Advancements and Future Challenges in Core Components of Electric and Hybrid Vehicles:
Energy Storage, Power Conversion, Traction Motors, and Charging Systems
DOI:
https://doi.org/10.51646/jsesd.v14i2.495Keywords:
Electric/hybrid vehicles, energy storage systems, traction motors, electronic power converters, charging systems.Abstract
Electric and hybrid vehicles (EVs/HEVs) are increasingly recognized as promising solutions to address rising oil costs, environmental concerns, and the global pursuit of sustainable mobility. Alongside, there is still a need for a clear and comprehensive review of the technological advancements and ongoing challenges across the core components that influence their performance, efficiency and sustainability. This review aims to fill this gap by synthesizing recent developments and future challenges in EVs/HEVs systems, with a focus on energy storage technologies, power conversion, traction motors, and charging systems. The paper adopts a structured and comparative approach, beginning with the classification of electrification levels, covering hybrid, plug-in hybrid, battery, fuel cell, and extended-range EVs. Following this, the paper discusses energy storage systems, including batteries, supercapacitors, fuel cells, and hybrid configurations, highlighting their roles in improving energy density, efficiency, and reliability. Key power electronic converters are analyzed in depth, including DC/DC and DC/AC converters. The review also examines advances in electric traction motors, including induction, switched reluctance, permanent magnet synchronous, and permanent magnet assisted synchronous reluctance motors, each with distinct performance attributes. Finally, advancements in EVs charging systems are discussed, with a focus on both conductive and inductive charging methods. This work highlights recent technological progress, identifies ongoing challenges, and provides insights to support future developments in EVs/HEVs systems.
Downloads
Metrics
References
R. R. Kumar, P. Guha, and A. Chakraborty, “Comparative assessment and selection of electric vehicle diffusion models: A global outlook,” Energy, vol. 238, p. 121932, Jan. 2022, doi: 10.1016/j.energy.2021.121932. DOI: https://doi.org/10.1016/j.energy.2021.121932
“Cars and Vans - Energy System,” IEA. Accessed: May 04, 2025. [Online]. Available: https://www.iea.org/energy-system/transport/cars-and-vans
M. Gobbi, A. Sattar, R. Palazzetti, and G. Mastinu, “Traction motors for electric vehicles: Maximization of mechanical efficiency – A review,” Appl. Energy, vol. 357, p. 122496, Mar. 2024, doi: 10.1016/j.apenergy.2023.122496. DOI: https://doi.org/10.1016/j.apenergy.2023.122496
R. Kashyap and R. B. Pachwarya, “Hybrid and electric vehicles (EVs),” presented at the INTERNATIONAL CONFERENCE ON TRENDS IN CHEMICAL ENGINEERING 2021 (ICoTRiCE2021), Universiti Malaysia Perlis, Pauh, Perlis, 2022, p. 030009. doi: 10.1063/5.0113240. DOI: https://doi.org/10.1063/5.0113240
A. Garcia, J. Monsalve-Serrano, D. Villalta, and S. Tripathi, “Electric Vehicles vs e-Fuelled ICE Vehicles: Comparison of potentials for Life Cycle CO2 Emission Reduction,” presented at the WCX SAE World Congress Experience, Mar. 2022, pp. 2022-01–0745. doi: 10.4271/2022-01-0745. DOI: https://doi.org/10.4271/2022-01-0745
E. Tosun, S. Keyinci, A. C. Yakaryılmaz, Ş. Yıldızhan, and M. Özcanlı, “Evaluation of Lithium-ion Batteries in Electric Vehicles,” Int. J. Automot. Sci. Technol., vol. 8, no. 3, pp. 332–340, Sep. 2024, doi: 10.30939/ijastech..1460955. DOI: https://doi.org/10.30939/ijastech..1460955
V. Nguyen-Tien, C. Zhang, E. Strobl, and R. J. R. Elliott, “The closing longevity gap between battery electric vehicles and internal combustion vehicles in Great Britain,” Nat. Energy, vol. 10, no. 3, pp. 354–364, Jan. 2025, doi: 10.1038/s41560-024-01698-1.
P. Chakraborty et al., “Addressing the range anxiety of battery electric vehicles with charging en route,” Sci. Rep., vol. 12, no. 1, p. 5588, Apr. 2022, doi: 10.1038/s41598-022-08942-2. DOI: https://doi.org/10.1038/s41598-022-08942-2
J. A. Sanguesa, V. Torres-Sanz, P. Garrido, F. J. Martinez, and J. M. Marquez-Barja, “A review on electric vehicles: Technologies and challenges,” Smart Cities, vol. 4, no. 1, pp. 372–404, 2021. DOI: https://doi.org/10.3390/smartcities4010022
“WEF_A_Circular_Economy_Approach_to_Battery_Electric_Vehicle_Supply_Chains_2023.pdf.” Accessed: May 04, 2025. [Online]. Available: https://www3.weforum.org/docs/WEF_A_Circular_Economy_Approach_to_Battery_Electric_Vehicle_Supply_Chains_2023.pdf
A. Tankou, G. Bieker, and D. Hall, “Scaling up reuse and recycling of electric vehicle batteries: Assessing challenges and policy approaches”.
D. E. Kuszak Viktoria, “Electric Vehicle and Battery Material Report - December 2024,” Sucden Financial. Accessed: May 04, 2025. [Online]. Available: https://www.sucdenfinancial.com/en/market-insights/ev-battery-materials-outlook/electric-vehicle-and-battery-material-report-december-2024/
“Some countries are ending support for EVs. Is it too soon? | MIT Technology Review.” Accessed: May 04, 2025. [Online]. Available: https://www.technologyreview.com/2024/09/23/1104247/ending-ev-subsidies/
A. K. Bilhan and E. Kabalci, “Power electronics controlled electric propulsion systems,” in Handbook of Power Electronics in Autonomous and Electric Vehicles, Elsevier, 2024, pp. 161–191. doi: 10.1016/B978-0-323-99545-0.00019-1. DOI: https://doi.org/10.1016/B978-0-323-99545-0.00019-1
A. Munsi, P. Pal, and S. Chowdhuri, “An Efficient G2V and V2G Converter Systems for EV Application,” in 2020 IEEE Calcutta Conference (CALCON), Kolkata, India: IEEE, Feb. 2020, pp. 194–199. doi: 10.1109/CALCON49167.2020.9106481. DOI: https://doi.org/10.1109/CALCON49167.2020.9106481
R. P. Upputuri and B. Subudhi, “A Comprehensive Review and Performance Evaluation of Bidirectional Charger Topologies for V2G/G2V Operations in EV Applications,” IEEE Trans. Transp. Electrification, vol. 10, no. 1, pp. 583–595, Mar. 2024, doi: 10.1109/TTE.2023.3289965. DOI: https://doi.org/10.1109/TTE.2023.3289965
D. A. Elalfy, E. Gouda, M. F. Kotb, V. Bureš, and B. E. Sedhom, “Comprehensive review of energy storage systems technologies, objectives, challenges, and future trends,” Energy Strategy Rev., vol. 54, p. 101482, Jul. 2024, doi: 10.1016/j.esr.2024.101482. DOI: https://doi.org/10.1016/j.esr.2024.101482
W. Zhuang et al., “A survey of powertrain configuration studies on hybrid electric vehicles,” Appl. Energy, vol. 262, p. 114553, 2020. DOI: https://doi.org/10.1016/j.apenergy.2020.114553
X. Hu, J. Han, X. Tang, and X. Lin, “Powertrain design and control in electrified vehicles: A critical review,” IEEE Trans. Transp. Electrification, vol. 7, no. 3, pp. 1990–2009, 2021. DOI: https://doi.org/10.1109/TTE.2021.3056432
W. Liu, T. Placke, and K. T. Chau, “Overview of batteries and battery management for electric vehicles,” Energy Rep., vol. 8, pp. 4058–4084, 2022. DOI: https://doi.org/10.1016/j.egyr.2022.03.016
S. Chakraborty, H.-N. Vu, M. M. Hasan, D.-D. Tran, M. E. Baghdadi, and O. Hegazy, “DC-DC converter topologies for electric vehicles, plug-in hybrid electric vehicles and fast charging stations: State of the art and future trends,” Energies, vol. 12, no. 8, p. 1569, 2019. DOI: https://doi.org/10.3390/en12081569
K. Sayed, A. Almutairi, N. Albagami, O. Alrumayh, A. G. Abo-Khalil, and H. Saleeb, “A review of DC-AC converters for electric vehicle applications,” Energies, vol. 15, no. 3, p. 1241, 2022.
