Modular Open Source Solar Photovoltaic-Powered DC Nanogrids with Efficient Energy Management System
DOI:
https://doi.org/10.51646/jsesd.v13i1.169الكلمات المفتاحية:
Distributed Generation، Energy Management System، DC Nanogrid، Photovoltaic، Solar Energy، Open Source.الملخص
Initially the concept of a DC nanogrid was focused on supplying power to individual homes. Techno-economic advances in photovoltaic (PV) technology have enabled solar PV stand-alone nanogrids to power individual devices using device-specific architectures. To reduce costs and increase accessibility for a wider range of people, a modular open-source system is needed to cover all applications at once. This article introduces a modular PV-powered nanogrid system, consisting of a do it yourself (DIY) PV system with batteries to allow for off-grid power. The resultant open-source modular DC nanogrid can deliver DC power to loads of different voltage levels, which is possible because of the efficient and parametric energy management system (EMS) that selects modes of operation for the grid based on DC bus voltage and state of charge of batteries. Simulation results verify the coordination between the EMS and the PV-battery system under varying PV power generation and load conditions. This EMS has potential to enable easy personalization of a vast area of applications and expand appropriate technology for isolated communities. A thorough stability analysis has been conducted, leading to the development of an LQR (Linear Quadratic Regulator) controller as a replacement for the conventional PI (Proportional - Integral) controllers for better transient stability of the system.
التنزيلات
المقاييس
المراجع
“Take Action for the Sustainable Development Goals - United Nations Sustainable Development.” https://www.un.org/sustainabledevelopment/ sustainable-development-goals/ (accessed Nov. 08, 2022).
“Report: Universal Access to Sustainable Energy Will Remain Elusive Without Addressing Inequalities,” World Bank. https://www.worldbank. org/en/news/press-release/2021/06/07/report-universal-access-to-sustainable-energy-will-remain-elusive-without-addressing-inequalities (accessed Nov. 08, 2022).
J. Ayaburi, M. Bazilian, J. Kincer, and T. Moss, “Measuring ‘Reasonably Reliable’ access to electricity services,” Electr. J., vol. 33, no. 7, p. 106828, Aug. 2020, doi: 10.1016/j.tej.2020.106828. DOI: https://doi.org/10.1016/j.tej.2020.106828
S. Szabó, K. Bódis, T. Huld, and M. Moner-Girona, “Energy solutions in rural Africa: mapping electrification costs of distributed solar and diesel generation versus grid extension*,” Environ. Res. Lett., vol. 6, no. 3, p. 034002, Jul. 2011, doi: 10.1088/1748-9326/6/3/034002. DOI: https://doi.org/10.1088/1748-9326/6/3/034002
D. Palit and K. R. Bandyopadhyay, “Rural electricity access in South Asia: Is grid extension the remedy? A critical review,” Renew. Sustain. Energy Rev., vol. 60, pp. 1505–1515, Jul. 2016, doi: 10.1016/j.rser.2016.03.034. DOI: https://doi.org/10.1016/j.rser.2016.03.034
M. Kintner-Meyer, K. Schneider, and R. Pratt, “Impacts assessment of plug-in hybrid vehicles on electric utilities and regional U.S. power grids part 1: technical analysis,” Pacific Northwest National Laboratory, Richland, WA, Tech. Rep., 2007.
C. F. Yu, W. G. J. H. M. van Sark, and E. A. Alsema, “Unraveling the photovoltaic technology learning curve by incorporation of input price changes and scale effects,” Renew. Sustain. Energy Rev., vol. 15, no. 1, pp. 324–337, Jan. 2011, doi: 10.1016/j.rser.2010.09.001. DOI: https://doi.org/10.1016/j.rser.2010.09.001
A. M. Elshurafa, S. R. Albardi, S. Bigerna, and C. A. Bollino, “Estimating the learning curve of solar PV balance–of–system for over 20 countries: Implications and policy recommendations,” J. Clean. Prod., vol. 196, pp. 122–134, Sep. 2018, doi: 10.1016/j.jclepro.2018.06.016. DOI: https://doi.org/10.1016/j.jclepro.2018.06.016
M. Kamran et al., “Solar Photovoltaic Grid Parity: A Review of Issues, Challenges and Status of Different PV Markets,” Int. J. Renew. Energy Res. IJRER, vol. 9, no. 1, Art. no. 1, Mar. 2019.
