 1060–1070, 2018, doi: 10.1002/tee.22664. DOI: https://doi.org/10.1002/tee.22664

X. Sun, G. Pei, S. Yao, and Z. Chen, “A novel multi-port dc/dc converter with bi-directional storage unit,” Proc. 7th Int. Power Electron. Motion Control Conf., vol. 3, pp. 1771–1775, 2012, doi: 10.1109/ipemc.2012.6259105. DOI: https://doi.org/10.1109/IPEMC.2012.6259105

Z. Zhang, Z. Ouyang, O. C. Thomsen, and M. A. E. Andersen, “Analysis and Design of a Bidirectional Isolated DC–DC Converter for Fuel Cells and Supercapacitors Hybrid System,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 848–859, Feb. 2012, doi: 10.1109/tpel.2011.2159515. DOI: https://doi.org/10.1109/TPEL.2011.2159515

C. Zhao, S. D. Round, and J. W. Kolar, “An Isolated Three-Port Bidirectional DC-DC Converter With Decoupled Power Flow Management,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2443–2453, Sep. 2008, doi: 10.1109/tpel.2008.2002056. DOI: https://doi.org/10.1109/TPEL.2008.2002056

W. Li, C. Xu, H. Luo, Y. Hu, X. He, and C. Xia, “Decoupling-Controlled Triport Composited DC/DC Converter for Multiple Energy Interface,” IEEE Trans. Ind. Electron., vol. 62, no. 7, pp. 4504–4513, 2015, doi: 10.1109/tie.2014.2385668. DOI: https://doi.org/10.1109/TIE.2014.2385668

Y. Wang, F. Han, L. Yang, R. Xu, and R. Liu, “A Three-Port Bidirectional Multi-Element Resonant Converter With Decoupled Power Flow Management for Hybrid Energy Storage Systems,” IEEE Access, vol. 6, pp. 61331–61341, 2018, doi: 10.1109/access.2018.2872683. DOI: https://doi.org/10.1109/ACCESS.2018.2872683

Z. Jianwu, Q. Wei, Q. Liyan, and Y. Jiao, “An isolated multiport DC-DC converter for simultaneous power management of multiple different renewable energy sources,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 2, no. 1, pp. 70–78, 2014, doi: 10.1109/JESTPE.2013.2293331.

S. Dusmez, X. Li, and B. Akin, “A New Multiinput Three-Level DC/DC Converter,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1230–1240, 2016, doi: 10.1109/tpel.2015.2424246. DOI: https://doi.org/10.1109/TPEL.2015.2424246

Y.-M. M. Chen, A. Q. Huang, and X. Yu, “A High Step-Up Three-Port DC–DC Converter for Stand-Alone PV/Battery Power Systems,” IEEE Trans. Power Electron., vol. 28, no. 11, pp. 5049–5062, 2013, doi: 10.1109/tpel.2013.2242491. DOI: https://doi.org/10.1109/TPEL.2013.2242491

V. Karthikeyan and R. Gupta, “Multiple-Input Configuration of Isolated Bidirectional DC–DC Converter for Power Flow Control in Combinational Battery Storage,” IEEE Trans. Ind. Informatics, vol. 14, no. 1, pp. 2–11, 2018, doi: 10.1109/tii.2017.2707106. DOI: https://doi.org/10.1109/TII.2017.2707106

B. Mangu, S. Akshatha, D. Suryanarayana, and B. G. Fernandes, “Grid-Connected PV-Wind-Battery-Based Multi-Input Transformer-Coupled Bidirectional DC-DC Converter for Household Applications,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 4, no. 3, pp. 1086–1095, 2016, doi: 10.1109/jestpe.2016.2544789. DOI: https://doi.org/10.1109/JESTPE.2016.2544789

H. Matsuo, W. Lin, F. Kurokawa, T. Shigemizu, and N. Watanabe, “Characteristics of the multiple-input dc-dc converter,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 625–631, 2004, doi: 10.1109/TIE.2004.825362. DOI: https://doi.org/10.1109/TIE.2004.825362

Y. M. Chen, Y. C. Liu, and F. Y. Wu, “Multi-input dc/dc converter based on the multiwinding transformer for renewable energy applications,” IEEE Trans. Ind. Appl., vol. 38, no. 4, pp. 1096–1104, 2002, doi: 10.1109/TIA.2002.800776. DOI: https://doi.org/10.1109/TIA.2002.800776

D. Liu and H. Li, “A ZVS bi-directional DC-DC converter for multiple energy storage elements,” IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1513–1517, 2006, doi: 10.1109/TPEL.2006.882450. DOI: https://doi.org/10.1109/TPEL.2006.882450

Z. Wang and H. Li, “Integrated MPPT and bidirectional battery charger for PV application using one multiphase interleaved three-port dc-dc converter,” Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, pp. 295–300, 2011, doi: 10.1109/APEC.2011.5744611. DOI: https://doi.org/10.1109/APEC.2011.5744611

Z. Wang and H. Li, “An integrated three-port bidirectional DC-DC converter for PV application on a DC distribution system,” IEEE Trans. Power Electron., vol. 28, no. 10, pp. 4612–4624, 2013, doi: 10.1109/TPEL.2012.2236580.

