Enhanced Efficiency and Dynamic Performance in Wind Power Generation Systems using Artificial Neural Networks and Predictive Current Control for PMSG-based Turbines

المؤلفون

  • Benameur Afif Department of Electrotechnic, University Mustapha Stambouli of Mascara, Mascara 29000, Algeria.
  • Mohamed Salmi Department of Physics, University of M’sila, M’sila 28000, Algeria
  • Mohammed Berka Department of Electrotechnic, University Mustapha Stambouli of Mascara, Mascara 29000, Algeria.
  • Riyadh Ikreedeegh Department of Analysis and Quality Control, Sarir Oil Refinery, Arabian Gulf Oil Company, El Kish, P.O. Box 263, Benghazi, LibyaLibyan Advanced Center for Chemical Analysis, Libyan Authority for Scientific Research, Tripoli, Libya.
  • Muhammad Tahir Chemical and Petroleum Engineering Department, UAE University, P.O. Box 15551, Al Ain, United Arab Emirates.

DOI:

https://doi.org/10.51646/jsesd.v14i1.390

الكلمات المفتاحية:

Predictive Current Control (PCC)، Artificial Neural Networks (ANN)، Wind Energy Conversion System (WECS)، Maximum Power Point Tracking (MPPT)، Permanent Magnet Synchronous Generator (PMSG)، Grid Integration.

الملخص

Recently, wind power generation systems have seen significant developments aimed at improving performance and efficiency. Permanent magnet synchronous generators (PMSG) are essential for wind power production systems because of their exceptional power density, high efficiency, and dependable operation. These properties enable PMSGs to effectively convert wind energy into electrical energy with minimal losses and high accuracy. This study proposes an enhanced control system for wind power generation using permanent magnet synchronous generators (PMSG), integrating artificial neural networks (ANN) and predictive current control (PCC) techniques to optimize efficiency and dynamic performance. Traditional control systems often require wind speed measurement and utilize separate loops for speed and current regulation. In contrast, the proposed approach eliminates the need for wind speed sensing by employing an ANN to estimate optimal reference currents based solely on rotational speed measurements. PCC is then applied to regulate the generator currents, replacing conventional PI controllers. This configuration enables the removal of the speed regulation loop while maintaining maximum power point tracking capability. Simulation results demonstrate that the ANN-PCC control system achieves superior dynamic response and higher overall efficiency compared to conventional methods. The system exhibits faster tracking of maximum power points, reduced total harmonic distortion, and enhanced stability under variable wind conditions. Additionally, the proposed controller simplifies the overall system architecture by reducing sensor requirements and control loops. The paper presents a comprehensive comparison between the proposed ANN-PCC system and two conventional control methods: a perturbation and observation (P&O) algorithm with PI control, and a tip speed ratio (TSR) technique with PI control. Results show that the ANN-PCC approach outperforms both conventional methods in terms of response time, power output stability, and grid current quality. These improvements make the ANN-PCC approach a promising solution for increasing the performance and reliability of PMSG-based wind energy conversion systems in grid-connected applications, potentially contributing to the broader adoption of wind power technology.

التنزيلات

بيانات التنزيل غير متوفرة بعد.

المقاييس

يتم تحميل المقاييس...

المراجع

Dursun, E. H., Kulaksiz, A. A.: Second-order sliding mode voltage-regulator for improving MPPT efficiency of PMSG-based WECS. International Journal of Electrical Power & Energy Systems. 121, 106149 (2020). https://doi.org/10.1016/j.ijepes.2020.106149 DOI: https://doi.org/10.1016/j.ijepes.2020.106149

Dali, A., Abdelmalek, S., Bakdi, A., Bettayeb, M.: A new robust control scheme: Application for MPP tracking of a PMSG-based variable-speed wind turbine. Renewable Energy. 172, 1021-1034 (2021). https://doi.org/10.1016/j.renene.2021.03.083 DOI: https://doi.org/10.1016/j.renene.2021.03.083

Aboudrar, I., El Hani, S., Heyine, M. S., Naseri, N.: Dynamic Modeling and Robust Control by ADRC of Grid‐Connected Hybrid PV‐Wind Energy Conversion System. Mathematical Problems in Engineering. 1, 8362921 (2019). https://doi.org/10.1155/2019/8362921 DOI: https://doi.org/10.1155/2019/8362921

