Simulation of Th Effct of Libyan Sand on Th Reflctance Surface of CSP

المؤلفون

  • E. Endaya Center for Solar Energy Research and Studies, Tajura - Tripoli, Libya
  • C. Sansom Global CSP Laboratory, School of Applied Sciences, Cranfild University, MK43 0AL, UK
  • P. Comley Global CSP Laboratory, School of Applied Sciences, Cranfild University, MK43 0AL, UK
  • H. Almond Global CSP Laboratory, School of Applied Sciences, Cranfild University, MK43 0AL, UK
  • E. Dekam Mechanical engineering Dept. Engineering Faculty, Tripoli University, Tripoli, Libya
  • M. Abdunnabi Center for Solar Energy Research and Studies, Tajura - Tripoli, Libya

DOI:

https://doi.org/10.51646/jsesd.v8i2.29

الكلمات المفتاحية:

sand storm، Libyan sand، specular reflctance، damaged surfaces، reflctors، solar panels، CSP

الملخص

خصائص العواكس تتأثر سلبا بالظروف المناخية للصحراء القاسية وبالتالي أداء المنظومات يقل. هذه الورقة تشخص تأثير نوعين مختلفين من الرمال المتحركة نوع A و B من ليبيا على الأداء والسلامة للعواكس الشمسية. العينات أخذت من مناطق مناسبة لتركيب محطات القدرة الشمسية. فهي مختلفة في حجم الحبيبات والتركيب الكيميائي: نوع A بحجم بتراوح من 355.0-025.0 ملم و النوع B بحجم 479.0-124.0ملم. النتائج المتحصل عليها بإستخدام نفاث الرمال تشير إلى أن الرمل نوع A له تأثير أكثر من النوع B لأن صغر حبيبات النوع A ساهم في انتشارها على مساحة أكبر من العاكس. كما لوحظ في مدى الدراسة أن تغيير السرعة له تأثير أكبر من تغيير كميات الرمل. بعد تنظيف الأسطح، الانعكاسية انخفضت إلى 2.2 % و خشونة السطح ازدادت بحوالي 1 ميكروميتر في حالة كتلة 5.0 جرام عند سرعة 27 متر/ث. في حالة كتلة 2 جرام وسرعة 21 متر/ث الخشونة وجدت 3 ميكرومتر

التنزيلات

بيانات التنزيل غير متوفرة بعد.

المقاييس

يتم تحميل المقاييس...

المراجع

. International Energy Agency [IEA], “World Energy Resources: Solar 2016,” World Energy Counc., p. 6, 2016.

. G. S. Report, REN21 Secretariat, Renewables 2017 global status report. 2017.

. Callot, Y., Marticorena, B., Bergametti, G., 2000. Geomorphologic approach for modelling the surface features of arid environments in a model of dust emissions: application to the Sahara desert. Geodinamica Acta 13 (5), 245–270.

. Sarah L. O’Hara, Michele L. Clarke, Mokhtar S. Elatrash, (2006). Field measurements of desert dust deposition in Libya, Atmospheric Environment 40 (21) pp. 3881–3897

. DLR MED-CSP, 2005. Concentrating Solar Power for the Mediteranean Region. http://www.dlr.de/tt/portaldata/41/ Resources/dokumente/institut/system/projects/MED-CSP Full report fial.pdf>

. M. Moser, F. Trieb, and T. Fichter, “Potential of Concentrating Solar Power Plants for the Combined Production of Water and Electricity in MENA Countries,” J. Sustain. Dev. Energy, Water Environ. Syst., vol. 1, no. 2, pp. 122–140, 2013.

. Costa S. C. S., Diniz A. C., Kazmerski L. L., Dust and Soiling issues and impacts relating to solar energy systems:

Literature review update for 2012-2015, Renewable and Sustainable Energy reviews, 63 (2016) 33-61.

. C. Sansom, H. Almond, P. King, E. Endaya, and S. Bouaichaoui, “Airborne sand and dust soiling of solar collecting

mirrors,” AIP Conf. Proc., vol. 1850, no. June, 2017.

. H. Pedersen, J. Strauss, and J. Selj, “Effct of Soiling on Photovoltaic Modules in Norway,” Energy Procedia, vol. 92, pp. 585–589, 2016.

. R. B. Pettit and J. M. Freese, “Wavelength Dependent Scattering Caused By Dust Accumulation on Solar Mirrors.,” Sol. energy Mater., vol. 3, no. 1–2, pp. 1–20, 1980.

. D. J. Griffi, L. Vhengani, and M. Maliage, “Measurements of mirror soiling at a candidate CSP site,” Energy Procedia, vol. 49, pp. 1371–1378, 2013.