A. A. Adesanya and J. M. Pearce, “Economic viability of captive off-grid solar photovoltaic and diesel hybrid energy systems for the Nigerian private sector,” Renew. Sustain. Energy Rev., vol. 114, p. 109348, Oct. 2019, doi: 10.1016/j.rser.2019.109348. DOI: https://doi.org/10.1016/j.rser.2019.109348
A. M. Ershad, F. Ueckerdt, R. C. Pietzcker, A. Giannousakis, and G. Luderer, “A further decline in battery storage costs can pave the way for a solar PV-dominated Indian power system,” Renew. Sustain. Energy Transit., vol. 1, p. 100006, Aug. 2021, doi: 10.1016/j.rset.2021.100006. DOI: https://doi.org/10.1016/j.rset.2021.100006
S. C. Joseph, S. Ashok, and P. R. Dhanesh, “Low voltage direct current(LVDC) nanogrid for home application,” in 2017 IEEE Region 10 Symposium (TENSYMP), Jul. 2017, pp. 1–5. doi: 10.1109/TENCONSpring.2017.8069993. DOI: https://doi.org/10.1109/TENCONSpring.2017.8069993
N. M. Kumar, A. K. Singh, and K. V. K. Reddy, “Fossil Fuel to Solar Power: A Sustainable Technical Design for Street Lighting in Fugar City, Nigeria,” Procedia Comput. Sci., vol. 93, pp. 956–966, Jan. 2016, doi: 10.1016/j.procs.2016.07.284. DOI: https://doi.org/10.1016/j.procs.2016.07.284
P. Primiceri and P. Visconti, “Solar-powered led-based lighting facilities: an overview on recent technologies and embedded IoT devices to obtain wireless control, energy savings and quick maintenance,” vol. 12, no. 1, p. 11, 2017.
M. Dallard, A. Forest, and A. Shabani, “Design of a portable smart connected solar-powered charger for consumer electronics,” in 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), Apr. 2017, pp. 1–4. doi: 10.1109/CCECE.2017.7946781. DOI: https://doi.org/10.1109/CCECE.2017.7946781
A. Verma, B. Singh, A. Chandra, and K. Al-Haddad, “An Implementation of Solar PV Array Based Multifunctional EV Charger,” in 2018 IEEE Transportation Electrification Conference and Expo (ITEC), Jun. 2018, pp. 531–536. doi: 10.1109/ITEC.2018.8450191. DOI: https://doi.org/10.1109/ITEC.2018.8450191
M. R. Qtaishat and F. Banat, “Desalination by solar powered membrane distillation systems,” Desalination, vol. 308, pp. 186–197, Jan. 2013, doi: 10.1016/j.desal.2012.01.021. DOI: https://doi.org/10.1016/j.desal.2012.01.021
S. McCarney, J. Robertson, J. Arnaud, K. Lorenson, and J. Lloyd, “Using solar-powered refrigeration for vaccine storage where other sources of reliable electricity are inadequate or costly,” Vaccine, vol. 31, no. 51, pp. 6050–6057, Dec. 2013, doi: 10.1016/j.vaccine.2013.07.076. DOI: https://doi.org/10.1016/j.vaccine.2013.07.076
I. Daut, M. Adzrie, M. Irwanto, P. Ibrahim, and M. Fitra, “Solar Powered Air Conditioning System,” Energy Procedia, vol. 36, pp. 444–453, Jan. 2013, doi: 10.1016/j.egypro.2013.07.050. DOI: https://doi.org/10.1016/j.egypro.2013.07.050
