Modified-TiO2 Nanotube Arrays as a Proficient Photo-Catalyst Nanomaterial for Energy and Environmental Applications

المؤلفون

  • Riyadh Ikreedeegh Chemical and Petroleum Engineering Department, UAE University, P.O. Box 15551, Al Ain, United Arab Emirates.
  • Muhammad Tahir Chemical and Petroleum Engineering Department, UAE University, P.O. Box 15551, Al Ain, United Arab Emirates
  • Mohamed Madi Chemical Engineering Department, Higher Institute for Science and Technology, Souk Al-Khamis, Libya.

DOI:

https://doi.org/10.51646/jsesd.v13i1.196

الكلمات المفتاحية:

TiO2 nanotube arrays، Photocatalysis، CO2 reduction، CH4 production، Solar fuels.

الملخص

Recently, TiO2 nanotube arrays (TNTAs) have attracted researcher’s attention in the fields of energy production and environmental remediation applications; this is mainly due to their unique optoelectronic characteristics, corrosion resistance, chemical and mechanical stability. In this study, the ability of employing of TiO2 nanotube arrays-based catalysts in the field of photocatalytic CO2 reduction has been investigated. Possible modification strategies have been presented for improving the TNTAs performance by using different types of nanomaterials including graphitic carbon nitrides (g-C3N4), metal-organic frame work (MOF), reduced graphene oxide (RGO) and gold nanoparticles (Au NPs). The TNTAs composites were characterized using XRD and FESEM analyses and the results revealed the successful synthesis of these composites. The TNTAs and their composites exhibited good results for the photo-conversion of CO2 into CH4 gas product. This study gives new ideas for making and developing low-cost Ti metal-based nanomaterials which can be used in the future for recycling the CO2 gas emissions into useful solar fuels.

التنزيلات

بيانات التنزيل غير متوفرة بعد.

المقاييس

يتم تحميل المقاييس...

المراجع

Ikreedeegh, R.R. and M. Tahir, A critical review in recent developments of metal-organic-frameworks (MOFs) with band engineering alteration for photocatalytic CO2 reduction to solar fuels. J. CO2 Util., 2021. 43: p. 101381. DOI: https://doi.org/10.1016/j.jcou.2020.101381

Ikreedeegh, R.R., A Techno-Economical Evaluation Study for Upgrading Sarir Oil Refinery and Maximizing Gasoline Production. J. Chem. Petrol. Engin., 2023.

Hossen, M.A., et al., Optimization of anodizing parameters for the morphological properties of TiO2 nanotubes based on response surface methodology. Next Mater., 2024. 2: p. 100061. DOI: https://doi.org/10.1016/j.nxmate.2023.100061

Ikreedeegh, R.R., et al., A comprehensive review on anodic TiO2 nanotube arrays (TNTAs) and their composite photocatalysts for environmental and energy applications: Fundamentals, recent advances and applications. Coord. Chem. Rev., 2024. 499: p. 215495. DOI: https://doi.org/10.1016/j.ccr.2023.215495

Ikreedeegh, R.R., S. Tasleem, and M.A. Hossen, Facile fabrication of binary g-C3N4/NH2-MIL-125 (Ti) MOF nanocomposite with Z-scheme heterojunction for efficient photocatalytic H2 production and CO2 reduction under visible light. Fuel, 2024. 360: p. 130561. DOI: https://doi.org/10.1016/j.fuel.2023.130561

Gao, J., et al., Oxygen vacancy self-doped black TiO2 nanotube arrays by aluminothermic reduction for photocatalytic CO2 reduction under visible light illumination. Journal of CO2 Utilization, 2020. 35: p. 205-215. DOI: https://doi.org/10.1016/j.jcou.2019.09.016

Ikreedeegh, R.R. and M. Tahir, Ternary nanocomposite of NH2-MIL-125(Ti) MOF-modified TiO2 nanotube arrays (TNTs) with GO electron mediator for enhanced photocatalytic conversion of CO2 to solar fuels under visible light. Journal of Alloys and Compounds, 2023. 969: p. 172465. DOI: https://doi.org/10.1016/j.jallcom.2023.172465

Yu, Y., et al., Pd quantum dots loading Ti3+,N co-doped TiO2 nanotube arrays with enhanced photocatalytic hydrogen production and the salt ions effects. Applied Surface Science, 2021. 540: p. 148239. DOI: https://doi.org/10.1016/j.apsusc.2020.148239

Cao, D., et al., Solvothermal synthesis and enhanced photocatalytic hydrogen production of Bi/Bi2MoO6 co-sensitized TiO2 nanotube arrays. Separation and Purification Technology, 2020. 250: p. 117132. DOI: https://doi.org/10.1016/j.seppur.2020.117132