Fannakh, M., Elhafyani, M. L., Zouggar, S., Zahboune, H.: Overall fuzzy logic control strategy of direct driven PMSG wind turbine connected to grid. Int. J. Electr. Comput. Eng. IJECE. 11, 5515 (2021). http://doi.org/10.11591/ijece.v11i6.pp5515-5529 DOI: https://doi.org/10.11591/ijece.v11i6.pp5515-5529

Youssef, A. R., Ali, A. I., Saeed, M. S., Mohamed, E. E.: Advanced multi-sector P&O maximum power point tracking technique for wind energy conversion system. International Journal of Electrical Power & Energy Systems. 107, 89-97 (2019). https://doi.org/10.1016/j.ijepes.2018.10.034 DOI: https://doi.org/10.1016/j.ijepes.2018.10.034

Sai Manoj, P., Vijayakumari, A., Kottayil, S. K.: Development of a comprehensive MPPT for grid-connected wind turbine driven PMSG. Wind Energy. 22(6), 732-744 (2019). https://doi.org/10.1002/we.2318 DOI: https://doi.org/10.1002/we.2318

Meghni, B., Saadoun, A., Dib, D., Amirat, Y.: Effective MPPT technique and robust power control of the PMSG wind turbine. IEEJ Transactions on Electrical and Electronic Engineering. 10(6), 619-627 (2015). https://doi.org/10.1002/tee.22128 DOI: https://doi.org/10.1002/tee.22128

El Mourabit, Y., Derouich, A., El Ghzizal, A., El Ouanjli, N., Zamzoum, O.: Nonlinear back-stepping control for PMSG wind turbine used on the real wind profile of the Dakhla‐Morocco city. International Transactions on Electrical Energy Systems. 30(4), e12297 (2020). https://doi.org/10.1002/2050-7038.12297 DOI: https://doi.org/10.1002/2050-7038.12297

Chen, J., Yao, W., Zhang, C. K., Ren, Y., Jiang, L.: Design of robust MPPT controller for grid-connected PMSG-Based wind turbine via perturbation observation based nonlinear adaptive control. Renewable energy. 134, 478-495 (2019). https://doi.org/10.1016/j.renene.2018.11.048 DOI: https://doi.org/10.1016/j.renene.2018.11.048

Errami, Y., Obbadi, A., Sahnoun, S., Benhmida, M., Ouassaid, M., Maaroufi, M.: Design and sliding mode control for PMSG based wind power system connected to a non-ideal grid voltages. In 2015 3rd International Renewable and Sustainable Energy Conference (IRSEC) (pp.1-7).IEEE (2015). https://doi.org/10.1109/IRSEC.2015.7454981 DOI: https://doi.org/10.1109/IRSEC.2015.7454981

Agarwal, N. K., Sadhu, P. K., Chakraborty, S.: Mppt based pmsg wind turbine system using sliding model control (SMC) and artificial neural network (ANN) based regression analysis. IETE Journal of research. 68(3), (2022), 1652-1660. https://doi.org/10.1080/03772063.2019.1662336 DOI: https://doi.org/10.1080/03772063.2019.1662336

Zafran, M., Khan, L., Khan, Q., Alam, Z., Khan, M. A.: Terminal sliding mode based finite-time MPPT control for PMSG-WECS based standalone system. In 2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET) (pp. 1-7).IEEE (2020). https://doi.org/10.1109/iCoMET48670.2020.9073906 DOI: https://doi.org/10.1109/iCoMET48670.2020.9073906

Babu, P. S., Sundarabalan, C. K., Balasundar, C., Krishnan, T. S.: Fuzzy logic based optimal tip speed ratio MPPT controller for grid connected WECS. Materials Today: Proceedings. 45, 2544-2550 (2021). https://doi.org/10.1016/j.matpr.2020.11.259 DOI: https://doi.org/10.1016/j.matpr.2020.11.259

Yang, H., Wei, Z., Chengzhi, L.: Optimal design and techno-economic analysis of a hybrid solar–wind power generation system. Applied energy, 86(2), 163-169 (2009). https://doi.org/10.1016/j.apenergy.2008.03.008 DOI: https://doi.org/10.1016/j.apenergy.2008.03.008

Moutchou, R., Abbou, A.: Control of grid side converter in wind power based PMSG with PLL method. International Journal of Power Electronics and Drive Systems (IJPEDS), 12(4) (2021), 2191-2200. https://doi.org/10.11591/ijpeds.v12.i4.pp2191-2200 DOI: https://doi.org/10.11591/ijpeds.v12.i4.pp2191-2200

Baran, J., Jąderko, A.: An MPPT control of a PMSG-based WECS with disturbance compensation and wind speed estimation. Energies, 13(23), 6344 (2020). https://doi.org/10.3390/en13236344 DOI: https://doi.org/10.3390/en13236344