F. Forest, T. A. Meynard, E. Labouré, B. Gelis, J. J. Huselstein, and J. C. Brandelero, “An isolated multicell intercell transformer converter for applications with a high step-up ratio,” IEEE Trans. Power Electron., vol. 28, no. 3, pp. 1107–1119, 2013, doi: 10.1109/TPEL.2012.2209679.

G. J. Su and F. Z. Peng, “A low cost, triple-voltage bus dc-dc converter for automotive applications,” Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, vol. 2, pp. 1015–1021, 2005, doi: 10.1109/APEC.2005.1453116. DOI: https://doi.org/10.1109/APEC.2005.1453116

C. L. Shen and S. H. Yang, “Multi-input converter with MPPT feature for wind-pv power generation system,” Int. J. Photoenergy, vol. 2013, no. Mic, 2013, doi: 10.1155/2013/129254. DOI: https://doi.org/10.1155/2013/129254

F. Blaabjerg and K. Ma, “Future on power electronics for wind turbine systems,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 1, no. 3, pp. 139–152, 2013, doi: 10.1109/JESTPE.2013.2275978. DOI: https://doi.org/10.1109/JESTPE.2013.2275978

H. Wu, R. Chen, J. Zhang, Y. Xing, H. Hu, and H. Ge, “A family of three-port half-bridge converters for a stand-alone renewable power system,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2697–2706, 2011, doi: 10.1109/TPEL.2011.2125991. DOI: https://doi.org/10.1109/TPEL.2011.2125991

W. Li, J. Xiao, Y. Zhao, and X. He, “PWM plus phase angle shift (PPAS) control scheme for combined multiport DC/DC converters,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1479–1489, 2012, doi: 10.1109/TPEL.2011.2163826. DOI: https://doi.org/10.1109/TPEL.2011.2163826

A. Hema Chander and L. Kumar, “MIC for reliable and efficient harvesting of solar energy,” IET Power Electron., vol. 12, no. 2, pp. 267–275, 2019, doi: 10.1049/iet-pel.2018.5079. DOI: https://doi.org/10.1049/iet-pel.2018.5079

Y. E. Majeed, I. Ahmad, and D. Habibi, “A Multiple-Input Cascaded DC–DC Converter for Very Small Wind Turbines,” IEEE Trans. Ind. Electron., vol. 66, no. 6, pp. 4414–4423, 2019, doi: 10.1109/tie.2018.2863214. DOI: https://doi.org/10.1109/TIE.2018.2863214

A. Deihimi, M. E. Seyed Mahmoodieh, and R. Iravani, “A new multi-input step-up DC–DC converter for hybrid energy systems,” Electr. Power Syst. Res., vol. 149, pp. 111–124, 2017, doi: 10.1016/j.epsr.2017.04.017. DOI: https://doi.org/10.1016/j.epsr.2017.04.017

S. Raghavendran, M. Umapathy, and L. R. Karlmarx, “Supercapacitor charging from piezoelectric energy harvesters using multi‐input buck–boost converter,” IET Circuits, Devices & Syst., vol. 12, no. 6, pp. 746–752, 2018, doi: 10.1049/iet-cds.2018.5069. DOI: https://doi.org/10.1049/iet-cds.2018.5069

L. Colalongo, D. Dotti, A. Richelli, and Z. M. Kovács‐Vajna, “Non‐isolated multiple‐input boost converter for energy harvesting,” Electron. Lett., vol. 53, no. 16, pp. 1132–1134, 2017, doi: 10.1049/el.2017.1590. DOI: https://doi.org/10.1049/el.2017.1590

F. Guo, L. Fu, X. Zhang, C. Yao, H. Li, and J. Wang, “A Family of Quasi-Switched-Capacitor Circuit Based Dual-Input DC/DC Converters for Photovoltaic Systems Integrated with Battery Energy Storage,” IEEE Trans. Power Electron., p. 1, 2016, doi: 10.1109/tpel.2016.2519394. DOI: https://doi.org/10.1109/TPEL.2016.2519394

