Solar Hydrogen System Configuration Using Genetic Algorithms
DOI:
https://doi.org/10.51646/jsesd.v1i1.103الكلمات المفتاحية:
Hydrogen ، Modelling ، Photovoltaics ، electrolyser ، genetic algorithmsالملخص
For standalone power supply systems based on solar hydrogen technology to work efficiently, the photovoltaic generator and electrolyser stack have to be configured so that they produce the needed amount of hydrogen in order for the fuel cell to produce sufficient power to operate the load. This paper discusses how genetic algorithms were applied to optimise the design of the photovoltaic generator and electrolyser combination by searching for the best configuration in terms of number parallel and series PV modules, number of electrolyser cells, and cell surface area. First, a mathematical simulation model based on the current-voltage PV characteristics and the polarisation characteristics of the electrolyser was developed. The models parameters were obtained by fitting the mathematical models to experimental data. A genetic algorithm code was then developed. The code is based on the PV and electrolyser models as an evaluation measure for the fitness of the solutions generated. Results are presented confirming the effectiveness of using the genetic algorithm technique for solar hydrogen system configuration.
التنزيلات
المقاييس
المراجع
This paper discusses how genetic algorithms were applied to optimise the design of the photovoltaic generator and electrolyser combination by searching for the best configuration in terms of number parallel and series PV modules, number of electrolyser cells, and cell surface area.
التنزيلات
منشور
كيفية الاقتباس
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2021 Solar Energy and Sustainable Development Journal
هذا العمل مرخص بموجب Creative Commons Attribution-NonCommercial 4.0 International License.