P. Patil, “Electric Vehicle Charging Infrastructure: Current Status, Challenges, and Future Developments,” Int. J. Intell. Autom. Comput., vol. 2, no. 1, pp. 1–12, 2019.
F. Alanazi, “Electric vehicles: benefits, challenges, and potential solutions for widespread adaptation,” Appl. Sci., vol. 13, no. 10, p. 6016, 2023.
H. S. Das, M. M. Rahman, S. Li, and C. W. Tan, “Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review,” Renew. Sustain. Energy Rev., vol. 120, p. 109618, 2020. DOI: https://doi.org/10.1016/j.rser.2019.109618
M. Şimşir and A. Ghayth, “Global Trends in Electric Vehicle Battery Efficiency and Impact on Sustainable Grid,” Sol. Energy Sustain. Dev. J., vol. 13, no. 2, pp. 1–17, Jun. 2024, doi: 10.51646/jsesd.v13i2.202. DOI: https://doi.org/10.51646/jsesd.v13i2.202
H. Lv, C. Song, N. Zhang, D. Wang, and C. Qi, “Energy Management Strategy of Mild Hybrid Electric Vehicle Considering Motor Power Compensation,” Machines, vol. 10, no. 11, p. 986, Oct. 2022, doi: 10.3390/machines10110986. DOI: https://doi.org/10.3390/machines10110986
D. S. Cardoso, P. O. Fael, and A. Espírito-Santo, “A review of micro and mild hybrid systems,” Energy Rep., vol. 6, pp. 385–390, Feb. 2020, doi: 10.1016/j.egyr.2019.08.077. DOI: https://doi.org/10.1016/j.egyr.2019.08.077
M. Ehsani, K. V. Singh, H. O. Bansal, and R. T. Mehrjardi, “State of the Art and Trends in Electric and Hybrid Electric Vehicles,” Proc. IEEE, vol. 109, no. 6, pp. 967–984, Jun. 2021, doi: 10.1109/JPROC.2021.3072788.
M. Ehsani, K. V. Singh, H. O. Bansal, and R. T. Mehrjardi, “State of the art and trends in electric and hybrid electric vehicles,” Proc. IEEE, vol. 109, no. 6, pp. 967–984, 2021. DOI: https://doi.org/10.1109/JPROC.2021.3072788
V. Kamaraj, J. Ravishankar, and S. Jeevananthan, Eds., Emerging Solutions for e-Mobility and Smart Grids: Select Proceedings of ICRES 2020. in Springer Proceedings in Energy. Singapore: Springer Singapore, 2021. doi: 10.1007/978-981-16-0719-6. DOI: https://doi.org/10.1007/978-981-16-0719-6
I. Alhurayyis, A. Elkhateb, and J. Morrow, “Isolated and Nonisolated DC-to-DC Converters for Medium-Voltage DC Networks: A Review,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 9, no. 6, pp. 7486–7500, Dec. 2021, doi: 10.1109/JESTPE.2020.3028057. DOI: https://doi.org/10.1109/JESTPE.2020.3028057
D. Lanzarotto, M. Marchesoni, M. Passalacqua, A. P. Prato, and M. Repetto, “Overview of different hybrid vehicle architectures,” IFAC-Pap., vol. 51, no. 9, pp. 218–222, 2018, doi: 10.1016/j.ifacol.2018.07.036. DOI: https://doi.org/10.1016/j.ifacol.2018.07.036
D.-D. Tran, M. Vafaeipour, M. El Baghdadi, R. Barrero, J. Van Mierlo, and O. Hegazy, “Thorough state-of-the-art analysis of electric and hybrid vehicle powertrains: Topologies and integrated energy management strategies,” Renew. Sustain. Energy Rev., vol. 119, p. 109596, Mar. 2020, doi: 10.1016/j.rser.2019.109596. DOI: https://doi.org/10.1016/j.rser.2019.109596
M. Pan et al., “Recent progress on energy management strategies for hybrid electric vehicles,” J. Energy Storage, vol. 116, p. 115936, Apr. 2025, doi: 10.1016/j.est.2025.115936. DOI: https://doi.org/10.1016/j.est.2025.115936
K. Boudmen, A. El Ghazi, Z. Eddaoudi, Z. Aarab, and M. D. Rahmani, “Electric vehicles, the future of transportation powered by machine learning: a brief review,” Energy Inform., vol. 7, no. 1, p. 80, Sep. 2024, doi: 10.1186/s42162-024-00379-3. DOI: https://doi.org/10.1186/s42162-024-00379-3
N. Mizushima and M. Oguma, “Energy conversion analysis for mild hybrid electric vehicles equipped with an electric supercharged SI engine via multi-domain acausal modeling,” Energy Convers. Manag., vol. 286, p. 117054, Jun. 2023, doi: 10.1016/j.enconman.2023.117054. DOI: https://doi.org/10.1016/j.enconman.2023.117054
K. Jyotheeswara Reddy and S. Natarajan, “Energy sources and multi-input DC-DC converters used in hybrid electric vehicle applications – A review,” Int. J. Hydrog. Energy, vol. 43, no. 36, pp. 17387–17408, Sep. 2018, doi: 10.1016/j.ijhydene.2018.07.076.
K. Jyotheeswara Reddy and S. Natarajan, “Energy sources and multi-input DC-DC converters used in hybrid electric vehicle applications – A review,” Int. J. Hydrog. Energy, vol. 43, no. 36, pp. 17387–17408, Sep. 2018, doi: 10.1016/j.ijhydene.2018.07.076. DOI: https://doi.org/10.1016/j.ijhydene.2018.07.076
H. S. Das, C. W. Tan, and A. H. M. Yatim, “Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies,” Renew. Sustain. Energy Rev., vol. 76, pp. 268–291, Sep. 2017, doi: 10.1016/j.rser.2017.03.056. DOI: https://doi.org/10.1016/j.rser.2017.03.056
I.-S. Sorlei et al., “Fuel Cell Electric Vehicles—A Brief Review of Current Topologies and Energy Management Strategies,” Energies, vol. 14, no. 1, p. 252, Jan. 2021, doi: 10.3390/en14010252. DOI: https://doi.org/10.3390/en14010252
N. Sulaiman, M. A. Hannan, A. Mohamed, P. J. Ker, E. H. Majlan, and W. R. Wan Daud, “Optimization of energy management system for fuel-cell hybrid electric vehicles: Issues and recommendations,” Appl. Energy, vol. 228, pp. 2061–2079, Oct. 2018, doi: 10.1016/j.apenergy.2018.07.087. DOI: https://doi.org/10.1016/j.apenergy.2018.07.087
Modern Electric, Hybrid Electric, and Fuel Cell Vehicles, Third Edition. CRC Press, 2018. doi: 10.1201/9780429504884. DOI: https://doi.org/10.1201/9780429504884
R. M. Dell, P. T. Moseley, and D. A. J. Rand, “Progressive Electrification of Road Vehicles,” in Towards Sustainable Road Transport, Elsevier, 2014, pp. 157–192. doi: 10.1016/B978-0-12-404616-0.00005-0. DOI: https://doi.org/10.1016/B978-0-12-404616-0.00005-0
B. Xiao, J. Ruan, W. Yang, P. D. Walker, and N. Zhang, “A review of pivotal energy management strategies for extended range electric vehicles,” Renew. Sustain. Energy Rev., vol. 149, p. 111194, Oct. 2021, doi: 10.1016/j.rser.2021.111194. DOI: https://doi.org/10.1016/j.rser.2021.111194
G. G. Njema, R. B. O. Ouma, and J. K. Kibet, “A Review on the Recent Advances in Battery Development and Energy Storage Technologies,” J. Renew. Energy, vol. 2024, pp. 1–35, May 2024, doi: 10.1155/2024/2329261. DOI: https://doi.org/10.1155/2024/2329261
A. Pamidimukkala, S. Kermanshachi, J. M. Rosenberger, and G. Hladik, “Evaluation of barriers to electric vehicle adoption: A study of technological, environmental, financial, and infrastructure factors,” Transp. Res. Interdiscip. Perspect., vol. 22, p. 100962, Nov. 2023, doi: 10.1016/j.trip.2023.100962. DOI: https://doi.org/10.1016/j.trip.2023.100962
M. S. Mastoi et al., “An in-depth analysis of electric vehicle charging station infrastructure, policy implications, and future trends,” Energy Rep., vol. 8, pp. 11504–11529, Nov. 2022, doi: 10.1016/j.egyr.2022.09.011.