Salem, A. A., Aldin, N. A. N., Azmy, A. M., Abdellatif, W. S.: Implementation and validation of an adaptive fuzzy logic controller for MPPT of PMSG-based wind turbines. IEEE Access, 9, 165690-165707 (2021). https://doi.org/10.1109/ACCESS.2021.3134947 DOI: https://doi.org/10.1109/ACCESS.2021.3134947

Mahmoud, M. M., Aly, M. M., Salama, H. S., Abdel-Rahim, A. M. M.: A combination of an OTC based MPPT and fuzzy logic current control for a wind-driven PMSG under variability of wind speed. Energy Systems, 13(4) (2022), 1075-1098. https://doi.org/10.1007/s12667 021-00468-2 DOI: https://doi.org/10.1007/s12667-021-00468-2

Barradi, Y., Zazi, K., Zazi, M., Khaldi, N.: Control of PMSG based variable speed wind energy conversion system connected to the grid with PI and ADRC approach. International Journal of Power Electronics and Drive Systems. 11(2), 953 (2020). http://doi.org/10.11591/ijpeds.v11.i2.pp953-968 DOI: https://doi.org/10.11591/ijpeds.v11.i2.pp953-968

Prince, M. K. K., Arif, M. T., Gargoom, A., Oo, A. M., Haque, M. E.: Modeling, parameter measurement, and control of PMSG-based grid-connected wind energy conversion system. Journal of Modern Power Systems and Clean Energy. 9(5), (2021)1054-1065. https://doi.org/10.35833/MPCE.2020.000601 DOI: https://doi.org/10.35833/MPCE.2020.000601

Chandrasekaran, K., Mohanty, M., Golla, M., Venkadesan, A., Simon, S. P.: Dynamic MPPT controller using cascade neural network for a wind power conversion system with energy management. IETE Journal of Research, 68(5), (2022) 3316-3330. https://doi.org/10.1080/03772063.2020.1756934 DOI: https://doi.org/10.1080/03772063.2020.1756934

Rachedi, M. O., Saidi, M. L., Arbaoui, F.: MPPT control design for variable speed wind turbine. International Journal of Electrical and Computer Engineering (IJECE), 10(5), (2020) 4604-4614. https://doi.org/10.11591/ijece.v10i5.pp4604-4614 DOI: https://doi.org/10.11591/ijece.v10i5.pp4604-4614

Tahiri, F. E., Chikh, K., El Afia, A., Lamterkati, J., Khafallah, M.: Simulation and experimental validation of VOC and hysteresis control strategies of unit power factor three-phase PWM rectifier. In 2017 International Conference on Electrical and Information Technologies (ICEIT) (pp. 1-6). IEEE (2017). https://doi.org/10.1109/EITech.2017.8255238 DOI: https://doi.org/10.1109/EITech.2017.8255238

Aboudrar, I., El Hani, S., Mediouni, H., Aghmad, A., Heyine, M. S.: Robust control of three phase grid connected PV system based on ADRC and fuzzy. In 2018 6th International Renewable and Sustainable Energy Conference (IRSEC) (pp. 1-6).IEEE (2018). https://doi.org/10.1109/IRSEC.2018.8702950 DOI: https://doi.org/10.1109/IRSEC.2018.8702950

Devanshu, A., Singh, M., & Kumar, N.: Adaptive predictive current control of field-oriented controlled induction motor drive. IETE Journal of Research, 68(5), (2022) 3707-3719. https://doi.org/10.1080/03772063.2020.1775502 DOI: https://doi.org/10.1080/03772063.2020.1775502

Zhang, Y., Xia, B., Yang, H., Rodriguez, J.: Overview of model predictive control for induction motor drives. Chinese Journal of Electrical Engineering, 2(1), 62-76 (2016). https://doi.org/10.23919/CJEE.2016.7933116 DOI: https://doi.org/10.23919/CJEE.2016.7933116

التنزيلات

منشور

2025-02-28

كيفية الاقتباس

Afif, B. ., Salmi, M., Berka, M., Ikreedeegh, R., & Tahir , M. (2025). Enhanced Efficiency and Dynamic Performance in Wind Power Generation Systems using Artificial Neural Networks and Predictive Current Control for PMSG-based Turbines. Solar Energy and Sustainable Development Journal, 14(1), 157–181. https://doi.org/10.51646/jsesd.v14i1.390

إصدار

القسم

Articles