B. Singh, A. K. Mishra, and R. Kumar, “Solar Powered Water Pumping System Employing Switched Reluctance Motor Drive,” IEEE Trans. Ind. Appl., vol. 52, no. 5, pp. 3949–3957, Sep. 2016, doi: 10.1109/TIA.2016.2564945. DOI: https://doi.org/10.1109/TIA.2016.2564945
A. W. Kiprono and A. I. Llario, Solar pumping for water supply: harnessing solar power in humanitarian and development contexts. Warwickshire, UK: Practical Action Publishing Ltd, 2020. DOI: https://doi.org/10.3362/9781780447810
A. Jahid, Md. S. Hossain, Md. K. H. Monju, Md. F. Rahman, and Md. F. Hossain, “Techno-Economic and Energy Efficiency Analysis of Optimal Power Supply Solutions for Green Cellular Base Stations,” IEEE Access, vol. 8, pp. 43776–43795, 2020, doi: 10.1109/ACCESS.2020.2973130. DOI: https://doi.org/10.1109/ACCESS.2020.2973130
S. Zhong, P. Rakhe, and J. M. Pearce, “Energy Payback Time of a Solar Photovoltaic Powered Waste Plastic Recyclebot System,” Recycling, vol. 2, no. 2, Art. no. 2, Jun. 2017, doi: 10.3390/recycling2020010. DOI: https://doi.org/10.3390/recycling2020010
D. L. King, A. Babasola, J. Rozario, and J. M. Pearce, “Mobile Open-Source Solar-Powered 3-D Printers for Distributed Manufacturing in Off-Grid Communities,” Chall. Sustain., vol. 2, no. 1, Art. no. 1, Oct. 2014, doi: 10.12924/cis2014.02010018. DOI: https://doi.org/10.12924/cis2014.02010018
J. Gwamuri, D. Franco, K. Y. Khan, L. Gauchia, and J. M. Pearce, “High-Efficiency Solar-Powered 3-D Printers for Sustainable Development,” Machines, vol. 4, no. 1, Art. no. 1, Mar. 2016, doi: 10.3390/machines4010003. DOI: https://doi.org/10.3390/machines4010003
L. Grafman and J. M. Pearce, To catch the sun. Humboldt State Press, 2021.
S. Khan and Md. M. Rahman, “Design and Simulation of Solar DC Nano Grid System from Bangladesh Perspective,” in 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI), Jul. 2021, pp. 1–6. doi: 10.1109/ACMI53878.2021.9528159. DOI: https://doi.org/10.1109/ACMI53878.2021.9528159
R. M. Pindoriya, N. M. Pindoriya, and S. Rajendran, “Simulation of DC/DC converter for DC nano-grid integrated with solar PV generation,” in 2015 IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA), Nov. 2015, pp. 1–6. doi: 10.1109/ISGT-Asia.2015.7387065. DOI: https://doi.org/10.1109/ISGT-Asia.2015.7387065
S. Moussa, M. J.-B. Ghorbal, and I. Slama-Belkhodja, “Bus voltage level choice for standalone residential DC nanogrid,” Sustain. Cities Soc., vol. 46, p. 101431, Apr. 2019, doi: 10.1016/j.scs.2019.101431. DOI: https://doi.org/10.1016/j.scs.2019.101431
J. M. Pearce and M. M. Rahman, “Modular Open Source Solar Photovoltaic-Powered DC Nanogrids with Efficient Energy Management System,” Dec. 2022, Accessed: Dec. 27, 2022. [Online]. Available: https://osf.io/sv84n/
“The GNU General Public License v3.0 - GNU Project - Free Software Foundation.” https://www.gnu.org/licenses/gpl-3.0.en.html (accessed Dec. 27, 2022).