F. Alanazi, “Electric Vehicles: Benefits, Challenges, and Potential Solutions for Widespread Adaptation,” Appl. Sci., vol. 13, no. 10, p. 6016, May 2023, doi: 10.3390/app13106016.
Y. Ligen, H. Vrubel, and H. Girault, “Mobility from Renewable Electricity: Infrastructure Comparison for Battery and Hydrogen Fuel Cell Vehicles,” World Electr. Veh. J., vol. 9, no. 1, p. 3, May 2018, doi: 10.3390/wevj9010003. DOI: https://doi.org/10.3390/wevj9010003
A. A. Nkembi, M. Simonazzi, D. Santoro, P. Cova, and N. Delmonte, “Comprehensive Review of Energy Storage Systems Characteristics and Models for Automotive Applications,” Batteries, vol. 10, no. 3, p. 88, Mar. 2024, doi: 10.3390/batteries10030088. DOI: https://doi.org/10.3390/batteries10030088
M. S. Mastoi et al., “An in-depth analysis of electric vehicle charging station infrastructure, policy implications, and future trends,” Energy Rep., vol. 8, pp. 11504–11529, Nov. 2022, doi: 10.1016/j.egyr.2022.09.011. DOI: https://doi.org/10.1016/j.egyr.2022.09.011
S. Vengatesan, A. Jayakumar, and K. K. Sadasivuni, “FCEV vs. BEV — A short overview on identifying the key contributors to affordable & clean energy (SDG-7),” Energy Strategy Rev., vol. 53, p. 101380, May 2024, doi: 10.1016/j.esr.2024.101380. DOI: https://doi.org/10.1016/j.esr.2024.101380
H. Fathabadi, “Plug-In Hybrid Electric Vehicles: Replacing Internal Combustion Engine With Clean and Renewable Energy Based Auxiliary Power Sources,” IEEE Trans. Power Electron., vol. 33, no. 11, pp. 9611–9618, Nov. 2018, doi: 10.1109/TPEL.2018.2797250. DOI: https://doi.org/10.1109/TPEL.2018.2797250
A. Pamidimukkala, S. Kermanshachi, J. M. Rosenberger, and G. Hladik, “Barriers and motivators to the adoption of electric vehicles: A global review,” Green Energy Intell. Transp., vol. 3, no. 2, p. 100153, Apr. 2024, doi: 10.1016/j.geits.2024.100153. DOI: https://doi.org/10.1016/j.geits.2024.100153
J. A. Gómez and D. M. F. Santos, “The Status of On-Board Hydrogen Storage in Fuel Cell Electric Vehicles,” Designs, vol. 7, no. 4, p. 97, Aug. 2023, doi: 10.3390/designs7040097. DOI: https://doi.org/10.3390/designs7040097
J. Halbey, S. Kowalewski, and M. Ziefle, “Going on a Road-Trip with My Electric Car: Acceptance Criteria for Long-Distance-Use of Electric Vehicles,” in Design, User Experience, and Usability: Interactive Experience Design, vol. 9188, A. Marcus, Ed., in Lecture Notes in Computer Science, vol. 9188. , Cham: Springer International Publishing, 2015, pp. 473–484. doi: 10.1007/978-3-319-20889-3_44. DOI: https://doi.org/10.1007/978-3-319-20889-3_44
R. Cheng, W. Zhang, J. Yang, S. Wang, and L. Li, “Analysis of the Effects of Different Driving Cycles on the Driving Range and Energy Consumption of BEVs,” World Electr. Veh. J., vol. 16, no. 3, p. 124, Feb. 2025, doi: 10.3390/wevj16030124. DOI: https://doi.org/10.3390/wevj16030124
M. Abdelsattar Mohamed Saeed, M. M. Aly, and S. Abu-Elwfa, “A Review on Hybrid Electrical Vehicles: Architectures, Classification and Energy Management,” SVU-Int. J. Eng. Sci. Appl., vol. 5, no. 2, pp. 93–99, Dec. 2024, doi: 10.21608/svusrc.2024.263668.1177. DOI: https://doi.org/10.21608/svusrc.2024.263668.1177
A. König, L. Nicoletti, D. Schröder, S. Wolff, A. Waclaw, and M. Lienkamp, “An Overview of Parameter and Cost for Battery Electric Vehicles,” World Electr. Veh. J., vol. 12, no. 1, p. 21, Feb. 2021, doi: 10.3390/wevj12010021. DOI: https://doi.org/10.3390/wevj12010021
D. Baek, A. Bocca, and A. Macii, “A cost of ownership analysis of batteries in all-electric and plug-in hybrid vehicles,” Energy Ecol. Environ., vol. 7, no. 6, pp. 604–613, Dec. 2022, doi: 10.1007/s40974-022-00256-3. DOI: https://doi.org/10.1007/s40974-022-00256-3
K. Petrauskienė, A. Galinis, D. Kliaugaitė, and J. Dvarionienė, “Comparative Environmental Life Cycle and Cost Assessment of Electric, Hybrid, and Conventional Vehicles in Lithuania,” Sustainability, vol. 13, no. 2, p. 957, Jan. 2021, doi: 10.3390/su13020957. DOI: https://doi.org/10.3390/su13020957
P. Soszynska, H. Saleh, H. Kar, L. V. Iyer, C. Viana, and N. C. Kar, “Driving the Future: An Analysis of Total Cost of Ownership for Electrified Vehicles in North America,” World Electr. Veh. J., vol. 15, no. 11, p. 492, Oct. 2024, doi: 10.3390/wevj15110492. DOI: https://doi.org/10.3390/wevj15110492
C. Rout, H. Li, V. Dupont, and Z. Wadud, “A Comparative Total Cost of Ownership Analysis of Heavy Duty On-Road and Off-Road Vehicles Powered by Hydrogen, Electricity, and Diesel,” SSRN Electron. J., 2022, doi: 10.2139/ssrn.4087236. DOI: https://doi.org/10.2139/ssrn.4087236
D. De Wolf and Y. Smeers, “Comparison of Battery Electric Vehicles and Fuel Cell Vehicles,” World Electr. Veh. J., vol. 14, no. 9, p. 262, Sep. 2023, doi: 10.3390/wevj14090262. DOI: https://doi.org/10.3390/wevj14090262
T. Selmi, A. Khadhraoui, and A. Cherif, “Fuel cell–based electric vehicles technologies and challenges,” Environ. Sci. Pollut. Res., vol. 29, no. 52, pp. 78121–78131, Nov. 2022, doi: 10.1007/s11356-022-23171-w. DOI: https://doi.org/10.1007/s11356-022-23171-w
C. Sudjoko, N. A. Sasongko, I. Utami, and A. Maghfuri, “Utilization of electric vehicles as an energy alternative to reduce carbon emissions,” IOP Conf. Ser. Earth Environ. Sci., vol. 926, no. 1, p. 012094, Nov. 2021, doi: 10.1088/1755-1315/926/1/012094. DOI: https://doi.org/10.1088/1755-1315/926/1/012094
R. Kene, T. Olwal, and B. J. Van Wyk, “Sustainable Electric Vehicle Transportation,” Sustainability, vol. 13, no. 22, p. 12379, Nov. 2021, doi: 10.3390/su132212379.