A. Nahavandi, M. T. Hagh, M. B. B. Sharifian, and S. Danyali, “A Nonisolated Multiinput Multioutput DC–DC Boost Converter for Electric Vehicle Applications,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 1818–1835, 2015, doi: 10.1109/tpel.2014.2325830. DOI: https://doi.org/10.1109/TPEL.2014.2325830

L. Kumar and S. Jain, “Multiple‐input DC/DC converter topology for hybrid energy system,” IET Power Electron., vol. 6, no. 8, pp. 1483–1501, 2013, doi: 10.1049/iet-pel.2012.0309. DOI: https://doi.org/10.1049/iet-pel.2012.0309

S. Athikkal, G. G. Kumar, K. Sundaramoorthy, and A. Sankar, “Performance Analysis of Novel Bridge Type Dual Input DC-DC Converters,” IEEE Access, vol. 5, pp. 15340–15353, 2017, doi: 10.1109/access.2017.2734328. DOI: https://doi.org/10.1109/ACCESS.2017.2734328

A. González, R. López-Erauskin, and J. Gyselinck, “Analysis, modeling, control and operation of an interleaved three-port boost converter for DMPPT systems including PV and storage at module level,” Heliyon, vol. 5, no. 3, pp. e01402–e01402, Mar. 2019, doi: 10.1016/j.heliyon.2019.e01402. DOI: https://doi.org/10.1016/j.heliyon.2019.e01402

Y. Sato, H. Nagata, and M. Uno, “Non-isolated multi-port converter integrating PWM and phase-shift converters,” TENCON 2017 - 2017 IEEE Region 10 Conference. IEEE, 2017. doi: 10.1109/tencon.2017.8228021. DOI: https://doi.org/10.1109/TENCON.2017.8228021

Y. Li, C. Zhao, J. Y. Chen, R. Du, and Y. Zhang, “Optimizing design of soft-switching dual-input full-bridge DC/DC converter,” 2011 IEEE Vehicle Power and Propulsion Conference. IEEE, 2011. doi: 10.1109/vppc.2011.6043011. DOI: https://doi.org/10.1109/VPPC.2011.6043011

Z. Zhang, O. C. Thomsen, M. A. E. Andersen, and H. R. Nielsen, “A novel dual-input isolated current-fed DC-DC converter for renewable energy system,” 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2011. doi: 10.1109/apec.2011.5744790. DOI: https://doi.org/10.1109/APEC.2011.5744790

Z. Zhang, H. R. Nielsen, M. A. E. Andersen, and O. C. Thomsen, “Dual-input isolated full-bridge boost dc–dc converter based on the distributed transformers,” IET Power Electron., vol. 5, no. 7, pp. 1074–1083, 2012, doi: 10.1049/iet-pel.2011.0181. DOI: https://doi.org/10.1049/iet-pel.2011.0181

M. Phattanasak, R. Gavagsaz-Ghoachani, J.-P. Martin, B. Nahid-Mobarakeh, S. Pierfederici, and B. Davat, “Control of a Hybrid Energy Source Comprising a Fuel Cell and Two Storage Devices Using Isolated Three-Port Bidirectional DC–DC Converters,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 491–497, 2015, doi: 10.1109/tia.2014.2336975. DOI: https://doi.org/10.1109/TIA.2014.2336975

J. Zeng et al., “An Isolated Multiport DC–DC Converter for Simultaneous Power Management of Multiple Different Renewable Energy Sources,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 2, no. 1, pp. 70–78, 2014, doi: 10.1109/jestpe.2013.2293331. DOI: https://doi.org/10.1109/JESTPE.2013.2293331

D. Debnath and K. Chatterjee, “Two-Stage Solar Photovoltaic-Based Stand-Alone Scheme Having Battery as Energy Storage Element for Rural Deployment,” IEEE Trans. Ind. Electron., vol. 62, no. 7, pp. 4148–4157, 2015, doi: 10.1109/tie.2014.2379584. DOI: https://doi.org/10.1109/TIE.2014.2379584

Y. Lu, K. Sun, H. Wu, X. Dong, and Y. Xing, “A Three-Port Converter Based Distributed DC Grid Connected PV System With Autonomous Output Voltage Sharing Control,” IEEE Trans. Power Electron., vol. 34, no. 1, pp. 325–339, 2019, doi: 10.1109/tpel.2018.2822726. DOI: https://doi.org/10.1109/TPEL.2018.2822726

Z. Wang and H. Li, “An Integrated Three-Port Bidirectional DC–DC Converter for PV Application on a DC Distribution System,” IEEE Trans. Power Electron., vol. 28, no. 10, pp. 4612–4624, 2013, doi: 10.1109/tpel.2012.2236580. DOI: https://doi.org/10.1109/TPEL.2012.2236580

