Theoretical Insights into a High-Performance Optical Absorption in GaSeS/InSeS 2D van der Waals Heterostructure for Photovoltaic Applications
DOI:
https://doi.org/10.51646/jsesd.v14iSTR2E.986الكلمات المفتاحية:
Density Functional Theory (DFT)، Electronic structure, optical analysis، GaSeS/InSeS heterostructure، Photovoltaic devices.الملخص
Advances in heterostructure design are transforming electronic and optoelectronic technologies, with particular focus on Janus monolayer-based heterojunctions. These heterojunctions, arising from the broken symmetry of 2D materials, offer new possibilities for ultra-thin, high-performance vertical p-n heterojunction solar cells. In this study, we examine the electronic structure and optical properties of a 2D GaSeS/InSeS heterostructure, formed through van der Waals interactions, based on first-principles calculations using density functional theory (DFT). The heterostructure consists of Janus group III chalcogenide GaSeS and InSeS monolayers (MLs).
The electronic properties show that both the AA and AB stacking configurations exhibit indirect semiconductor band gaps, with values of 1.3207 eV and 1.3452 eV using the PBE (Perdew-Burke-Ernzerhof) functional, and 2.0997 eV and 2.1242 eV using the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional, respectively. Both configurations also display the characteristic features of type-II heterojunctions, which promote efficient separation of photogenerated electrons and holes. Charge density analysis reveals a transfer of charge from GaSeS to InSeS.
Furthermore, optical analysis shows that both stacking configurations (AA and AB) exhibit similar absorbance spectra, primarily in the UV range, with peak absorption around 11.6 × 10⁵ cm⁻¹. Within the visible spectrum, the maximum absorption rate for both configurations is 2.8 × 10⁵ cm⁻¹. The 2D GaSeS/InSeS heterostructure holds great potential as a high-performance material for future photovoltaic devices, with promising applications in both photovoltaic cells and optoelectronic systems.
التنزيلات
المقاييس
المراجع
C. Dean, A. F. Young, L. Wang, I. Meric, G. H. Lee, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Graphene-based heterostructures,” Solid State Commun., vol. 152, no. 15, pp. 1275–1282, Aug. 2012. doi: 10.1016/j.ssc.2012.04.021. DOI: https://doi.org/10.1016/j.ssc.2012.04.021
J. Mawwa, S. U. D. Shamim, S. Khanom, M. K. Hossain, and F. Ahmed, “In-plane graphene/boron nitride heterostructures and their potential application as toxic gas sensors,” RSC Advances, vol. 11, no. 52, pp. 32810–32823, Dec. 2021. doi: 10.1039/D1RA06304A. DOI: https://doi.org/10.1039/D1RA06304A
L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G. Kvashnin, J. Lou, B. I. Yakobson, and P. M. Ajayan, “Large-scale growth and characterization of atomic hexagonal boron nitride layers,” Nano Letters, vol. 10, no. 8, pp. 3209–3215, Aug. 2010. doi: 10.1021/nl1022139. DOI: https://doi.org/10.1021/nl1022139
L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. F. Wang, K. Storr, L. Balicas, F. Liu, and P. M. Ajayan, “Atomic layers of hybridized boron nitride and graphene domains,” Nature Materials, vol. 9, no. 5, pp. 430–435, May 2010. doi: 10.1038/nmat2711. DOI: https://doi.org/10.1038/nmat2711
A. Schleife, C. Rödl, F. Fuchs, J. Furthmüller, and F. Bechstedt, “Strain influence on valence-band ordering and excitons in ZnO: An ab initio study,” Applied Physics Letters, vol. 91, no. 24, Dec. 2007. doi: 10.1063/1.2825277. DOI: https://doi.org/10.1063/1.2825277