S. Micari and G. Napoli, “Electric Vehicles for a Flexible Energy System: Challenges and Opportunities,” Energies, vol. 17, no. 22, p. 5614, Nov. 2024, doi: 10.3390/en17225614. DOI: https://doi.org/10.3390/en17225614
A. S. Al-Adsani and O. Beik, “Electric and Hybrid Electric Powertrains,” in Multiphase Hybrid Electric Machines, Cham: Springer International Publishing, 2022, pp. 143–170. doi: 10.1007/978-3-030-80435-0_5. DOI: https://doi.org/10.1007/978-3-030-80435-0_5
A. Albatayneh, A. Juaidi, M. Jaradat, and F. Manzano-Agugliaro, “Future of Electric and Hydrogen Cars and Trucks: An Overview,” Energies, vol. 16, no. 7, p. 3230, Apr. 2023, doi: 10.3390/en16073230. DOI: https://doi.org/10.3390/en16073230
R. Kene, T. Olwal, and B. J. Van Wyk, “Sustainable Electric Vehicle Transportation,” Sustainability, vol. 13, no. 22, p. 12379, Nov. 2021, doi: 10.3390/su132212379. DOI: https://doi.org/10.3390/su132212379
M. K. Hasan, M. Mahmud, A. A. Habib, S. M. A. Motakabber, and S. Islam, “Review of electric vehicle energy storage and management system: Standards, issues, and challenges,” J. Energy Storage, vol. 41, p. 102940, 2021. DOI: https://doi.org/10.1016/j.est.2021.102940
A. K. M. Ahasan Habib, S. M. A. Motakabber, and M. I. Ibrahimy, “A Comparative Study of Electrochemical Battery for Electric Vehicles Applications,” in 2019 IEEE International Conference on Power, Electrical, and Electronics and Industrial Applications (PEEIACON), Dhaka, Bangladesh: IEEE, Nov. 2019, pp. 43–47. doi: 10.1109/PEEIACON48840.2019.9071955. DOI: https://doi.org/10.1109/PEEIACON48840.2019.9071955
X. Sun, Z. Li, X. Wang, and C. Li, “Technology Development of Electric Vehicles: A Review,” Energies, vol. 13, no. 1, p. 90, Dec. 2019, doi: 10.3390/en13010090. DOI: https://doi.org/10.3390/en13010090
D. E. O. Juanico, “Revitalizing lead-acid battery technology: a comprehensive review on material and operation-based interventions with a novel sound-assisted charging method,” Front. Batter. Electrochem., vol. 2, p. 1268412, Jan. 2024, doi: 10.3389/fbael.2023.1268412. DOI: https://doi.org/10.3389/fbael.2023.1268412
P. Wang and C. Zhu, “Summary of Lead-acid Battery Management System,” IOP Conf. Ser. Earth Environ. Sci., vol. 440, no. 2, p. 022014, Feb. 2020, doi: 10.1088/1755-1315/440/2/022014. DOI: https://doi.org/10.1088/1755-1315/440/2/022014
A. M. Çolak and E. Irmak, “Electric Vehicle Advancements, Barriers, and Potential: A Comprehensive Review,” Electr. Power Compon. Syst., vol. 51, no. 17, pp. 2010–2042, Oct. 2023, doi: 10.1080/15325008.2023.2239238.
D. Kumar, S. B. Kuhar, and D. K. Kanchan, “Room temperature sodium-sulfur batteries as emerging energy source,” J. Energy Storage, vol. 18, pp. 133–148, Aug. 2018, doi: 10.1016/j.est.2018.04.021. DOI: https://doi.org/10.1016/j.est.2018.04.021
F. Bignucolo, M. Coppo, G. Crugnola, and A. Savio, “Application of a Simplified Thermal-Electric Model of a Sodium-Nickel Chloride Battery Energy Storage System to a Real Case Residential Prosumer,” Energies, vol. 10, no. 10, p. 1497, Sep. 2017, doi: 10.3390/en10101497. DOI: https://doi.org/10.3390/en10101497
A. M. Çolak and E. Irmak, “Electric Vehicle Advancements, Barriers, and Potential: A Comprehensive Review,” Electr. Power Compon. Syst., vol. 51, no. 17, pp. 2010–2042, Oct. 2023, doi: 10.1080/15325008.2023.2239238. DOI: https://doi.org/10.1080/15325008.2023.2239238
M. Yekini Suberu, M. Wazir Mustafa, and N. Bashir, “Energy storage systems for renewable energy power sector integration and mitigation of intermittency,” Renew. Sustain. Energy Rev., vol. 35, pp. 499–514, Jul. 2014, doi: 10.1016/j.rser.2014.04.009. DOI: https://doi.org/10.1016/j.rser.2014.04.009
S. Karnchanawong and P. Limpiteeprakan, “Evaluation of heavy metal leaching from spent household batteries disposed in municipal solid waste,” Waste Manag., vol. 29, no. 2, pp. 550–558, Feb. 2009, doi: 10.1016/j.wasman.2008.03.018. DOI: https://doi.org/10.1016/j.wasman.2008.03.018
F. Alanazi, “Electric Vehicles: Benefits, Challenges, and Potential Solutions for Widespread Adaptation,” Appl. Sci., vol. 13, no. 10, p. 6016, May 2023, doi: 10.3390/app13106016. DOI: https://doi.org/10.3390/app13106016
Y. Yin, Z. Yuan, and X. Li, “Rechargeable aqueous zinc–bromine batteries: an overview and future perspectives,” Phys. Chem. Chem. Phys., vol. 23, no. 46, pp. 26070–26084, 2021, doi: 10.1039/D1CP03987C. DOI: https://doi.org/10.1039/D1CP03987C
T. S. Costa, M. De Fatima Rosolem, J. L. D. S. Silva, and M. G. Villalva, “An Overview of Electrochemical Batteries for ESS Applied to PV Systems Connected to the Grid,” in 2021 14th IEEE International Conference on Industry Applications (INDUSCON), São Paulo, Brazil: IEEE, Aug. 2021, pp. 1392–1399. doi: 10.1109/INDUSCON51756.2021.9529464. DOI: https://doi.org/10.1109/INDUSCON51756.2021.9529464
P. H. Camargos, P. H. J. Dos Santos, I. R. Dos Santos, G. S. Ribeiro, and R. E. Caetano, “Perspectives on LI‐ION battery categories for electric vehicle applications: A review of state of the art,” Int. J. Energy Res., vol. 46, no. 13, pp. 19258–19268, Oct. 2022, doi: 10.1002/er.7993. DOI: https://doi.org/10.1002/er.7993
S. Antony Jose et al., “Solid-State Lithium Batteries: Advances, Challenges, and Future Perspectives,” Batteries, vol. 11, no. 3, p. 90, Feb. 2025, doi: 10.3390/batteries11030090. DOI: https://doi.org/10.3390/batteries11030090
R. Bridgelall, “Scientometric Insights into Rechargeable Solid-State Battery Developments,” World Electr. Veh. J., vol. 15, no. 12, p. 555, Dec. 2024, doi: 10.3390/wevj15120555. DOI: https://doi.org/10.3390/wevj15120555
H. Wang, C. S. Ozkan, H. Zhu, and X. Li, “Advances in solid-state batteries: Materials, interfaces, characterizations, and devices,” MRS Bull., vol. 48, no. 12, pp. 1221–1229, Dec. 2023, doi: 10.1557/s43577-023-00649-7. DOI: https://doi.org/10.1557/s43577-023-00649-7
Y. Guo et al., “Solid-state lithium batteries: Safety and prospects,” eScience, vol. 2, no. 2, pp. 138–163, Mar. 2022, doi: 10.1016/j.esci.2022.02.008. DOI: https://doi.org/10.1016/j.esci.2022.02.008
J. Huang et al., “High‐Performance All‐Solid‐State Lithium Metal Batteries Enabled by Ionic Covalent Organic Framework Composites,” Adv. Energy Mater., vol. 14, no. 27, p. 2400762, Jul. 2024, doi: 10.1002/aenm.202400762. DOI: https://doi.org/10.1002/aenm.202400762
D. Gayen, Y. Schütze, S. Groh, and J. Dzubiella, “Optimizing cation–π force fields for molecular dynamics studies of competitive solvation in conjugated organosulfur polymers for lithium–sulfur batteries,” Phys. Chem. Chem. Phys., vol. 27, no. 11, pp. 5655–5668, 2025, doi: 10.1039/D4CP04484C. DOI: https://doi.org/10.1039/D4CP04484C