Hou, J., et al., Constructing Ag2O nanoparticle modified TiO2 nanotube arrays for enhanced photocatalytic performances. Journal of Alloys and Compounds, 2020. 849: p. 156493. DOI: https://doi.org/10.1016/j.jallcom.2020.156493

Zhou, D., et al., Improved visible light photocatalytic activity on Z-scheme g-C3N4 decorated TiO2 nanotube arrays by a simple impregnation method. Materials Research Bulletin, 2020. 124: p. 110757. DOI: https://doi.org/10.1016/j.materresbull.2019.110757

Dai, K., et al., Efficient visible-light-driven splitting of water into hydrogen over surface-fluorinated anatase TiO2 nanosheets with exposed {001} facets/layered CdS–diethylenetriamine nanobelts. ACS sustainable chemistry & engineering, 2018. 6(10): p. 12817-12826. DOI: https://doi.org/10.1021/acssuschemeng.8b02064

Ke, X., et al., Construction of flourinated-TiO2 nanosheets with exposed {001} facets/CdSe-DETA nanojunction for enhancing visible-light-driven photocatalytic H2 evolution. Ceramics International, 2020. 46(1): p. 866-876. DOI: https://doi.org/10.1016/j.ceramint.2019.09.044

Tahir, B., M. Tahir, and N.S. Amin, Gold–indium modified TiO2 nanocatalysts for photocatalytic CO2 reduction with H2 as reductant in a monolith photoreactor. Applied Surface Science, 2015. 338: p. 1-14. DOI: https://doi.org/10.1016/j.apsusc.2015.02.126

Jun, Y., J.H. Park, and M.G. Kang, The preparation of highly ordered TiO2 nanotube arrays by an anodization method and their applications. Chemical communications, 2012. 48(52): p. 6456-6471. DOI: https://doi.org/10.1039/c2cc30733b

Roy, P., S. Berger, and P. Schmuki, TiO2 nanotubes: synthesis and applications. Angewandte Chemie International Edition, 2011. 50(13): p. 2904-2939. DOI: https://doi.org/10.1002/anie.201001374

Bu, T., et al., Organic/inorganic self-doping controlled crystallization and electronic properties of mixed perovskite solar cells. Journal of Materials Chemistry A, 2018. 6(15): p. 6319-6326. DOI: https://doi.org/10.1039/C8TA00931G

Yilleng, M.T., et al., Batch to continuous photocatalytic degradation of phenol using TiO2 and Au-Pd nanoparticles supported on TiO2. Journal of Environmental Chemical Engineering, 2018. 6(5): p. 6382-6389. DOI: https://doi.org/10.1016/j.jece.2018.09.048

Mazierski, P., et al., Photocatalytically active TiO2/Ag2O nanotube arrays interlaced with silver nanoparticles obtained from the one-step anodic oxidation of Ti–Ag alloys. ACS Catalysis, 2017. 7(4): p. 2753-2764. DOI: https://doi.org/10.1021/acscatal.7b00056

Moon, S.Y., et al., Plasmonic hot carrier-driven oxygen evolution reaction on Au nanoparticles/TiO2 nanotube arrays. Nanoscale, 2018. 10(47): p. 22180-22188. DOI: https://doi.org/10.1039/C8NR05144E

Altomare, M., et al., H2 and O2 photocatalytic production on TiO2 nanotube arrays: Effect of the anodization time on structural features and photoactivity. Applied Catalysis B: Environmental, 2013. 136-137: p. 81-88. DOI: https://doi.org/10.1016/j.apcatb.2013.01.054

Ikreedeegh, R.R. and M. Tahir, Facile fabrication of well-designed 2D/2D porous g-C3N4–GO nanocomposite for photocatalytic methane reforming (DRM) with CO2 towards enhanced syngas production under visible light. Fuel, 2021. 305: p. 121558. DOI: https://doi.org/10.1016/j.fuel.2021.121558

Ikreedeegh, R.R. and M. Tahir, Indirect Z-scheme heterojunction of NH2-MIL-125 (Ti) MOF/g-C3N4 nanocomposite with RGO solid electron mediator for efficient photocatalytic CO2 reduction to CO and CH4. J. Environ. Chem. Eng., 2021: p. 105600. DOI: https://doi.org/10.1016/j.jece.2021.105600

Hu, J., J. Ding, and Q. Zhong, In situ fabrication of amorphous TiO2/NH2-MIL-125(Ti) for enhanced photocatalytic CO2 into CH4 with H2O under visible-light irradiation. J. Colloid Interface Sci., 2020. 560: p. 857-865. DOI: https://doi.org/10.1016/j.jcis.2019.11.003