F. Forest, T. A. Meynard, E. Labouré, B. Gelis, J.-J. Huselstein, and J. C. Brandelero, “An Isolated Multicell Intercell Transformer Converter for Applications With a High Step-Up Ratio,” IEEE Trans. Power Electron., vol. 28, no. 3, pp. 1107–1119, 2013, doi: 10.1109/tpel.2012.2209679. DOI: https://doi.org/10.1109/TPEL.2012.2209679

Y. Tong, Z. Shan, J. Jatskevich, and A. Davoudi, “A nonisolated multiple-input multiple-output DC-DC converter for DC distribution of future energy efficient homes,” IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2014. doi: 10.1109/iecon.2014.7049122. DOI: https://doi.org/10.1109/IECON.2014.7049122

A. Roshan, R. Burgos, A. C. Baisden, F. Wang, and D. Boroyevich, “A D-Q Frame Controller for a Full-Bridge Single Phase Inverter Used in Small Distributed Power Generation Systems,” APEC 07 - Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition. IEEE, 2007. doi: 10.1109/apex.2007.357582. DOI: https://doi.org/10.1109/APEX.2007.357582

N. Zhang, D. Sutanto, and K. M. Muttaqi, “A review of topologies of three-port DC–DC converters for the integration of renewable energy and energy storage system,” Renew. Sustain. Energy Rev., vol. 56, pp. 388–401, 2016, doi: 10.1016/j.rser.2015.11.079. DOI: https://doi.org/10.1016/j.rser.2015.11.079

M. Chen, F. Gao, R. Li, and X. Li, “A Dual-Input Central Capacitor DC/DC Converter for Distributed Photovoltaic Architectures,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 305–318, 2017, doi: 10.1109/tia.2016.2606604. DOI: https://doi.org/10.1109/TIA.2016.2606604

M. A. Rezaei, K.-J. Lee, and A. Q. Huang, “A high efficiency flyback micro-inverter with a new adaptive snubber for photovoltaic applications,” 2015 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2015. doi: 10.1109/ecce.2015.7310126. DOI: https://doi.org/10.1109/ECCE.2015.7310126

B. Wang, L. Xian, V. R. K. Kanamarlapudi, K. J. Tseng, A. Ukil, and H. B. Gooi, “A Digital Method of Power-Sharing and Cross-Regulation Suppression for Single-Inductor Multiple-Input Multiple-Output DC–DC Converter,” IEEE Trans. Ind. Electron., vol. 64, no. 4, pp. 2836–2847, 2017, doi: 10.1109/tie.2016.2631438. DOI: https://doi.org/10.1109/TIE.2016.2631438

H. Hu, S. Harb, N. Kutkut, I. Batarseh, and Z. J. Shen, “A Review of Power Decoupling Techniques for Microinverters With Three Different Decoupling Capacitor Locations in PV Systems,” IEEE Trans. Power Electron., vol. 28, no. 6, pp. 2711–2726, 2013, doi: 10.1109/tpel.2012.2221482. DOI: https://doi.org/10.1109/TPEL.2012.2221482

Q. Li and P. Wolfs, “A Review of the Single Phase Photovoltaic Module Integrated Converter Topologies With Three Different DC Link Configurations,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1320–1333, 2008, doi: 10.1109/tpel.2008.920883. DOI: https://doi.org/10.1109/TPEL.2008.920883

V. A. K. Prabhala, P. Fajri, V. S. P. Gouribhatla, B. P. Baddipadiga, and M. Ferdowsi, “A DC–DC Converter With High Voltage Gain and Two Input Boost Stages,” IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4206–4215, 2016, doi: 10.1109/tpel.2015.2476377. DOI: https://doi.org/10.1109/TPEL.2015.2476377

R. Gules, J. De Pellegrin Pacheco, H. L. Hey, and J. Imhoff, “A Maximum Power Point Tracking System With Parallel Connection for PV Stand-Alone Applications,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2674–2683, 2008, doi: 10.1109/tie.2008.924033. DOI: https://doi.org/10.1109/TIE.2008.924033

F. Akar, Y. Tavlasoglu, E. Ugur, B. Vural, and I. Aksoy, “A Bidirectional Nonisolated Multi-Input DC–DC Converter for Hybrid Energy Storage Systems in Electric Vehicles,” IEEE Trans. Veh. Technol., vol. 65, no. 10, pp. 7944–7955, 2016, doi: 10.1109/tvt.2015.2500683. DOI: https://doi.org/10.1109/TVT.2015.2500683