S. Wang, M. S. Ukhtary, and R. Saito, “Strain effect on circularly polarized electroluminescence in transition metal dichalcogenides,” Physical Review Research, vol. 2, no. 3, Sep. 2020. doi: 10.1103/PhysRevResearch.2.033340. DOI: https://doi.org/10.1103/PhysRevResearch.2.033340
M. Z. Bellus, M. Li, S. D. Lane, F. Ceballos, Q. Cui, X. C. Zeng, and H. Zhao, “Type-I van der Waals heterostructure formed by MoS₂ and ReS₂ monolayers,” Nanoscale Horizons, vol. 2, no. 1, pp. 31–36, Jan. 2017. doi: 10.1039/C6NH00144K. DOI: https://doi.org/10.1039/C6NH00144K
N. Huo, Y. Yang, and J. Li, “Optoelectronics based on 2D TMDs and heterostructures,” Journal of Semiconductors, vol. 38, no. 3, p. 031002, Mar. 2017. doi: 10.1088/1674-4926/38/3/031002. DOI: https://doi.org/10.1088/1674-4926/38/3/031002
X. Li, X. Wu, Z. Zhu, G. Li, and C. Mi, “On the elasticity and piezoelectricity of black (blue) phosphorus/ZnO van der Waals heterostructures,” Computational Materials Science, vol. 169, p. 109134, Sep. 2019. doi: 10.1016/j.commatsci.2019.109134. DOI: https://doi.org/10.1016/j.commatsci.2019.109134
T. Sahdane, S. Mtougui, F. Goumrhar, N. Mamouni, E. Salmani, H. Ez-Zahraouy, and O. Mounkachi, “Magnetic phase transitions of phosphorene-like nano-structure: Monte Carlo study,” Philosophical Magazine, vol. 101, no. 16, pp. 1836–1848, Jun. 2021. doi: 10.1080/14786435.2021.1936260. DOI: https://doi.org/10.1080/14786435.2021.1936260
J. Seeyangnok, M. U. Hassan, U. Pinsook, and G. J. Ackland, “Superconductivity and electron self-energy in tungsten-sulfur-hydride monolayer,” 2D Materials, vol. 11, no. 2, p. 025020, Mar. 2024. doi: 10.1088/2053-1583/ad2523. DOI: https://doi.org/10.1088/2053-1583/ad2523
N. Thakur, P. Kumar, S. Kumar, A. K. Singh, H. Sharma, N. Thakur, and P. Sharma, “A review of two-dimensional inorganic materials: Types, properties, and their optoelectronic applications,” Progress in Solid State Chemistry, p. 100443, Feb. 2024. doi: 10.1016/j.progsolidstchem.2024.100443. DOI: https://doi.org/10.1016/j.progsolidstchem.2024.100443
M. Li, L. Wang, N. Yu, X. Sun, T. Hou, and Y. Li, “Structural stability and band gap tunability of single-side hydrogenated graphene from first-principles calculations,” Journal of Materials Chemistry C, vol. 3, no. 15, pp. 3645–3649, Apr. 2015. doi: 10.1039/C5TC00209E. DOI: https://doi.org/10.1039/C5TC00209E
J. M. Hamm and O. Hess, “Two two-dimensional materials are better than one,” Science, vol. 340, no. 6138, pp. 1298–1299, Jun. 2013. doi: 10.1126/science.1239501. DOI: https://doi.org/10.1126/science.1239501
K. Kaasbjerg, T. Low, and A. P. Jauho, “Electron and hole transport in disordered monolayer MoS₂: Atomic vacancy induced short-range and Coulomb disorder scattering,” Physical Review B, vol. 100, no. 11, p. 115409, Sep. 2019. doi: 10.1103/PhysRevB.100.115409. DOI: https://doi.org/10.1103/PhysRevB.100.115409
K. Yang, Z. Cui, E. Li, Y. Shen, L. Zhang, D. Ma, Y. Liu, L. Yang, Z. Wu, W. Zhou, and S. Zhang, "Modulation of the magnetic, electronic, and optical behaviors of WS₂ after metals adsorption: A first-principles study," Chemical Physics, vol. 571, p. 111903, 2023, doi: 10.1016/j.chemphys.2023.111903. DOI: https://doi.org/10.1016/j.chemphys.2023.111903
C. H. Hung, Y. C. Jiang, S. Y. Lei, R. Gao, X. W. Tao, N. Wan, and H. Yu, "Small gas adsorption on 2D material SnSe: A first-principles study," Journal of Physics D: Applied Physics, vol. 56, no. 39, p. 395302, 2023, doi: 10.1088/1361-6463/ace195. DOI: https://doi.org/10.1088/1361-6463/ace195