Azam, M.U., et al., In-situ synthesis of TiO2/La2O2CO3/rGO composite under acidic/basic treatment with La3+/Ti3+ as mediators for boosting photocatalytic H2 evolution. Int. J. Hydrog. Energy, 2019. 44(42): p. 23669-23688. DOI: https://doi.org/10.1016/j.ijhydene.2019.07.085

Khatun, F., et al., Plasmonic enhanced Au decorated TiO2 nanotube arrays as a visible light active catalyst towards photocatalytic CO2 conversion to CH4. J. Environ. Chem. Eng., 2019. 7(6): p. 103233. DOI: https://doi.org/10.1016/j.jece.2019.103233

Hossen, M.A., et al., Enhanced photocatalytic CO2 reduction to CH4 using novel ternary photocatalyst RGO/Au-TNTAs. Energies, 2023. 16(14): p. 5404. DOI: https://doi.org/10.3390/en16145404

Wu, J., et al., Preparation of Al–O-Linked Porous-g-C3N4/TiO2-Nanotube Z-Scheme Composites for Efficient Photocatalytic CO2 Conversion and 2, 4-Dichlorophenol Decomposition and Mechanism. ACS Sustain. Chem. Eng., 2019. 7(18): p. 15289-15296. DOI: https://doi.org/10.1021/acssuschemeng.9b02489

Phromma, S., et al., Effect of Calcination Temperature on Photocatalytic Activity of Synthesized TiO2 Nanoparticles via Wet Ball Milling Sol-Gel Method. Appl. Sci., 2020. 10(3): p. 993. DOI: https://doi.org/10.3390/app10030993

Liu, L., et al., Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: Comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catal., 2012. 2(8): p. 1817-1828. DOI: https://doi.org/10.1021/cs300273q

Kar, P., et al., High rate CO2 photoreduction using flame annealed TiO2 nanotubes. Appl. Catal. B, 2019. 243: p. 522-536.

Gao, Z., et al., Construction of heterostructured g-C3N4@ TiATA/Pt composites for efficacious photocatalytic hydrogen evolution. Int. J. Hydrogen Energy, 2019. 44(45): p. 24407-24417. DOI: https://doi.org/10.1016/j.ijhydene.2019.07.211

Wang, Y., et al., Novel g-C3N4 assisted metal organic frameworks derived high efficiency oxygen reduction catalyst in microbial fuel cells. J. Power Sources, 2020. 450: p. 227681. DOI: https://doi.org/10.1016/j.jpowsour.2019.227681

Kumar, S., et al., Ag nanoparticles–anchored reduced graphene oxide catalyst for oxygen electrode reaction in aqueous electrolytes and also a non-aqueous electrolyte for Li–O2 cells. Phys. Chem. Chem. Phys., 2014. 16(41): p. 22830-22840. DOI: https://doi.org/10.1039/C4CP02858A

Kumar, A., A.M. Sadanandhan, and S.L. Jain, Silver doped reduced graphene oxide as a promising plasmonic photocatalyst for oxidative coupling of benzylamines under visible light irradiation. New J Chem, 2019. 43(23): p. 9116-9122. DOI: https://doi.org/10.1039/C9NJ00852G

Wei, C., et al., MOF-derived mesoporous g-C3N4/TiO2 heterojunction with enhanced photocatalytic activity. Catal. Lett., 2021. 151: p. 1961-1975. DOI: https://doi.org/10.1007/s10562-020-03462-y

Zhang, X., et al., Construction of NH2-MIL-125(Ti)/CdS Z-scheme heterojunction for efficient photocatalytic H2 evolution. J. Hazard. Mater., 2021. 405: p. 124128. DOI: https://doi.org/10.1016/j.jhazmat.2020.124128

Sim, L.C., et al., Rapid thermal reduced graphene oxide/Pt–TiO2 nanotube arrays for enhanced visible-light-driven photocatalytic reduction of CO2. Applied Surface Science, 2015. 358: p. 122-129. DOI: https://doi.org/10.1016/j.apsusc.2015.08.065

Kar, P., et al., High rate CO2 photoreduction using flame annealed TiO2 nanotubes. Applied Catalysis B: Environmental, 2019. 243: p. 522-536. DOI: https://doi.org/10.1016/j.apcatb.2018.08.002

التنزيلات

منشور

2024-05-10

كيفية الاقتباس

Ikreedeegh , R., Tahir , M., & Madi , M. . (2024). Modified-TiO2 Nanotube Arrays as a Proficient Photo-Catalyst Nanomaterial for Energy and Environmental Applications. Solar Energy and Sustainable Development Journal, 13(1), 133–144. https://doi.org/10.51646/jsesd.v13i1.196

إصدار

القسم

Articles