. A. A. Merrouni, F. Wolfertstetter, A. Mezrhab, S. Wilbert, and R. Pitz-Paal, “Investigation of Soiling Effct on Diffrent Solar Mirror Materials under Moroccan Climate,” Energy Procedia, vol. 69, pp. 1948–1957, 2015.

. A. O. Mohamed and A. Hasan, “Effct of dust accumulation on performance of photovoltaic solar modules in Sahara environment,” J. Basic Appl. Sci. Res., vol. 2, no. 11, pp. 11030–11036, 2012.

. M. Guerguer, M. Karim, S. Naamane, Z. Edfouf, O. Raccurt, and C. Delord, “Soiling deposition on solar mirrors exposed in Morocco,” AIP Conf. Proc., vol. 1850, 2017.

. R. Conceição, H. G. Silva, and M. Collares-Pereira, “CSP mirror soiling characterization and modeling,” Sol. Energy Mater. Sol. Cells, vol. 185, no. May, pp. 233–239, 2018.

. N. P. Woodruff “Wind-blown soil abrasive injuries to winter wheat plants.pdf,” Agron. J., pp. 499–504, 1956.

. D. V Armbrust, “Recovery and nutrient content of sandblasted soybean seedlings,” Agron. J., vol. 64, no. October, pp. 707–708, 1972.

. Q. Jianjun, H. Ning, D. Guangrong, and Z. Weimin, “Th role and signifiance of the Gobi Desert pavement in controlling sand movement on the clif top near the Dunhuang Magao Grottoes,” J. Arid Environ., vol. 48, no. 3, pp. 357–371, 2001.

. Z. Wang, L. Liu, X. Li, and L. Zhao, “An experimental method for analyzing environmental effcts of blowing sands on glass abrasion,” Procedia Environ. Sci., vol. 2, no. October 2015, pp. 207–217, 2010.

. H. K. Elminir, A. E. Ghitas, R. H. Hamid, F. El-Hussainy, M. M. Beheary, and K. M. Abdel-Moneim, “Effct of dust on

the transparent cover of solar collectors,” Energy Convers. Manag., vol. 47, no. 18–19, pp. 3192–3203, 2006.

. R. Almanza, P. Hernández, I. Martínez, and M. Mazari, “Development and mean life of aluminum fist-surface mirrors for solar energy applications,” Sol. Energy Mater. Sol. Cells, vol. 93, no. 9, pp. 1647–1651, 2009.

. F. Sutter, J. Wette, F. Wiesinger, A. Fernández-García, S. Ziegler, and R. Dasbach, “Lifetime prediction of aluminum solar mirrors by correlating accelerated aging and outdoor exposure experiments,” Sol. Energy, vol. 174, no. September, pp. 149–163, 2018.

. Karim M., Naamaneetal S., 2014, Towards the prediction ofCSP mirrors wear: Methodology of analysis of inflencing parameters on the mirrors surface degradation: Application in two diffrent sites in Morocco, Solar Energy Vol 108, pp 41-50.

. C. Holze and A. Brucks, “Accelerated lifetime modeling on the basis of wind tunnel analysis and sand storm aging,” Energy Procedia, vol. 49, pp. 1692–1699, 2013.

. F. Reil, I. Baumann, J. Althaus, and S. Gebhard, “Evaluation of current standards and practices for the simulation of wind-blown sands and their applicability as accelerated ageing tests for PV modules,” Conf. Rec. IEEE Photovolt. Spec. Conf., pp. 1537–1541, 2013.

. P. H. Shipway and I. M. Hutchings, “Inflence of nozzle roughness on conditions in a gas-blast erosion rig,” Wear, vol. 162–164, no. PART A, pp. 148–158, 1993.

. P. Chevallier, A. B. Vannes, and A. Forner, “New parameters in erosion for study of bulk materials and coatings,” Wear, vol. 186–187, no. PART 1, pp. 210–214, 1995.

. MIL-STD 810 G, 2008. Test Method Standard: Environmental Enginnering consideration and laboratory tests, United States Department of Defense. <http://www.dtc.army.mil/publications/MIL-STD 810 G.pdf>

. http://www.sand-atlas.com/en/shape-of-sand-grains/

. Ajit Jillavenkatesa, Stanley J. Dapkunas, Lin-Sien H. Lum, Particle Size Characterization, National Institute of

Standards and Technology Special Publication 960-1, 2001

. Baker, Stephen W. Rootzones, Sands and top dressing materials for sports turf. STRI, 2006.

. Data sheet Ronda High-Tech reflctive panels “Technical data sheet, material characteristic”

التنزيلات

منشور

2019-12-31

كيفية الاقتباس

[1]
E. Endaya, C. Sansom, P. . Comley, H. . Almond, E. . . Dekam, و M. Abdunnabi, "Simulation of Th Effct of Libyan Sand on Th Reflctance Surface of CSP", jsesd, م 8, عدد 2, ص 50–63, 2019.

إصدار

القسم

Articles