R. Fang, K. Chen, Z. Sun, G. Hu, D. Wang, and F. Li, “Realizing high‐energy density for practical lithium–sulfur batteries,” Interdiscip. Mater., vol. 2, no. 5, pp. 761–770, Sep. 2023, doi: 10.1002/idm2.12118. DOI: https://doi.org/10.1002/idm2.12118
Q. Zhu, W. Sun, H. Zhou, and D. Mao, “A Review of Lithium–Sulfur Batteries Based on Metal–Organic Frameworks: Progress and Prospects,” Batteries, vol. 11, no. 3, p. 89, Feb. 2025, doi: 10.3390/batteries11030089. DOI: https://doi.org/10.3390/batteries11030089
X. Chen, T. Hou, K. A. Persson, and Q. Zhang, “Combining theory and experiment in lithium–sulfur batteries: Current progress and future perspectives,” Mater. Today, vol. 22, pp. 142–158, Jan. 2019, doi: 10.1016/j.mattod.2018.04.007. DOI: https://doi.org/10.1016/j.mattod.2018.04.007
H. Raza et al., “Li-S Batteries: Challenges, Achievements and Opportunities,” Electrochem. Energy Rev., vol. 6, no. 1, p. 29, Dec. 2023, doi: 10.1007/s41918-023-00188-4. DOI: https://doi.org/10.1007/s41918-023-00188-4
S. Baazouzi, N. Feistel, J. Wanner, I. Landwehr, A. Fill, and K. P. Birke, “Design, Properties, and Manufacturing of Cylindrical Li-Ion Battery Cells—A Generic Overview,” Batteries, vol. 9, no. 6, p. 309, Jun. 2023, doi: 10.3390/batteries9060309. DOI: https://doi.org/10.3390/batteries9060309
G. Belingardi and A. Scattina, “Battery Pack and Underbody: Integration in the Structure Design for Battery Electric Vehicles—Challenges and Solutions,” Vehicles, vol. 5, no. 2, pp. 498–514, Apr. 2023, doi: 10.3390/vehicles5020028. DOI: https://doi.org/10.3390/vehicles5020028
M. Ank et al., “Lithium-Ion Cells in Automotive Applications: Tesla 4680 Cylindrical Cell Teardown and Characterization,” J. Electrochem. Soc., vol. 170, no. 12, p. 120536, Dec. 2023, doi: 10.1149/1945-7111/ad14d0. DOI: https://doi.org/10.1149/1945-7111/ad14d0
S. Verma et al., “A comprehensive review on energy storage in hybrid electric vehicle,” J. Traffic Transp. Eng. Engl. Ed., vol. 8, no. 5, pp. 621–637, 2021. DOI: https://doi.org/10.1016/j.jtte.2021.09.001
M. Horn, J. MacLeod, M. Liu, J. Webb, and N. Motta, “Supercapacitors: A new source of power for electric cars?,” Econ. Anal. Policy, vol. 61, pp. 93–103, Mar. 2019, doi: 10.1016/j.eap.2018.08.003. DOI: https://doi.org/10.1016/j.eap.2018.08.003
R. C. Neto et al., “Mobile Charging Stations: A Comprehensive Review of Converter Topologies and Market Solutions,” Energies, vol. 17, no. 23, p. 5931, Nov. 2024, doi: 10.3390/en17235931. DOI: https://doi.org/10.3390/en17235931
D. Lemian and F. Bode, “Battery-supercapacitor energy storage systems for electrical vehicles: a review,” Energies, vol. 15, no. 15, p. 5683, 2022. DOI: https://doi.org/10.3390/en15155683
“Lamborghini SIÁN FKP 37,” Lamborghini.com. Accessed: May 07, 2025. [Online]. Available: https://www.lamborghini.com/
S. Sharma and P. Chand, “Supercapacitor and electrochemical techniques: A brief review,” Results Chem., vol. 5, p. 100885, Jan. 2023, doi: 10.1016/j.rechem.2023.100885. DOI: https://doi.org/10.1016/j.rechem.2023.100885
A. G. Olabi, T. Wilberforce, and M. A. Abdelkareem, “Fuel cell application in the automotive industry and future perspective,” Energy, vol. 214, p. 118955, Jan. 2021, doi: 10.1016/j.energy.2020.118955. DOI: https://doi.org/10.1016/j.energy.2020.118955
K. Jain and K. Jain, “Hydrogen Fuel Cell: A Review of different types of fuel Cells with Emphasis on PEM fuel cells and Catalysts used in the PEM fuel cell,” Sep. 2021.
N. Sazali, W. N. Wan Salleh, A. S. Jamaludin, and M. N. Mhd Razali, “New Perspectives on Fuel Cell Technology: A Brief Review,” Membranes, vol. 10, no. 5, p. 99, May 2020, doi: 10.3390/membranes10050099. DOI: https://doi.org/10.3390/membranes10050099
T. A. Abo Alkibash and Ş. Kuşdoğan, “Overview of Fuel Cell-Hybrid Power Sources Vehicle Technology: A Review,” Int. J. Automot. Sci. Technol., vol. 8, no. 3, pp. 260–272, Sep. 2024, doi: 10.30939/ijastech..1432215. DOI: https://doi.org/10.30939/ijastech..1432215
D. Wu, J. Ren, H. Davies, J. Shang, and O. Haas, “Intelligent Hydrogen Fuel Cell Range Extender for Battery Electric Vehicles,” World Electr. Veh. J., vol. 10, no. 2, p. 29, May 2019, doi: 10.3390/wevj10020029. DOI: https://doi.org/10.3390/wevj10020029
A. H. Yakout, H. M. Hasanien, and H. Kotb, “Proton Exchange Membrane Fuel Cell Steady State Modeling Using Marine Predator Algorithm Optimizer,” Ain Shams Eng. J., vol. 12, no. 4, pp. 3765–3774, Dec. 2021, doi: 10.1016/j.asej.2021.04.014. DOI: https://doi.org/10.1016/j.asej.2021.04.014
M. K. Hasan, A. A. Habib, S. Islam, M. Balfaqih, K. M. Alfawaz, and D. Singh, “Smart Grid Communication Networks for Electric Vehicles Empowering Distributed Energy Generation: Constraints, Challenges, and Recommendations,” Energies, vol. 16, no. 3, p. 1140, Jan. 2023, doi: 10.3390/en16031140. DOI: https://doi.org/10.3390/en16031140
T. Bocklisch, “Hybrid energy storage approach for renewable energy applications,” J. Energy Storage, vol. 8, pp. 311–319, Nov. 2016, doi: 10.1016/j.est.2016.01.004. DOI: https://doi.org/10.1016/j.est.2016.01.004
H. Wang, Q. Wang, and B. Hu, “A review of developments in energy storage systems for hybrid excavators,” Autom. Constr., vol. 80, pp. 1–10, Aug. 2017, doi: 10.1016/j.autcon.2017.03.010. DOI: https://doi.org/10.1016/j.autcon.2017.03.010
A. Turksoy, A. Teke, and A. Alkaya, “A comprehensive overview of the dc-dc converter-based battery charge balancing methods in electric vehicles,” Renew. Sustain. Energy Rev., vol. 133, p. 110274, 2020. DOI: https://doi.org/10.1016/j.rser.2020.110274
M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, and B. Lehman, “Step-Up DC–DC Converters: A Comprehensive Review of Voltage-Boosting Techniques, Topologies, and Applications,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9143–9178, Dec. 2017, doi: 10.1109/TPEL.2017.2652318. DOI: https://doi.org/10.1109/TPEL.2017.2652318
K. Faraj and J. Hussain, “Analysis and Comparison of DC-DC Boost Converter and Interleaved DC-DC Boost Converter,” Eng. Technol. J., vol. 38, no. 5, pp. 622–635, May 2020, doi: 10.30684/etj.v38i5A.291. DOI: https://doi.org/10.30684/etj.v38i5A.291
S. Kascak, M. Prazenica, M. Jarabicova, and R. Konarik, “Four Phase Interleaved Boost Converter: Theory and Applications,” vol. 13, 2018.
A. Varshney, R. Kumar, D. Kuanr, and M. Gupta, “Soft-Switched Boost DC-DC Converter System for Electric Vehicles using An Auxiliary Resonant Circuit,” Inter J Emerg Technol Adv Eng, vol. 4, pp. 845–850, 2014.