J. Qi and D. D.-C. Lu, “A Preventive Approach for Solving Battery Imbalance Issue by Using a Bidirectional Multiple-Input Ćuk Converter Working in DCVM,” IEEE Trans. Ind. Electron., vol. 64, no. 10, pp. 7780–7789, 2017, doi: 10.1109/tie.2017.2696497. DOI: https://doi.org/10.1109/TIE.2017.2696497

E. Babaei, K. Varesi, and N. Vosoughi, “Calculation of critical inductance in n ‐input buck dc–dc converter,” IET Power Electron., vol. 9, no. 12, pp. 2434–2444, Oct. 2016, doi: 10.1049/iet-pel.2016.0104. DOI: https://doi.org/10.1049/iet-pel.2016.0104

S. Hou, J. Chen, T. Sun, and X. Bi, “Multi-input Step-Up Converters Based on the Switched-Diode-Capacitor Voltage Accumulator,” IEEE Trans. Power Electron., vol. 31, no. 1, pp. 381–393, 2016, doi: 10.1109/tpel.2015.2399853. DOI: https://doi.org/10.1109/TPEL.2015.2399853

F. Kardan, R. Alizadeh, and M. R. Banaei, “A New Three Input DC/DC Converter for Hybrid PV/FC/Battery Applications,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 5, no. 4, pp. 1771–1778, 2017, doi: 10.1109/JESTPE.2017.2731816. DOI: https://doi.org/10.1109/JESTPE.2017.2731816

H. Ardi, A. Ajami, and M. Sabahi, “Analysis and implementation of a novel three input DC‐DC boost converter for sustainable energy applications,” Int. Trans. Electr. Energy Syst., vol. 29, no. 4, p. e2801, 2019, doi: 10.1002/etep.2801. DOI: https://doi.org/10.1002/etep.2801

R. R. Ahrabi, H. Ardi, M. Elmi, and A. Ajami, “A Novel Step-Up Multiinput DC–DC Converter for Hybrid Electric Vehicles Application,” IEEE Trans. Power Electron., vol. 32, no. 5, pp. 3549–3561, 2017, doi: 10.1109/tpel.2016.2585044. DOI: https://doi.org/10.1109/TPEL.2016.2585044

K. Varesi, S. H. Hosseini, M. Sabahi, and E. Babaei, “Performance analysis and calculation of critical inductance and output voltage ripple of a simple non-isolated multi-input bidirectional DC-DC converter,” Int. J. Circuit Theory Appl., vol. 46, no. 3, pp. 543–564, 2017, doi: 10.1002/cta.2392. DOI: https://doi.org/10.1002/cta.2392

Y. Cao and J. A. Abu Qahouq, “Evaluation of bi‐directional single‐inductor multi‐input battery system with state‐of‐charge balancing control,” IET Power Electron., vol. 11, no. 13, pp. 2140–2150, 2018, doi: 10.1049/iet-pel.2018.5474. DOI: https://doi.org/10.1049/iet-pel.2018.5474

T. Kim and S. Kwak, “Single pole switch leg based multi‐port converter with an energy storage,” IET Power Electron., vol. 9, no. 6, pp. 1322–1330, 2016, doi: 10.1049/iet-pel.2015.0578. DOI: https://doi.org/10.1049/iet-pel.2015.0578

P. Prabhakaran and V. Agarwal, “Novel Four-Port DC–DC Converter for Interfacing Solar PV–Fuel Cell Hybrid Sources With Low-Voltage Bipolar DC Microgrids,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 8, no. 2, pp. 1330–1340, 2020, doi: 10.1109/jestpe.2018.2885613. DOI: https://doi.org/10.1109/JESTPE.2018.2885613

S. Athikkal, K. Sundaramoorthy, and A. Sankar, “Development and performance analysis of dual-input DC-DC converters for DC microgrid application,” IEEJ Trans. Electr. Electron. Eng., vol. 13, no. 7, pp. 1034–1043, 2018, doi: 10.1002/tee.22661. DOI: https://doi.org/10.1002/tee.22661

S. Arun, T. P. Imthias Ahamed, and Z. V. Lakaparampil, “A SEPIC-based three-port converter system using a mode-specific power flow management control for solar energy harvesting,” Renew. Energy Focus, vol. 44, pp. 56–74, Mar. 2023, doi: 10.1016/j.ref.2022.09.009. DOI: https://doi.org/10.1016/j.ref.2022.09.009

C. L. Shen, L. Z. Chen, G. Y. Chen, and C. M. Yang, “Multi-Port Multi-Directional Converter with Multi-Mode Operation and Leakage Energy Recycling for Green Energy Processing,” Energies, vol. 15, no. 15, 2022, doi: 10.3390/en15155629. DOI: https://doi.org/10.3390/en15155629