J. Arancio, M. Morales Tirado, and J. Pearce, “Equitable Research Capacity Towards the Sustainable Development Goals: The Case for Open Science Hardware,” J. Sci. Policy Gov., vol. 21, no. 02, Dec. 2022, doi: 10.38126/JSPG210202. DOI: https://doi.org/10.38126/JSPG210202
S. Chopra and S. D. Dexter, : The Promise of Free and Open Source Software. New York: Routledge, 2007. doi: 10.4324/9780203942147. DOI: https://doi.org/10.4324/9780203942147
A. J. Buitenhuis and J. M. Pearce, “Open-source development of solar photovoltaic technology,” Energy Sustain. Dev., vol. 16, no. 3, pp. 379–388, Sep. 2012, doi: 10.1016/j.esd.2012.06.006. DOI: https://doi.org/10.1016/j.esd.2012.06.006
J. M. Pearce, “The case for open source appropriate technology,” Environ. Dev. Sustain., vol. 14, no. 3, pp. 425–431, Jun. 2012, doi: 10.1007/s10668-012-9337-9. DOI: https://doi.org/10.1007/s10668-012-9337-9
B. Indu Rani, G. Saravana Ilango, and C. Nagamani, “Control Strategy for Power Flow Management in a PV System Supplying DC Loads,” IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3185–3194, Aug. 2013, doi: 10.1109/TIE.2012.2203772. DOI: https://doi.org/10.1109/TIE.2012.2203772
Y. Zhang, H. J. Jia, and L. Guo, “Energy management strategy of islanded microgrid based on power flow control,” in 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), Jan. 2012, pp. 1–8. doi: 10.1109/ISGT.2012.6175644. DOI: https://doi.org/10.1109/ISGT.2012.6175644
K. Gowtham, C. V. Sivaramadurai, P. Hariprasath, and B. Indurani, “A Management of power flow for DC Microgrid with Solar and Wind Energy Sources,” in 2018 International Conference on Computer Communication and Informatics (ICCCI), Jan. 2018, pp. 1–5. doi: 10.1109/ICCCI.2018.8441324. DOI: https://doi.org/10.1109/ICCCI.2018.8441324
Z. Yi, W. Dong, and A. H. Etemadi, “A Unified Control and Power Management Scheme for PV-Battery-Based Hybrid Microgrids for Both Grid-Connected and Islanded Modes,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 5975–5985, Nov. 2018, doi: 10.1109/TSG.2017.2700332. DOI: https://doi.org/10.1109/TSG.2017.2700332
L. Xu and D. Chen, “Control and Operation of a DC Microgrid With Variable Generation and Energy Storage,” IEEE Trans. Power Deliv., vol. 26, no. 4, pp. 2513–2522, Oct. 2011, doi: 10.1109/TPWRD.2011.2158456. DOI: https://doi.org/10.1109/TPWRD.2011.2158456
H. Fan, W. Yu, and S. Xia, “Review of Control Strategies for DC Nano-Grid,” Front. Energy Res., vol. 9, 2021, Accessed: Jul. 03, 2022. [Online]. Available:https://www.frontiersin.org/article/10.3389/fenrg.2021.644926 DOI: https://doi.org/10.3389/fenrg.2021.644926
N. Kondrath, “Bidirectional DC-DC converter topologies and control strategies for interfacing energy storage systems in microgrids: An overview,” in 2017 IEEE International Conference on Smart Energy Grid Engineering (SEGE), Aug. 2017, pp. 341–345. doi: 10.1109/SEGE.2017.8052822. DOI: https://doi.org/10.1109/SEGE.2017.8052822
M. I. Hlal, V. K. Ramachandaramurthy, A. Sarhan, A. Pouryekta, and U. Subramaniam, “Optimum battery depth of discharge for off-grid solar PV/battery system,” J. Energy Storage, vol. 26, p. 100999, Dec. 2019, doi: 10.1016/j.est.2019.100999. DOI: https://doi.org/10.1016/j.est.2019.100999
I.-K. Won, D.-Y. Kim, J.-H. Hwang, J.-H. Lee, and C.-Y. Won, “Lifetime management method of Lithium-ion battery for energy storage system,” in 2015 18th International Conference on Electrical Machines and Systems (ICEMS), Oct. 2015, pp. 1375–1380. doi: 10.1109/ICEMS.2015.7385253. DOI: https://doi.org/10.1109/ICEMS.2015.7385253
N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design. John Wiley & Sons, 2003.
