The Correlation of Palladium Supported Carbon (Pd/C) Loading and Optimum Nafin Ionomer Weight Percent (wt.%) Content in the PEM Fuel Cell Catalyst Layer
DOI:
https://doi.org/10.51646/jsesd.v9i1.15الكلمات المفتاحية:
PEM fuel cells، catalyst layer Performance، Nafin Ionomer، Polarization Curve، Renewable Energyالملخص
وجود النافيون كعنصر أساسي من ضمن العناصر المكونة لطبقة الحافز في خلية الوقود ذات الغشاء البروتوني المبادل يؤدي الى اتساع مناطق اطوار الاتصال الثلاثة بين الغازات المتفاعلة والالكتروليت الصلب وسطح المحفز ويجعل طبقة الحافز أكثر نشاطا في ثلاثة ابعاد مما يمنح الايونات حرية الحركة خلال طبقة الحافز يؤدي بدوره الى تحسن أداء خلية الوقود ذات الغشاء البروتوني. ان الهدف الرئيسي من هذه الدراسة يتمحور في اختبار مدى اعتماد انسب كمية من النافيون على كتلة الحافز المتكون من عنصر البلاديوم المدعم بالكربون.
أظهرت نتائج هذه الدراسة أن القيمة المثلى لكمية النافبون الموجودة في طبقة الحافز تعتمد اعتمادا مباشرا وعلى صورة تناسب عكسي مع كمية الحافز في نفس الطبقة. فعندما تأخذ كمية الحافز المقادير cm2/mg 1.0 ± 0.4 و ± 2.3 ,cm2/mg 1.0 و ,cm2/mg 05.0 ± 45.2 فان النسب المثلى لكمية النافيون داخل طبقة الحافز والتي تمنح الخلية اعلى كفاءه هي 33 و 35 و %.wt 37 على الترتيب.
التنزيلات
المقاييس
المراجع
. S. Litster, and G. McLean: “PEM fuel cell electrodes”, Journal of Power Sources, 130, (1-2), pp.61, 2004.
. S. Gottesfeld, and T. Zawodzinski, “Polymer electrolyte fuel cells”, In Advanced Electrochemical Science and Engineering;
Alkire, R.C. et al. (Eds.), Volume 5, Wiley-VCH, Germany pp. 195, 1997.
. V. Mehta, and. J, S. Cooper: “Review and analysis of PEM fuel cell design and manufacturing”, Journal of Power Sources,
, (1), pp.32, 2003
. M. Eikerling, A. Ioselevich, and. A Kornyshev.: “How good are the electrodes we use in PEFC?” Fuel Cells, 4, (3), pp. 131, 2004.
. Z. Qi, and R. Kaufman: “Low Pt loading high performance cathodes for PEM fuel cells”, Journal of Power Sources, 113, (1), pp. 37, 2003.
. E. Passalacqua, F. Lufrano, G. Squadrito, A. Patti, and L. Giorgi: “Nafin content in the catalyst layer of polymer electrolyte fuel cells: effcts on structure and performance”, Electrochimica Acta, 46, (6), pp. 779, 2001.
. G. Sasikumar, J.W. Ihm, and H. Ryu: “Optimum Nafin content in PEM fuel cell electrodes”, Electrochimica Acta, 50, (2-3), pp. 601, 2004.
. S. J. Lee, S. Mukerjee, J. McBreen, Y.W. Rho, Y.T. Kho, and T.H. Lee: “Effcts of Nafin impregnation on performances of PEMFC electrodes”, Electrochimica Acta, 43, (24), pp. 3693. 1998.
. M.S. McGovern, E.C. Garnett, C. Rice, R.I Masel, and A. Wieckowski: “Effcts of Nafin as a binding agent for unsupported nanoparticle catalysts”, Journal of Power Sources 115, (1), pp. 35. 2003.
. J.M. Song, S.Y. Cha, and. W.M. Lee: “Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method”, Journal of Power Sources, 94, (1), pp. 78, 2001.
. E. Antolini, L. Giorgi, A. Pozio, and E. Passalacqua: “Inflence of Nafin loading in the catalyst layer of gas-diffsion electrodes for PEFC”, Journal of Power Sources 77, (1), pp. 136, 1999.
. Z. Xu, Z. Qi and A. Kaufman: “Advanced fuel cell catalysts”, Electrochemical Solid-State Letters. 6, (9), 2003, p. A171
. E. Bradley Easton, Z. Qi, A. Kaufman and P.G. Pickup: “Chemical modifiation of proton exchange membrane fuel cell catalysts with a sulfonated silane”, Electrochemical Solid-State Letters, 4, (5), 2001, p. A59.
. T. Mittermeier, A. weib, H. A. Gastiger, and F. Hasché, “ Monometallic Palladium for Oxygen Reduction in PEM Fuel Cells: Particle-Size Effct, Reaction Mechanism, and Voltage Cycling Stability”, Journal of Th Electrochemical Society, 164, (12) pp. F1081, 2017.
. X. He, Y. Xia, C. Liang, J. Zhang, H. Huang, Y. Gan, C. Zhao, W. Zhang, “A flxible non-precious metal Fe-N/C catalyst for highly effient oxygen reduction reaction”, Nanotechnology. 30, pp. 1361, 2019.
