A New Advanced Strategy for Controlling the Charging and Discharging of a Storage Unit in a Microgrid Using a Finite Control Set Predictive Model

Authors

  • Abdelaziz Youssfi Engineering and Applied Physics Research Team (EAP), High School of Technologies, Sultan Moulay Slimane University, Beni Mellal, Morocco.
  • Youssef Ait El Kadi Engineering and Applied Physics Research Team (EAP), High School of Technologies, Sultan Moulay Slimane University, Beni Mellal, Morocco.

DOI:

https://doi.org/10.51646/jsesd.v14iSI_MSMS2E.404

Keywords:

Finite control set model predictive control, FCS-MPC, Advanced Control, Bidirectional DC-DC Converters, Microgrid, Control and Optimization, storage Units, Renewable Energy.

Abstract

Storage units are critical in microgrids to ensure stable operation, making optimal and robust control during charging and discharging essential. In this work, we propose a novel finite control set model predictive control (FCS-MPC) strategy to manage the charging and discharging of a battery in a DC microgrid powered by renewable energy. Unlike traditional Proportional-Integral (PI) controllers, the FCS-MPC approach optimizes control actions in real-time, considering system constraints and providing enhanced dynamic response. This work demonstrates the superiority of FCS-MPC in controlling a bi-directional DC/DC converter under various test scenarios, ensuring continuous power supply to a 15W DC load. Simulations in Matlab/Simulink validate the proposal, showing that the FCS-MPC delivers higher efficiency and better performance compared to the PI controller.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

M. Asif and T. Muneer, “Energy supply, its demand and security issues for developed and emerging economies,” Renewable and Sustainable Energy Reviews, vol. 11, no. 7, pp. 1388–1413, Sep. 2007, doi: 10.1016/J.RSER.2005.12.004. DOI: https://doi.org/10.1016/j.rser.2005.12.004

A. M. Omer, “Energy, environment and sustainable development,” Renewable and Sustainable Energy Reviews, vol. 12, no. 9, pp. 2265–2300, Dec. 2008, doi: 10.1016/J.RSER.2007.05.001. DOI: https://doi.org/10.1016/j.rser.2007.05.001

D. Sivaraman, S. Pacca, K. Mueller, and J. Lin, “Comparative Energy, Environmental, and Economic Analysis of Traditional and E-commerce DVD Rental Networks,” J Ind Ecol, vol. 11, no. 3, pp. 77–91, Jul. 2007, doi: 10.1162/JIEC.2007.1240. DOI: https://doi.org/10.1162/jiec.2007.1240

F. Evrendilek and C. Ertekin, “Assessing the potential of renewable energy sources in Turkey,” Renew Energy, vol. 28, no. 15, pp. 2303–2315, Dec. 2003, doi: 10.1016/S0960-1481(03)00138-1. DOI: https://doi.org/10.1016/S0960-1481(03)00138-1

“Property and the Law in Energy and Natural Resources - Google Livres.” Accessed: Jan. 19, 2024. [Online]. Available: https://books.google.co.ma/books?hl=fr&lr=&id=QiNr05MoHHMC&oi=fnd&pg=PR5&dq=natural+energy+resources&ots=VkGR3Q_Nqk&sig=wl1O9u6WyYnvC5yVIB27QCItxPA&redir_esc=y#v=onepage&q=natural%20energy%20resources&f=false

Y. A. El Kadi, Y. Lakhal, and F. Z. Baghli, “Compensation of the harmonic pollution by photovoltaic systems under variable solar radiation,” Proceedings of 2019 International Conference of Computer Science and Renewable Energies, ICCSRE 2019, Jul. 2019, doi: 10.1109/ICCSRE.2019.8807541. DOI: https://doi.org/10.1109/ICCSRE.2019.8807541

A. Youssfi, A. Alioui, and Y. A. El Kadi, “Study, simulation and realization of a fuzzy logic-based MPPT controller in an isolated DC microgrid,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 34, no. 3, pp. 1420–1433, Jun. 2024, doi: 10.11591/IJEECS.V34.I3.PP1420-1433. DOI: https://doi.org/10.11591/ijeecs.v34.i3.pp1420-1433

H. Ibrahim, A. Ilinca, and J. Perron, “Energy storage systems—Characteristics and comparisons,” Renewable and Sustainable Energy Reviews, vol. 12, no. 5, pp. 1221–1250, Jun. 2008, doi: 10.1016/J.RSER.2007.01.023. DOI: https://doi.org/10.1016/j.rser.2007.01.023

S. M. Dawoud, X. Lin, and M. I. Okba, “Hybrid renewable microgrid optimization techniques: A review,” Renewable and Sustainable Energy Reviews, vol. 82, pp. 2039–2052, Feb. 2018, doi: 10.1016/J.RSER.2017.08.007. DOI: https://doi.org/10.1016/j.rser.2017.08.007