F. Liu, Y. Kang, Y. Zhang, and S. Duan, “Comparison of P&O; hill climbing MPPT methods for grid-connected PV converter,” in 2008 3rd IEEE Conference on Industrial Electronics and Applications, Jun. 2008, pp. 804–807. doi: 10.1109/ICIEA.2008.4582626. DOI: https://doi.org/10.1109/ICIEA.2008.4582626
M. M. Ur Rehman, F. Zhang, R. Zane, and D. Maksimovic, “Control of bidirectional DC/DC converters in reconfigurable, modular battery systems,” in 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Mar. 2017, pp. 1277–1283. doi: 10.1109/APEC.2017.7930860. DOI: https://doi.org/10.1109/APEC.2017.7930860
R. Li and F. Shi, “Control and Optimization of Residential Photovoltaic Power Generation System with High Efficiency Isolated Bidirectional DC–DC Converter,” IEEE Access, vol. 7, pp. 116107–116122, 2019, doi: 10.1109/ACCESS.2019.2935344. DOI: https://doi.org/10.1109/ACCESS.2019.2935344
P. Murugesan, P. W. David, P. Murugesan, and P. Periyasamy, “Battery based mismatch reduction technique for partial shaded solar PV system,” Energy, vol. 272, p. 127063, Jun. 2023, doi: 10.1016/j.energy.2023.127063. DOI: https://doi.org/10.1016/j.energy.2023.127063
M. Amin and M. Molinas, “Non-parametric Impedance based Stability and Controller Bandwidth Extraction from Impedance Measurements of HVDC-connected Wind Farms.” arXiv, Apr. 16, 2017. doi: 10.48550/arXiv.1704.04800.
M. Amin and M. Molinas, “Small-Signal Stability Assessment of Power Electronics Based Power Systems: A Discussion of Impedance- and Eigenvalue-Based Methods,” IEEE Trans. Ind. Appl., vol. 53, no. 5, pp. 5014–5030, Sep. 2017, doi: 10.1109/TIA.2017.2712692. DOI: https://doi.org/10.1109/TIA.2017.2712692
M. Habibullah, M. Nadarajah, R. Sharma, and R. Shah, “A Comprehensive Stability Analysis of Multi-Converter-Based DC Microgrids,” 2021, pp. 281–314. doi: 10.1201/9781003058472-8. DOI: https://doi.org/10.1201/9781003058472-8
M. Habibullah, N. Mithulananthan, F. Zare, and R. Sharma, “Impact of Control Systems on Power Quality at Common DC Bus in DC Grid,” in 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), Mar. 2019, pp. 411–416. doi: 10.1109/GTDAsia.2019.8715875. DOI: https://doi.org/10.1109/GTDAsia.2019.8715875
X. Feng, J. Liu, and F. C. Lee, “Impedance specifications for stable DC distributed power systems,” IEEE Trans. Power Electron., vol. 17, no. 2, pp. 157–162, Mar. 2002, doi: 10.1109/63.988825. DOI: https://doi.org/10.1109/63.988825
R. Ahmadi, D. Paschedag, and M. Ferdowsi, “Closed-loop input and output impedances of DC-DC switching converters operating in voltage and current mode control,” in IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, Nov. 2010, pp. 2311–2316. doi: 10.1109/IECON.2010.5675123. DOI: https://doi.org/10.1109/IECON.2010.5675123
M. Habibullah, K. N. Bhumkittipich, N. Mithulananthan, R. Sharma, and F. Zare, “Damping oscillation and removing resonance in a RE based DC microgrids,” IEEE Access, vol. 9, pp. 163516–163525, 2021. DOI: https://doi.org/10.1109/ACCESS.2021.3135033
M. Habibullah, N. Mithulananthan, F. Zare, and D. S. Alkaran, “Investigation of power oscillation at common DC bus in DC grid,” in 2019 IEEE International Conference on Industrial Technology (ICIT), Feb. 2019, pp. 1695–1700. doi: 10.1109/ICIT.2019.8843694. DOI: https://doi.org/10.1109/ICIT.2019.8843694
A. Brahimi, D. Kerdoun, and A. Boumassata, “Boost Converter Control using LQR and P&O Technique for Maximum Power Point Tracking,” in 2022 19th International Multi-Conference on Systems, Signals & Devices (SSD), May 2022, pp.1998–2003.doi: 10.1109/SSD54932.2022.9955798. DOI: https://doi.org/10.1109/SSD54932.2022.9955798
K. K. Patri and S. Samanta, “State feedback with integral control for boost converter & its microcontroller implementation,” in 2018 IEEMA Engineer Infinite Conference (eTechNxT), Mar. 2018, pp. 1–5. doi: 10.1109/ETECHNXT.2018.8385374. DOI: https://doi.org/10.1109/ETECHNXT.2018.8385374