Y. Wu and R.-R. Hong, “Multi-Functional Isolated Three-Port Bidirectional DC/DC Converter for Photovoltaic Systems,” Sustainability, vol. 14, no. 18, p. 11169, Sep. 2022, doi: 10.3390/su141811169. DOI: https://doi.org/10.3390/su141811169

P. Rajan and S. Jeevananthan, “A new partially isolated hybrid output of multiport multilevel converter for photovoltaic based power supplies,” J. Energy Storage, vol. 45, no. November 2021, p. 103436, 2022, doi: 10.1016/j.est.2021.103436. DOI: https://doi.org/10.1016/j.est.2021.103436

A. Elmakawi and K. Bayındır, “A High-Gain Non-Isolated Three-Port Converter for Building-Integrated PV Systems,” Electronics, vol. 11, no. 3, 2022, doi: 10.3390/electronics11030387. DOI: https://doi.org/10.3390/electronics11030387

S. Sankarananth and P. Sivaraman, “Performance enhancement of multi-port bidirectional DC-DC converter using resilient backpropagation neural network method,” Sustain. Comput. Informatics Syst., vol. 36, no. April, p. 100783, 2022, doi: 10.1016/j.suscom.2022.100783. DOI: https://doi.org/10.1016/j.suscom.2022.100783

L. Senapati, M. M. Garg, A. K. Panda, and R. K. Lenka, “Topology synthesis and control of integrated three-port converter for renewable energy system,” Comput. Electr. Eng., vol. 101, no. April, p. 107996, 2022, doi: 10.1016/j.compeleceng.2022.107996. DOI: https://doi.org/10.1016/j.compeleceng.2022.107996

S. Arun, T. P. Imthias Ahamed, Z. V. Lakaparampil, and A. Joseph, “An autonomous solar PV system using boost TPC for energy harvesting with mode-based power flow management control,” Sustain. Energy Technol. Assessments, vol. 53, no. PB, p. 102528, Oct. 2022, doi: 10.1016/j.seta.2022.102528. DOI: https://doi.org/10.1016/j.seta.2022.102528

P. Xu et al., “Nonisolated switching-capacitor-integrated three- port converters with seamless PWM/PFM modulation,” Sol. Energy, vol. 224, no. December 2020, pp. 160–174, 2021, doi: 10.1016/j.solener.2021.04.023. DOI: https://doi.org/10.1016/j.solener.2021.04.023

B. Chandrasekar et al., “Non-Isolated High-Gain Triple Port DC-DC Buck-Boost Converter with Positive Output Voltage for Photovoltaic Applications,” IEEE Access, vol. 8, pp. 113649–113666, 2020, doi: 10.1109/ACCESS.2020.3003192. DOI: https://doi.org/10.1109/ACCESS.2020.3003192

S. R. Khasim, C. Dhanamjayulu, and S. M. Muyeen, “A Single Inductor Multi-Port Power Converter for Electric Vehicle Applications,” IEEE Access, vol. 11, no. December 2022, pp. 3367–3385, 2023, doi: 10.1109/ACCESS.2023.3234105. DOI: https://doi.org/10.1109/ACCESS.2023.3234105

W. Yi et al., “Analysis and implementation of multi-port bidirectional converter for hybrid energy systems,” Energy Reports, vol. 8, pp. 1538–1549, 2022, doi: 10.1016/j.egyr.2021.12.068. DOI: https://doi.org/10.1016/j.egyr.2021.12.068

A. E B, B. Mathew Jos, K. Boby, and M. Gibi, “Multiple output high gain DC-DC converter,” Mater. Today Proc., vol. 58, pp. 540–546, 2022, doi: 10.1016/j.matpr.2022.03.060. DOI: https://doi.org/10.1016/j.matpr.2022.03.060

P. Ramesh, P. Kumar Gouda, A. Rameshbabu, G. Ramanathan, and C. Bharatiraja, “An isolated multi-port bidirectional DC-DC converter for EV applications,” Mater. Today Proc., vol. 68, pp. 1853–1859, 2022, doi: 10.1016/j.matpr.2022.08.047. DOI: https://doi.org/10.1016/j.matpr.2022.08.047

R. K. Shaik and C. Dhanamjayulu, “Synthesis and Implementation of a Multiport Dual Input-Dual Output Converter for Electric Vehicle Applications,” Int. Trans. Electr. Energy Syst., vol. 2022, 2022, doi: 10.1155/2022/9279475. DOI: https://doi.org/10.1155/2022/9279475