Lalmalsawmi and P. K. Biswas, “Full-Bridge DC-DC Converter and Boost DC-DC Converter with Resonant Circuit For Plug-in Hybrid Electric Vehicles,” in 2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP), Hyderabad, India: IEEE, Jul. 2022, pp. 1–6. doi: 10.1109/ICICCSP53532.2022.9862426. DOI: https://doi.org/10.1109/ICICCSP53532.2022.9862426
R. R. De Melo, F. L. Tofoli, S. Daher, and F. L. M. Antunes, “Interleaved bidirectional DC–DC converter for electric vehicle applications based on multiple energy storage devices,” Electr. Eng., vol. 102, no. 4, pp. 2011–2023, Dec. 2020, doi: 10.1007/s00202-020-01009-3. DOI: https://doi.org/10.1007/s00202-020-01009-3
A. Affam, Y. M. Buswig, A.-K. B. H. Othman, N. B. Julai, and O. Qays, “A review of multiple input DC-DC converter topologies linked with hybrid electric vehicles and renewable energy systems,” Renew. Sustain. Energy Rev., vol. 135, p. 110186, Jan. 2021, doi: 10.1016/j.rser.2020.110186. DOI: https://doi.org/10.1016/j.rser.2020.110186
R. Islam, S. S. H. Rafin, and O. A. Mohammed, “Comprehensive review of power electronic converters in electric vehicle applications,” Forecasting, vol. 5, no. 1, pp. 22–80, 2022. DOI: https://doi.org/10.3390/forecast5010002
L. Gevorkov, J. L. Domínguez-García, L. T. Romero, and À. F. Martínez, “Modern MultiPort Converter Technologies: A Systematic Review,” Appl. Sci., vol. 13, no. 4, p. 2579, Feb. 2023, doi: 10.3390/app13042579. DOI: https://doi.org/10.3390/app13042579
P. Kolahian, H. Tarzamni, A. Nikafrooz, and M. Hamzeh, “Multi-port DC–DC converter for bipolar medium voltage DC micro-grid applications,” IET Power Electron., vol. 12, no. 7, pp. 1841–1849, 2019, doi: 10.1049/iet-pel.2018.6031. DOI: https://doi.org/10.1049/iet-pel.2018.6031
S. J. Ríos, D. J. Pagano, and K. E. Lucas, “Bidirectional Power Sharing for DC Microgrid Enabled by Dual Active Bridge DC-DC Converter,” Energies, vol. 14, no. 2, p. 404, Jan. 2021, doi: 10.3390/en14020404. DOI: https://doi.org/10.3390/en14020404
G. Rajendran, C. A. Vaithilingam, N. Misron, K. Naidu, and M. R. Ahmed, “A comprehensive review on system architecture and international standards for electric vehicle charging stations,” J. Energy Storage, vol. 42, p. 103099, 2021. DOI: https://doi.org/10.1016/j.est.2021.103099
R. W. A. A. De Doncker, D. M. Divan, and M. H. Kheraluwala, “A three-phase soft-switched high-power-density DC/DC converter for high-power applications,” IEEE Trans. Ind. Appl., vol. 27, no. 1, pp. 63–73, Feb. 1991, doi: 10.1109/28.67533. DOI: https://doi.org/10.1109/28.67533
M. Al, J. Van, and H. Gualous, “DC/DC Converters for Electric Vehicles,” in Electric Vehicles - Modelling and Simulations, S. Soylu, Ed., InTech, 2011. doi: 10.5772/17048. DOI: https://doi.org/10.5772/17048
A. R. Dar, A. Haque, M. A. Khan, V. S. B. Kurukuru, and S. Mehfuz, “On-Board Chargers for Electric Vehicles: A Comprehensive Performance and Efficiency Review,” Energies, vol. 17, no. 18, p. 4534, Sep. 2024, doi: 10.3390/en17184534. DOI: https://doi.org/10.3390/en17184534
H.-S. Oh, S.-Y. Hong, J. Lee, and J.-B. Lee, “Comparison of Bi-Directional Topologies for On-Board Charger: A 10.9 kW High-Efficiency High Power Density of DC-DC Stage,” Energies, vol. 17, no. 21, p. 5496, Nov. 2024, doi: 10.3390/en17215496. DOI: https://doi.org/10.3390/en17215496
A. Ali, H. H. H. Mousa, M. F. Shaaban, M. A. Azzouz, and A. S. A. Awad, “A Comprehensive Review on Charging Topologies and Power Electronic Converter Solutions for Electric Vehicles,” J. Mod. Power Syst. Clean Energy, vol. 12, no. 3, pp. 675–694, May 2024, doi: 10.35833/MPCE.2023.000107. DOI: https://doi.org/10.35833/MPCE.2023.000107
O. Ceylan, M. Neshat, and S. Mirjalili, “Cascaded H-bridge multilevel inverters optimization using adaptive grey wolf optimizer with local search,” Electr. Eng., vol. 106, no. 2, pp. 1765–1779, Apr. 2024, doi: 10.1007/s00202-021-01441-z. DOI: https://doi.org/10.1007/s00202-021-01441-z
S. Kharjule, “Voltage source inverter,” in 2015 International Conference on Energy Systems and Applications, Pune, India: IEEE, Oct. 2015, pp. 537–542. doi: 10.1109/ICESA.2015.7503407. DOI: https://doi.org/10.1109/ICESA.2015.7503407
B. Wu and M. Narimani, High‐Power Converters and AC Drives, 1st ed. Wiley, 2017. doi: 10.1002/9781119156079. DOI: https://doi.org/10.1002/9781119156079
H. Dai, R. A. Torres, W. Lee, T. M. Jahns, and B. Sarlioglu, “High-Frequency Evaluation of Two-Level Voltage-Source and Current-Source Inverters with Different Output Cables,” in 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA: IEEE, Oct. 2020, pp. 2403–2410. doi: 10.1109/ECCE44975.2020.9235681. DOI: https://doi.org/10.1109/ECCE44975.2020.9235681
F. Marignetti, R. L. Di Stefano, G. Rubino, and R. Giacomobono, “Current Source Inverter (CSI) Power Converters in Photovoltaic Systems: A Comprehensive Review of Performance, Control, and Integration,” Energies, vol. 16, no. 21, p. 7319, Oct. 2023, doi: 10.3390/en16217319. DOI: https://doi.org/10.3390/en16217319
M. Bharat, “Z-Source Inverter for Electric Vehicle Applications- A Review”.
G. K. Mathuriya and P. K. Rathore, “Exploring Multilevel Inverter Topologies: Control Mechanisms and Industrial Applications,” vol. 11, 2024.
M. H. Uddin, A. Abid, U. Inam, A. Urooj, and M. R. Siddiqui, “A Comparative Analysis of a Multilevel Inverter Topology Based on Phase Disposition Sinusoidal Pulse Width Modulation,” in IEEC 2023, MDPI, Sep. 2023, p. 30. doi: 10.3390/engproc2023046030. DOI: https://doi.org/10.3390/engproc2023046030
. A. V., “CASCADED H-BRIDGE MULTILEVEL INVERTER FOR INDUCTION MOTOR DRIVES,” Int. J. Res. Eng. Technol., vol. 03, no. 05, pp. 260–266, May 2014, doi: 10.15623/ijret.2014.0305050. DOI: https://doi.org/10.15623/ijret.2014.0305050
A. Noman, A. A. Al-Shamma’a, K. Addoweesh, A. Alabduljabbar, and A. Alolah, “Cascaded Multilevel Inverter Topology Based on Cascaded H-Bridge Multilevel Inverter,” Energies, vol. 11, no. 4, p. 895, Apr. 2018, doi: 10.3390/en11040895. DOI: https://doi.org/10.3390/en11040895
K. Sayed, A. Almutairi, N. Albagami, O. Alrumayh, A. G. Abo-Khalil, and H. Saleeb, “A Review of DC-AC Converters for Electric Vehicle Applications,” Energies, vol. 15, no. 3, p. 1241, Feb. 2022, doi: 10.3390/en15031241. DOI: https://doi.org/10.3390/en15031241
I. Husain et al., “Electric drive technology trends, challenges, and opportunities for future electric vehicles,” Proc. IEEE, vol. 109, no. 6, pp. 1039–1059, 2021. DOI: https://doi.org/10.1109/JPROC.2020.3046112
M. Okamura and T. Takaoka, “The Evolution of Electric Components in Prius,” IEEJ J. Ind. Appl., vol. 11, no. 1, pp. 1–6, Jan. 2022, doi: 10.1541/ieejjia.21007126. DOI: https://doi.org/10.1541/ieejjia.21007126
P. Zhao, Z. Cai, L. Wu, C. Zhu, L. Li, and X. Wang, “Perspectives and challenges for lead-free energy-storage multilayer ceramic capacitors,” J. Adv. Ceram., vol. 10, no. 6, pp. 1153–1193, Dec. 2021, doi: 10.1007/s40145-021-0516-8. DOI: https://doi.org/10.1007/s40145-021-0516-8
C. Liu, K. T. Chau, C. H. Lee, and Z. Song, “A critical review of advanced electric machines and control strategies for electric vehicles,” Proc. IEEE, vol. 109, no. 6, pp. 1004–1028, 2020.