S. Silvestre, A. Chouder, and E. Karatepe, “Automatic fault detection in grid connected PV systems,” Solar Energy, vol. 94, pp. 119–127, Aug. 2013, doi: 10.1016/J.SOLENER.2013.05.001. DOI: https://doi.org/10.1016/j.solener.2013.05.001

E. Román, R. Alonso, P. Ibañez, S. Elorduizapatarietxe, and D. Goitia, “Intelligent PV module for grid-connected PV systems,” IEEE Transactions on Industrial Electronics, vol. 53, no. 4, pp. 1066–1073, Jun. 2006, doi: 10.1109/TIE.2006.878327. DOI: https://doi.org/10.1109/TIE.2006.878327

M. A. Eltawil and Z. Zhao, “Grid-connected photovoltaic power systems: Technical and potential problems—A review,” Renewable and Sustainable Energy Reviews, vol. 14, no. 1, pp. 112–129, Jan. 2010, doi: 10.1016/J.RSER.2009.07.015. DOI: https://doi.org/10.1016/j.rser.2009.07.015

Y. A. El Kadi, F. Z. Baghli, and Y. Lakhal, “Energy quality optimization in smart grids Faults monitoring by the space vector signature analysis method,” 6th International Conference on Optimization and Applications, ICOA 2020 - Proceedings, Apr. 2020, doi: 10.1109/ICOA49421.2020.9094451. DOI: https://doi.org/10.1109/ICOA49421.2020.9094451

A. Youssfi, Y. Ait, and E. Kadi, “Improving power sharing and enhancing the stability of an isolated AC microgrid by implementing droop control and virtual impedance,” E3S Web of Conferences, vol. 582, p. 01001, Oct. 2024, doi: 10.1051/E3SCONF/202458201001. DOI: https://doi.org/10.1051/e3sconf/202458201001

S. Beheshtaein, R. M. Cuzner, M. Forouzesh, M. Savaghebi, and J. M. Guerrero, “DC Microgrid Protection: A Comprehensive Review,” IEEE J Emerg Sel Top Power Electron, pp. 1–1, Mar. 2019, doi: 10.1109/JESTPE.2019.2904588. DOI: https://doi.org/10.1109/JESTPE.2019.2904588

N. M. L. Tan, T. Abe, and H. Akagi, “Design and performance of a bidirectional isolated DC-DC converter for a battery energy storage system,” IEEE Trans Power Electron, vol. 27, no. 3, pp. 1237–1248, 2012, doi: 10.1109/TPEL.2011.2108317. DOI: https://doi.org/10.1109/TPEL.2011.2108317

Q. Xu, N. Vafamand, L. Chen, T. Dragicevic, L. Xie, and F. Blaabjerg, “Review on Advanced Control Technologies for Bidirectional DC/DC Converters in DC Microgrids,” IEEE J Emerg Sel Top Power Electron, vol. 9, no. 2, pp. 1205–1221, Apr. 2021, doi: 10.1109/JESTPE.2020.2978064. DOI: https://doi.org/10.1109/JESTPE.2020.2978064

L. Magni and R. Scattolini, “Robustness and robust design of MPC for nonlinear discrete-time systems,” Lecture Notes in Control and Information Sciences, vol. 358, no. 1, pp. 239–254, 2007, doi: 10.1007/978-3-540-72699-9_19/COVER. DOI: https://doi.org/10.1007/978-3-540-72699-9_19

M. L. Darby and M. Nikolaou, “MPC: Current practice and challenges,” Control Eng Pract, vol. 20, no. 4, pp. 328–342, Apr. 2012, doi: 10.1016/J.CONENGPRAC.2011.12.004. DOI: https://doi.org/10.1016/j.conengprac.2011.12.004

M. R. Basir Khan, J. Pasupuleti, J. Al-Fattah, and M. Tahmasebi, “Energy management system for PV-battery microgrid based on model predictive control,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 15, no. 1, pp. 20–26, Jul. 2019, doi: 10.11591/IJEECS.V15.I1.PP20-26. DOI: https://doi.org/10.11591/ijeecs.v15.i1.pp20-26

H. Farsizadeh, M. Gheisarnejad, M. Mosayebi, M. Rafiei, and M. H. Khooban, “An Intelligent and Fast Controller for DC/DC Converter Feeding CPL in a DC Microgrid,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 6, pp. 1104–1108, Jun. 2020, doi: 10.1109/TCSII.2019.2928814. DOI: https://doi.org/10.1109/TCSII.2019.2928814

R. Das and M. A. Uddinchowdhury, “PI controlled Bi-directional DC-DC converter (BDDDC) and highly efficient boost converter for electric vehicles,” 2016 3rd International Conference on Electrical Engineering and Information and Communication Technology, iCEEiCT 2016, Mar. 2017, doi: 10.1109/CEEICT.2016.7873094. DOI: https://doi.org/10.1109/CEEICT.2016.7873094