M. M. Savrun, M. İnci, and M. Büyük, “Design and analysis of a high energy efficient multi-port dc-dc converter interface for fuel cell/battery electric vehicle-to-home (V2H) system,” J. Energy Storage, vol. 45, no. November 2021, 2022, doi: 10.1016/j.est.2021.103755. DOI: https://doi.org/10.1016/j.est.2021.103755

M. Dhananjaya, D. Potnuru, P. Manoharan, and H. H. Alhelou, “Design and Implementation of Single-Input-Multi-Output DC-DC Converter Topology for Auxiliary Power Modules of Electric Vehicle,” IEEE Access, vol. 10, no. July, pp. 76975–76989, 2022, doi: 10.1109/ACCESS.2022.3192738. DOI: https://doi.org/10.1109/ACCESS.2022.3192738

H. Moradisizkoohi, N. Elsayad, and O. A. Mohammed, “An Integrated Interleaved Ultrahigh Step-Up DC-DC Converter Using Dual Cross-Coupled Inductors with Built-In Input Current Balancing for Electric Vehicles,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 8, no. 1, pp. 644–657, 2020, doi: 10.1109/JESTPE.2019.2943301. DOI: https://doi.org/10.1109/JESTPE.2019.2943301

M. M. Savrun and A. Atay, “Multiport bidirectional DC-DC converter for PV powered electric vehicle equipped with battery and supercapacitor,” IET Power Electron., vol. 13, no. 17, pp. 3931–3939, 2020, doi: 10.1049/iet-pel.2020.0759. DOI: https://doi.org/10.1049/iet-pel.2020.0759

S. Kurm and V. Agarwal, “Novel Dual Active Bridge Based Multi Port Converter for Interfacing Hybrid Energy Storage Systems in Electric Vehicles,” 2019 IEEE Transp. Electrif. Conf. ITEC-India 2019, no. d, 2019, doi: 10.1109/ITEC-India48457.2019.ITECIndia2019-223. DOI: https://doi.org/10.1109/ITEC-India48457.2019.ITECINDIA2019-223

A. Vettuparambil, P. Raveendran Nair Prasannakumari, W. Alharbi, A. S. B. Humayd, and A. B. Awan, “Buck-Boost-Integrated, Dual-Active Bridge-Based Four-Port Interface for Hybrid Energy Systems,” Sustain., vol. 14, no. 23, 2022, doi: 10.3390/su142315555. DOI: https://doi.org/10.3390/su142315555

D. A. Cantane et al., “FBM-CSoC Control and Management System for Multi-Port Converter Applied in Hybrid Energy Storage System Used in Microgrid,” Energies, vol. 15, no. 16, 2022, doi: 10.3390/en15165923. DOI: https://doi.org/10.3390/en15165923

J. Wang, K. Sun, C. Xue, T. Liu, and Y. Li, “Multi-Port DC-AC Converter with Differential Power Processing DC-DC Converter and Flexible Power Control for Battery ESS Integrated PV Systems,” IEEE Trans. Ind. Electron., vol. 69, no. 5, pp. 4879–4889, 2022, doi: 10.1109/TIE.2021.3080198. DOI: https://doi.org/10.1109/TIE.2021.3080198

B. R. Ravada, N. R. Tummuru, and B. N. L. Ande, “Photovoltaic-wind and hybrid energy storage integrated multi-source converter configuration for DC microgrid applications,” IEEE Trans. Sustain. Energy, vol. 12, no. 1, pp. 83–91, 2021, doi: 10.1109/TSTE.2020.2983985. DOI: https://doi.org/10.1109/TSTE.2020.2983985

P. Rajan and S. Jeevananthan, “An adjustable gain three port converter for battery and grid integration in remote location microgrid systems,” Renew. Energy, vol. 179, pp. 1404–1423, 2021, doi: 10.1016/j.renene.2021.07.110. DOI: https://doi.org/10.1016/j.renene.2021.07.110

T. Chaudhury and D. Kastha, “A High Gain Multiport DC-DC Converter for Integrating Energy Storage Devices to DC Microgrid,” IEEE Trans. Power Electron., vol. 35, no. 10, pp. 10501–10514, 2020, doi: 10.1109/TPEL.2020.2977909. DOI: https://doi.org/10.1109/TPEL.2020.2977909

B. Zhu, H. Hu, H. Wang, and Y. Li, “A Multi-Input-Port Bidirectional DC / DC Converter System Applications,” Energies, vol. 13, 2020. DOI: https://doi.org/10.3390/en13112810

L. B. Chilakapati and T. G. Manohar, “Power Quality Enhancement in a Grid-Integrated Solar-PV System with a Hybrid UPQC Control Strategy,” Sol. Energy Sustain. Dev. J., vol. 13, no. 2, pp. 120–137, Aug. 2024, doi: 10.51646/jsesd.v13i2.220. DOI: https://doi.org/10.51646/jsesd.v13i2.220