S. V. and S. M.R., “State-of-the-art and future trends in electric vehicle charging infrastructure: A review,” Eng. Sci. Technol. Int. J., vol. 62, p. 101946, Feb. 2025, doi: 10.1016/j.jestch.2025.101946. DOI: https://doi.org/10.1016/j.jestch.2025.101946
H. El Hadraoui, M. Zegrari, A. Chebak, O. Laayati, and N. Guennouni, “A Multi-Criteria Analysis and Trends of Electric Motors for Electric Vehicles,” World Electr. Veh. J., vol. 13, no. 4, Art. no. 4, Apr. 2022, doi: 10.3390/wevj13040065. DOI: https://doi.org/10.3390/wevj13040065
C. Liu, K. T. Chau, C. H. T. Lee, and Z. Song, “A Critical Review of Advanced Electric Machines and Control Strategies for Electric Vehicles,” Proc. IEEE, vol. 109, no. 6, pp. 1004–1028, Jun. 2021, doi: 10.1109/JPROC.2020.3041417.
P. Chen, “A NOVEL 3-D FLUX STRUCTURE FOR SWITCHED RELUCTANCE MACHINES.”
H. Chen, Y. Zuo, K. T. Chau, W. Zhao, and C. H. T. Lee, “Modern electric machines and drives for wind power generation: A review of opportunities and challenges,” IET Renew. Power Gener., vol. 15, no. 9, pp. 1864–1887, Jul. 2021, doi: 10.1049/rpg2.12114. DOI: https://doi.org/10.1049/rpg2.12114
B. Liu, R. Badcock, H. Shu, and J. Fang, “A Superconducting Induction Motor with a High Temperature Superconducting Armature: Electromagnetic Theory, Design and Analysis,” Energies, vol. 11, no. 4, p. 792, Mar. 2018, doi: 10.3390/en11040792. DOI: https://doi.org/10.3390/en11040792
E. Agamloh, A. Von Jouanne, and A. Yokochi, “An overview of electric machine trends in modern electric vehicles,” Machines, vol. 8, no. 2, p. 20, 2020. DOI: https://doi.org/10.3390/machines8020020
B. Podmiljšak et al., “The Future of Permanent-Magnet-Based Electric Motors: How Will Rare Earths Affect Electrification?,” Materials, vol. 17, no. 4, p. 848, Feb. 2024, doi: 10.3390/ma17040848. DOI: https://doi.org/10.3390/ma17040848
C. Liu, K. T. Chau, C. H. T. Lee, and Z. Song, “A Critical Review of Advanced Electric Machines and Control Strategies for Electric Vehicles,” Proc. IEEE, vol. 109, no. 6, pp. 1004–1028, Jun. 2021, doi: 10.1109/JPROC.2020.3041417. DOI: https://doi.org/10.1109/JPROC.2020.3041417
“Internal Permanent Magnet (IPM) Motor control.” Accessed: Sep. 07, 2024. [Online]. Available: https://www.roboteq.com/applications/all-blogs/523-internal-permanent-magnet-ipm-motor-control
R. VARTANIAN, “PERMANENT MAGNET ASSISTED SYNCHRONOUS RELUCTANCE MACHINE (PMA-SYNRM) DESIGN AND PERFORMANCE ANALYSIS FOR FAN AND PUMP APPLICATIONS.” [Online]. Available: https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/153199/VARTANIAN-DISSERTATION-2014.pdf?sequence=1
C. Adăscăliței, R. A. Marțiș, P. Karaisas, and C. S. Marțiș, “In-Depth Exploration of Design and Analysis for PM-Assisted Synchronous Reluctance Machines: Implications for Light Electric Vehicles,” Machines, vol. 12, no. 6, p. 361, May 2024, doi: 10.3390/machines12060361. DOI: https://doi.org/10.3390/machines12060361
G. Artetxe, D. Caballero, B. Prieto, M. Martinez‐Iturralde, and I. Elosegui, “Eliminating rare earth permanent magnets on low‐speed high‐torque machines: A performance and cost comparison of synchronous reluctance machines, ferrite permanent magnet‐synchronous reluctance machines and permanent magnet synchronous machines for a direct‐drive elevator system,” IET Electr. Power Appl., vol. 15, no. 3, pp. 370–378, Mar. 2021, doi: 10.1049/elp2.12032. DOI: https://doi.org/10.1049/elp2.12032
O. M. Lee and M. Abbasian, “Reducing Rare-Earth Magnet Reliance in Modern Traction Electric Machines,” Energies, vol. 18, no. 9, p. 2274, Apr. 2025, doi: 10.3390/en18092274.
“Clean energy demand for critical minerals set to soar as the world pursues net zero goals - News,” IEA. Accessed: May 11, 2025. [Online]. Available: https://www.iea.org/news/clean-energy-demand-for-critical-minerals-set-to-soar-as-the-world-pursues-net-zero-goals
V. Nguyen-Tien, C. Zhang, E. Strobl, and R. J. R. Elliott, “The closing longevity gap between battery electric vehicles and internal combustion vehicles in Great Britain,” Nat. Energy, vol. 10, no. 3, pp. 354–364, Jan. 2025, doi: 10.1038/s41560-024-01698-1. DOI: https://doi.org/10.1038/s41560-024-01698-1
O. M. Lee and M. Abbasian, “Reducing Rare-Earth Magnet Reliance in Modern Traction Electric Machines,” Energies, vol. 18, no. 9, p. 2274, Apr. 2025, doi: 10.3390/en18092274. DOI: https://doi.org/10.3390/en18092274
A. Hussain et al., “Wound Rotor Synchronous Motor as Promising Solution for Traction Applications,” Electronics, vol. 11, no. 24, p. 4116, Dec. 2022, doi: 10.3390/electronics11244116. DOI: https://doi.org/10.3390/electronics11244116
E. Kinoti, T. C. Mosetlhe, and A. A. Yusuff, “Multi-Criteria Analysis of Electric Vehicle Motor Technologies: A Review,” World Electr. Veh. J., vol. 15, no. 12, p. 541, Nov. 2024, doi: 10.3390/wevj15120541. DOI: https://doi.org/10.3390/wevj15120541
G. Du, G. Zhang, H. Li, and C. Hu, “Comprehensive Comparative Study on Permanent-Magnet-Assisted Synchronous Reluctance Motors and Other Types of Motor,” Appl. Sci., vol. 13, no. 14, p. 8557, Jul. 2023, doi: 10.3390/app13148557. DOI: https://doi.org/10.3390/app13148557
S. Pareek, A. Sujil, S. Ratra, and R. Kumar, “Electric vehicle charging station challenges and opportunities: A future perspective,” in 2020 International Conference on Emerging Trends in Communication, Control and Computing (ICONC3), IEEE, 2020, pp. 1–6. Accessed: Jul. 16, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9117473/ DOI: https://doi.org/10.1109/ICONC345789.2020.9117473
A. A. Mahmoud, O. A. Albadry, M. I. Mohamed, H. El-Khozondar, Y. Nassar, and A. A. Hafez, “Charging Systems/Techniques of Electric Vehicle: A Comprehensive Review,” Sol. Energy Sustain. Dev. J., vol. 13, no. 2, pp. 18–44, Jun. 2024, doi: 10.51646/jsesd.v13i2.203. DOI: https://doi.org/10.51646/jsesd.v13i2.203
J. Oladigbolu, A. Mujeeb, and L. Li, “Optimization and energy management strategies, challenges, advances, and prospects in electric vehicles and their charging infrastructures: A comprehensive review,” Comput. Electr. Eng., vol. 120, p. 109842, Dec. 2024, doi: 10.1016/j.compeleceng.2024.109842. DOI: https://doi.org/10.1016/j.compeleceng.2024.109842
M. Deng, Ed., Power, Energy and Electrical Engineering: Proceedings of the 14th International Conference (CPEEE 2024), Tokyo, Japan, 24–26 February 2024, vol. 54. in Advances in Transdisciplinary Engineering, vol. 54. IOS Press, 2024. doi: 10.3233/ATDE54. DOI: https://doi.org/10.3233/ATDE54
M. Khalid, F. Ahmad, B. K. Panigrahi, and L. Al-Fagih, “A comprehensive review on advanced charging topologies and methodologies for electric vehicle battery,” J. Energy Storage, vol. 53, p. 105084, Sep. 2022, doi: 10.1016/j.est.2022.105084. DOI: https://doi.org/10.1016/j.est.2022.105084
H. Shareef, Md. M. Islam, and A. Mohamed, “A review of the stage-of-the-art charging technologies, placement methodologies, and impacts of electric vehicles,” Renew. Sustain. Energy Rev., vol. 64, pp. 403–420, Oct. 2016, doi: 10.1016/j.rser.2016.06.033. DOI: https://doi.org/10.1016/j.rser.2016.06.033
G. Arena, A. Chub, M. Lukianov, R. Strzelecki, D. Vinnikov, and G. De Carne, “A Comprehensive Review on DC Fast Charging Stations for Electric Vehicles: Standards, Power Conversion Technologies, Architectures, Energy Management, and Cybersecurity,” IEEE Open J. Power Electron., vol. 5, pp. 1573–1611, 2024, doi: 10.1109/OJPEL.2024.3466936.