. N. Guarrotxena, “Smart functional nanoscale-hybrid materials: Surface modifiation and applications”, J. Mater. Sci. Eng. 06 (2017). doi:10.4172/2169-0022.C1.058.
. Y. Wang, J. Roller, R. Maric, Novel flme synthesis of nanostructured α-Fe2O3 electrode as high-performance anode for lithium ion batteries, J. Power Sources. 378, pp. 511, 2018.
. Gisu Doo, Ji Hye Lee, Seongmin Yuk, Sungyu Choi, Dong-Hyun Lee, Dong Wook Lee, Hyun Gyu Kim, Sung Hyun Kwon, Seung Geol Lee, and Hee-Tak Kim: “ Tuning the Ionomer Distribution in the Fuel Cell Catalyst Layer with Scaling the Ionomer Aggregate Size in Dispersion”, ACS Appl. Mater. Interfaces 10, 21, pp. 17835, 2018.
. Nagappan Ramaswamy, Wenbin Gu, Joseph M. Ziegelbauer, and Swami Kumaraguru,” Carbon Support Microstructure Impact on High Current Density Transport Resistances in PEMFC Cathode” Journal of Th Electrochemical Society, (167) pp. 064515, 2020.
. N. Ramaswamy and S. Kumaraguru, “Materials and design selection to improve high current density performance in PEMFC.” ECS Trans., 85, pp. 835 2018.
. F. C. Cetinbas, R. K. Ahluwalia, N. N. Kariuki, and D. J. Myers, “Agglomerates in polymer electrolyte fuel cell electrodes: part I. structural characterization.” J. Electrochem. Soc., 165, pp. F1051, 2018.
. E. Padgett et al., “Mitigation of PEM fuel cell catalyst degradation with porous carbon supports.” J. Electrochem. Soc., 166, pp. F198, 2019.
. T. Morawietz et al., “High-resolution analysis of ionomer loss in catalytic layers aftr operation.” J. Electrochem. Soc., 165, pp. F3139, 2018.
. Y.-C. Park, H. Tokiwa, K. Kakinuma, M. Watanabe, and M. Uchida, “Effcts of carbon supports on Pt distribution, ionomer coverage and cathode performance for polymer electrolyte fuel cells.” J. Power Sources, 315, pp.179 2016.
. E. Padgett et al., “Mitigation of PEM fuel cell catalyst degradation with porous carbon supports.” J. Electrochem. Soc., 166, pp. F198 2019.
. X. Tuaev, S. Rudi, and P. Strasser, “Th impact of the morphology of the carbon support on the activity and stability of nanoparticle fuel cell catalysts.” Catal. Sci. Technol., 6, pp. 8276, 2016.
. F. C. Cetinbas, R. K. Ahluwalia, N. N. Kariuki, and D. J. Myers, “Agglomerates in polymer electrolyte fuel cell electrodes: part I. structural characterization.” J. Electrochem. Soc., 165, pp. F1051, 2018.
. A. Ohma, K. Fushinobu, and K. Okazaki, “Inflence of Nafin® fim on oxygen reduction reaction and hydrogen peroxide formation on Pt electrode for proton exchange membrane fuel cell.” Electrochim. Acta, 55, pp.8829, 2010.
. X. Tuaev, S. Rudi, and P. Strasser, “Th impact of the morphology of the carbon support on the activity and stability of nanoparticle fuel cell catalysts.” Catal. Sci. Technol., 6, pp.8276, 2016.
. H. Iden, T. Mashio, and A. Ohma, “Gas transport inside and outside carbon supports of catalyst layers for PEM fuel cells.” J. Electroanal. Chem., 708, pp.87 2013.
. G. Gadikota, B. Dazas, G. Rother, M. C. Cheshire, and I. C. Bourg, “Hydrophobic solvation of gases (CO2, CH4, H2, noble gases) in clay interlayer nanopores.” J. Phys. Chem. C, 121, pp.26539 ,2017.
. A. Kongkanand and M. F. Mathias, “Th priority and challenge of high-power performance of low-platinum protonexchange membrane fuel cells.” J. Phys. Chem. Lett., 7, pp.1127, 2016.
. A. Z. Weber and A. Kusoglu, “Unexplained transport resistances for low-loaded fuel-cell catalyst layers.” J. Mater. Chem. A, 2, pp.17207, 2014.
. A. Orfanidi, P. Madkikar, H. A. El-Sayed, G. S. Harzer, T. Kratky, and H. A. Gasteiger, “Th key to high performance low Pt loaded electrodes.” J. Electrochem. Soc., 164, pp. F418, 2017.
. O. Gröger, H. A. Gasteiger, and J.-P. Suchsland, “Review—electromobility: batteries or fuel cells?” J. Electrochem. Soc., 162, pp. A2605 ,2015.
. V. Yarlagadda et al., “Boosting fuel cell performance with accessible carbon mesopores.” ACS Energy Lett., 3, pp. 618, 2018.
التنزيلات
منشور
كيفية الاقتباس
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2021 Solar Energy and Sustainable Development Journal
هذا العمل مرخص بموجب Creative Commons Attribution-NonCommercial 4.0 International License.