R. Das, H. Rashid, and I. U. Ahmed, “A comparative analysis of PI and PID controlled bidirectional DC-DC converter with conventional bidirectional DC-DC converter,” 3rd International Conference on Electrical Information and Communication Technology, EICT 2017, vol. 2018-January, pp. 1–6, Jul. 2017, doi: 10.1109/EICT.2017.8275149. DOI: https://doi.org/10.1109/EICT.2017.8275149

A. Youssfi, Y. Hakam, and Y. A. El Kadi, “Comparative Study of Proportional–Integral, Fuzzy Logic, and Neural Fuzzy Logic Controllers for Boost Converter,” Advances in Science, Technology and Innovation, pp. 33–39, 2024, doi: 10.1007/978-3-031-51796-9_4. DOI: https://doi.org/10.1007/978-3-031-51796-9_4

R. Ling, D. Maksimovic, and R. Leyva, “Second-order sliding-mode controlled synchronous buck DC-DC converter,” IEEE Trans Power Electron, vol. 31, no. 3, pp. 2539–2549, Mar. 2016, doi: 10.1109/TPEL.2015.2431193. DOI: https://doi.org/10.1109/TPEL.2015.2431193

S. C. Tan, Y. M. Lai, and C. K. Tse, “General design issues of sliding-mode controllers in DC-DC converters,” IEEE Transactions on Industrial Electronics, vol. 55, no. 3, pp. 1160–1174, Mar. 2008, doi: 10.1109/TIE.2007.909058. DOI: https://doi.org/10.1109/TIE.2007.909058

P. Warrier, P. Shah, and R. Sekhar, “A Comparative performance evaluation of a complex-order PI controller for DC–DC converters,” Results in Control and Optimization, vol. 15, p. 100414, Jun. 2024, doi: 10.1016/J.RICO.2024.100414. DOI: https://doi.org/10.1016/j.rico.2024.100414

U. A. Shaikh, M. K. AlGhamdi, and H. A. AlZaher, “Novel product ANFIS-PID hybrid controller for buck converters,” The Journal of Engineering, vol. 2018, no. 8, pp. 730–734, Aug. 2018, doi: 10.1049/JOE.2018.0113. DOI: https://doi.org/10.1049/joe.2018.0113

A. Ademola-Idowu and B. Zhang, “Frequency Stability Using MPC-Based Inverter Power Control in Low-Inertia Power Systems,” IEEE Transactions on Power Systems, vol. 36, no. 2, pp. 1628–1637, Mar. 2021, doi: 10.1109/TPWRS.2020.3019998. DOI: https://doi.org/10.1109/TPWRS.2020.3019998

B. Talbi, F. Krim, A. Laib, A. Sahli, and A. Krama, “PI-MPC Switching Control for DC-DC Boost Converter using an Adaptive Sliding Mode Observer,” 2020 International Conference on Electrical Engineering, ICEE 2020, Sep. 2020, doi: 10.1109/ICEE49691.2020.9249934. DOI: https://doi.org/10.1109/ICEE49691.2020.9249934

F. A. Villarroel et al., “Stable Shortest Horizon FCS-MPC Output Voltage Control in Non-Minimum Phase Boost-Type Converters Based on Input-State Linearization,” IEEE Transactions on Energy Conversion, vol. 36, no. 2, pp. 1378–1391, Jun. 2021, doi: 10.1109/TEC.2021.3055733. DOI: https://doi.org/10.1109/TEC.2021.3055733

Z. Yi et al., “Finite-Control-Set Model Predictive Control (FCS-MPC) for Islanded Hybrid Microgrids,” IEEE Power and Energy Society General Meeting, vol. 2018-August, Dec. 2018, doi: 10.1109/PESGM.2018.8586292. DOI: https://doi.org/10.1109/PESGM.2018.8586292

R. H. G. Tan and L. Y. H. Hoo, “DC-DC converter modeling and simulation using state space approach,” 2015 IEEE Conference on Energy Conversion, CENCON 2015, pp. 42–47, 2015, doi: 10.1109/CENCON.2015.7409511. DOI: https://doi.org/10.1109/CENCON.2015.7409511

L. S. Yang and T. J. Liang, “Analysis and implementation of a novel bidirectional DC-DC converter,” IEEE Transactions on Industrial Electronics, vol. 59, no. 1, pp. 422–434, Jan. 2012, doi: 10.1109/TIE.2011.2134060. DOI: https://doi.org/10.1109/TIE.2011.2134060

J. Brian Froisy, “Model predictive control: Past, present and future,” ISA Trans, vol. 33, no. 3, pp. 235–243, Sep. 1994, doi: 10.1016/0019-0578(94)90095-7. DOI: https://doi.org/10.1016/0019-0578(94)90095-7

Downloads

Published

2024-12-27

How to Cite

Youssfi, A. ., & Youssef El Kadi, Y. . (2024). A New Advanced Strategy for Controlling the Charging and Discharging of a Storage Unit in a Microgrid Using a Finite Control Set Predictive Model. Solar Energy and Sustainable Development Journal, 14(SI_MSMS2E), 38–52. https://doi.org/10.51646/jsesd.v14iSI_MSMS2E.404