H. Arya and M. Das, “Fast Charging Station for Electric Vehicles Based on DC Microgrid,” IEEE J. Emerg. Sel. Top. Ind. Electron., vol. 4, no. 4, pp. 1204–1212, Oct. 2023, doi: 10.1109/JESTIE.2023.3285535. DOI: https://doi.org/10.1109/JESTIE.2023.3285535
M. Shahjalal, T. Shams, M. N. Tasnim, M. R. Ahmed, M. Ahsan, and J. Haider, “A Critical Review on Charging Technologies of Electric Vehicles,” Energies, vol. 15, no. 21, p. 8239, Nov. 2022, doi: 10.3390/en15218239. DOI: https://doi.org/10.3390/en15218239
S. Mateen, M. Amir, A. Haque, and F. I. Bakhsh, “Ultra-fast charging of electric vehicles: A review of power electronics converter, grid stability and optimal battery consideration in multi-energy systems,” Sustain. Energy Grids Netw., vol. 35, p. 101112, Sep. 2023, doi: 10.1016/j.segan.2023.101112. DOI: https://doi.org/10.1016/j.segan.2023.101112
Sandeep Bishla, “A Survey of Fast Charging Systems in Electrical Vehicles using Solar and Grid Sources,” J. Electr. Syst., vol. 20, no. 7s, pp. 4084–4105, Jun. 2024, doi: 10.52783/jes.4557. DOI: https://doi.org/10.52783/jes.4557
S. Powell, G. V. Cezar, L. Min, I. M. L. Azevedo, and R. Rajagopal, “Charging infrastructure access and operation to reduce the grid impacts of deep electric vehicle adoption,” Nat. Energy, vol. 7, no. 10, pp. 932–945, Sep. 2022, doi: 10.1038/s41560-022-01105-7. DOI: https://doi.org/10.1038/s41560-022-01105-7
A. Zentani, A. Almaktoof, and M. T. Kahn, “A Comprehensive Review of Developments in Electric Vehicles Fast Charging Technology,” Appl. Sci., vol. 14, no. 11, p. 4728, May 2024, doi: 10.3390/app14114728.
S. Nasri, N. Mansouri, A. Mnassri, A. Lashab, J. Vasquez, and H. Rezk, “Global Analysis of Electric Vehicle Charging Infrastructure and Sustainable Energy Sources Solutions,” World Electr. Veh. J., vol. 16, no. 4, p. 194, Mar. 2025, doi: 10.3390/wevj16040194.
S. Nasri, N. Mansouri, A. Mnassri, A. Lashab, J. Vasquez, and H. Rezk, “Global Analysis of Electric Vehicle Charging Infrastructure and Sustainable Energy Sources Solutions,” World Electr. Veh. J., vol. 16, no. 4, p. 194, Mar. 2025, doi: 10.3390/wevj16040194.
A. Zentani, A. Almaktoof, and M. T. Kahn, “A Comprehensive Review of Developments in Electric Vehicles Fast Charging Technology,” Appl. Sci., vol. 14, no. 11, p. 4728, May 2024, doi: 10.3390/app14114728.
G. Arena, A. Chub, M. Lukianov, R. Strzelecki, D. Vinnikov, and G. De Carne, “A Comprehensive Review on DC Fast Charging Stations for Electric Vehicles: Standards, Power Conversion Technologies, Architectures, Energy Management, and Cybersecurity,” IEEE Open J. Power Electron., vol. 5, pp. 1573–1611, 2024, doi: 10.1109/OJPEL.2024.3466936. DOI: https://doi.org/10.1109/OJPEL.2024.3466936
S. Nasri, N. Mansouri, A. Mnassri, A. Lashab, J. Vasquez, and H. Rezk, “Global Analysis of Electric Vehicle Charging Infrastructure and Sustainable Energy Sources Solutions,” World Electr. Veh. J., vol. 16, no. 4, p. 194, Mar. 2025, doi: 10.3390/wevj16040194. DOI: https://doi.org/10.3390/wevj16040194
G. Nair, S. K. Yadav, and A. M. Thote, “Advancements in Electric Vehicle Charging Connectors: Towards a Universal Charging Connector,” 2024, SSRN. doi: 10.2139/ssrn.4750830. DOI: https://doi.org/10.2139/ssrn.4750830
A. Zentani, A. Almaktoof, and M. T. Kahn, “A Comprehensive Review of Developments in Electric Vehicles Fast Charging Technology,” Appl. Sci., vol. 14, no. 11, p. 4728, May 2024, doi: 10.3390/app14114728. DOI: https://doi.org/10.3390/app14114728
J. Leijon and C. Boström, “Charging electric vehicles today and in the future,” World Electr. Veh. J., vol. 13, no. 8, p. 139, 2022. DOI: https://doi.org/10.3390/wevj13080139
S. M. Arif, T. T. Lie, B. C. Seet, S. Ayyadi, and K. Jensen, “Review of Electric Vehicle Technologies, Charging Methods, Standards and Optimization Techniques,” Electronics, vol. 10, no. 16, p. 1910, Aug. 2021, doi: 10.3390/electronics10161910. DOI: https://doi.org/10.3390/electronics10161910
A. A. S. Mohamed, A. A. Shaier, H. Metwally, and S. I. Selem, “An Overview of Dynamic Inductive Charging for Electric Vehicles,” Energies, vol. 15, no. 15, p. 5613, Aug. 2022, doi: 10.3390/en15155613. DOI: https://doi.org/10.3390/en15155613
“Looking for anxiety-free EV driving? In-road charging holds promise.” Accessed: May 13, 2025. [Online]. Available: https://www.asce.org/publications-and-news/civil-engineering-source/article/2025/02/05/looking-for-anxiety-free-ev-driving-in-road-charging-holds-promise
P. Aduama, A. S. Al-Sumaiti, K. H. Al-Hosani, and A. R. El-Shamy, “Optimizing quasi-dynamic wireless charging for urban electric buses: A two-scenario mathematical framework with grid and PV-battery systems,” Heliyon, vol. 10, no. 15, p. e34857, Aug. 2024, doi: 10.1016/j.heliyon.2024.e34857. DOI: https://doi.org/10.1016/j.heliyon.2024.e34857
B. Latha, M. M. Irfan, A. Flah, V. Blazek, L. Prokop, and S. S. Rangarajan, “Advances in EV wireless charging technology – A systematic review and future trends,” E-Prime - Adv. Electr. Eng. Electron. Energy, vol. 10, p. 100765, Dec. 2024, doi: 10.1016/j.prime.2024.100765. DOI: https://doi.org/10.1016/j.prime.2024.100765
Z. Xue, W. Liu, C. Liu, and K. T. Chau, “Critical Review of Wireless Charging Technologies for Electric Vehicles,” World Electr. Veh. J., vol. 16, no. 2, p. 65, Jan. 2025, doi: 10.3390/wevj16020065. DOI: https://doi.org/10.3390/wevj16020065

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Solar Energy and Sustainable Development Journal

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.