A. Nouh, A. Almalih, M. Faraj, A. Almalih, and F. Mohamed, “Hybrid of Meta-Heuristic Techniques Based on Cuckoo Search and Particle Swarm Optimizations for Solar PV Systems Subjected to Partially Shaded Conditions,” Sol. Energy Sustain. Dev. J., vol. 13, no. 1, pp. 114–132, Mar. 2024, doi: 10.51646/jsesd.v13i1.178. DOI: https://doi.org/10.51646/jsesd.v13i1.178

M. M. Rahman and J. Pearce, “Modular Open Source Solar Photovoltaic-Powered DC Nanogrids with Efficient Energy Management System,” Sol. Energy Sustain. Dev. J., vol. 13, no. 1, pp. 22–42, Feb. 2024, doi: 10.51646/jsesd.v13i1.169. DOI: https://doi.org/10.51646/jsesd.v13i1.169

L. Rtemi, W. El-Osta, and A. Attaiep, “Hybrid System Modeling for Renewable Energy Sources,” Sol. Energy Sustain. Dev. J., vol. 12, no. 1, pp. 13–28, Jul. 2023, doi: 10.51646/jsesd.v12i1.146. DOI: https://doi.org/10.51646/jsesd.v12i1.146

M. M G Almihat and M. MTE Kahn, “Design and implementation of Hybrid Renewable energy (PV/Wind/Diesel/Battery) Microgrids for rural areas.,” Sol. Energy Sustain. Dev. J., vol. 12, no. 1, pp. 71–95, Aug. 2023, doi: 10.51646/jsesd.v12i1.151. DOI: https://doi.org/10.51646/jsesd.v12i1.151

B. Lennartson and B. Kristiansson, “Robust and optimal tuning of PI and PID controllers,” IEE Proc. - Control Theory Appl., vol. 149, no. 1, pp. 17–25, Jan. 2002, doi: 10.1049/ip-cta:20020088. DOI: https://doi.org/10.1049/ip-cta:20020088

V. Repecho, J. M. Olm, R. Grino, A. Doria-Cerezo, and E. Fossas, “Modelling and Nonlinear Control of a Magnetically Coupled Multiport DC-DC Converter for Automotive Applications,” IEEE Access, vol. 9, pp. 63345–63355, 2021, doi: 10.1109/ACCESS.2021.3074696. DOI: https://doi.org/10.1109/ACCESS.2021.3074696

D Dhana Prasad and R Ramprasanth, “Modeling and Control of a Multiport Converter based EV Charging Station with PV and Battery,” Int. J. Mod. Trends Sci. Technol., vol. 7, no. 03, pp. 95–100, Apr. 2021, doi: 10.46501/IJMTST0703017. DOI: https://doi.org/10.46501/IJMTST0703017

S. Sakamoto and M. Shoyama, “Configuration and control method of bi-directional multiport converter for DC power supply system,” INTELEC, Int. Telecommun. Energy Conf., vol. 2018-October, 2018, doi: 10.1109/INTLEC.2018.8612428. DOI: https://doi.org/10.1109/INTLEC.2018.8612428

G. Bergna-Diaz, S. Sanchez, and E. Tedeschi, “Port-Hamiltonian modelling of Modular Multilevel Converters with fixed equilibrium point,” in 2017 Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER), 2017, pp. 1–12. doi: 10.1109/EVER.2017.7935911. DOI: https://doi.org/10.1109/EVER.2017.7935911

K. Tomas-Manez, Z. Zhang, and Z. Ouyang, “Multi-port isolated LLC resonant converter for distributed energy generation with energy storage,” in 2017 IEEE Energy Conversion Congress and Exposition (ECCE), 2017, pp. 2219–2226. doi: 10.1109/ECCE.2017.8096434. DOI: https://doi.org/10.1109/ECCE.2017.8096434

H. Nagata and M. Uno, “Multi-port converter integrating two PWM converters for multi-power-source systems,” in 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia), 2017, pp. 1833–1838. doi: 10.1109/IFEEC.2017.7992327. DOI: https://doi.org/10.1109/IFEEC.2017.7992327

Downloads

Published

2024-09-08

How to Cite

Mahmoud , A. . ., Ahmed , M., & Hafez , A. . (2024). Multi-Port Converters for Interfacing Renewable Energy Sources: : State-of-the-Art. Solar Energy and Sustainable Development Journal, 13(2), 230–253. https://doi.org/10.51646/jsesd.v13i2.246

Issue

Section

Articles