A. S. Alsaman, H. Maher, M. Ghazy, E. S. Ali, A. A. Askalany, and B. B. Saha, "2D materials for adsorption desalination applications: A state of the art," Thermal Science and Engineering Progress, vol. 49, p. 102455, 2024, doi: 10.1016/j.tsep.2024.102455. DOI: https://doi.org/10.1016/j.tsep.2024.102455
K. Rahimi, “Electric-field-and strain-induced adjustability of vdW heterostructure of g-ZnO/2H-TiS₂ for optoelectronic applications,” Materials Letters, vol. 282, p. 128680, Jan. 2021. doi: 10.1016/j.matlet.2020.128680. DOI: https://doi.org/10.1016/j.matlet.2020.128680
Y. Cheng, L. Li, L. Li, Y. Zhang, L. Wang, L. Wang, and Y. Gao, “Linear regulation of electrical characteristics of InSe/Antimonene heterojunction via external electric field and strain,” Surfaces and Interfaces, vol. 23, p. 101014, Jun. 2021. doi: 10.1016/j.surfin.2021.101014. DOI: https://doi.org/10.1016/j.surfin.2021.101014
X. P. Wang, X. B. Li, N. K. Chen, J. H. Zhao, Q. D. Chen, and H. B. Sun, “Electric field analyses on monolayer semiconductors: The example of InSe,” Physical Chemistry Chemical Physics, vol. 20, no. 10, pp. 6945–6950, Mar. 2018. doi: 10.1039/C7CP07270H. DOI: https://doi.org/10.1039/C7CP07270H
Z. Yang and J. Ni, “Modulation of electronic properties of hexagonal boron nitride bilayers by an electric field: A first principles study,” Journal of Applied Physics, vol. 107, no. 10, May 2010. doi: 10.1063/1.3373571. DOI: https://doi.org/10.1063/1.3373571
C. Shi, Q. Song, H. Wang, S. Ma, C. Wang, X. Zhang, and Q. Chen, “Molecular hinges stabilize formamidinium-based perovskite solar cells with compressive strain,” Advanced Functional Materials, vol. 32, no. 28, p. 2201193, Jul. 2022. doi: 10.1002/adfm.202201193. DOI: https://doi.org/10.1002/adfm.202201193
Y. Hu, S. Zhang, S. Sun, M. Xie, B. Cai, and H. Zeng, “GeSe monolayer semiconductor with tunable direct band gap and small carrier effective mass,” Applied Physics Letters, vol. 107, no. 12, Sep. 2015. doi: 10.1063/1.4931459. DOI: https://doi.org/10.1063/1.4931459
G. Guo, Y. Shi, Y. Zhang, Y. Deng, F. Du, Z. Xie, and Y. Mao, “First-principles study on the electronic and magnetic properties of P edge-doped armchair germanium selenide nanoribbon,” Computational Materials Science, vol. 172, p. 109348, Jan. 2020. doi: 10.1016/j.commatsci.2019.109348. DOI: https://doi.org/10.1016/j.commatsci.2019.109348
X. Liu and M. C. Hersam, "Interface characterization and control of 2D materials and heterostructures," Advanced Materials, vol. 30, no. 39, p. 1801586, 2018, doi: 10.1002/adma.201801586. DOI: https://doi.org/10.1002/adma.201801586
R. Long and O. V. Prezhdo, “Quantum coherence facilitates efficient charge separation at a MoS₂/MoSe₂ van der Waals junction,” Nano Letters, vol. 16, no. 3, pp. 1996–2003, Mar. 2016. doi: 10.1021/acs.nanolett.5b05264. DOI: https://doi.org/10.1021/acs.nanolett.5b05264
M. Luo, Y. E. Xu, and Y. X. Song, “Tunable electronic properties of MoS₂/ReS₂ van der Waals heterostructure from first-principles study,” Optik, vol. 144, pp. 334–339, Sep. 2017. doi: 10.1016/j.ijleo.2017.06.100. DOI: https://doi.org/10.1016/j.ijleo.2017.06.100
K. Zhang, C. Ding, Y. She, Z. Wu, C. Zhao, B. Pan, and Q. Fan, “CuFe₂O₄/MoS₂ mixed-dimensional heterostructures with improved gas sensing response,” Nanoscale Research Letters, vol. 15, p. 7, Jan. 2020. doi: 10.1186/s11671-020-3268-4. DOI: https://doi.org/10.1186/s11671-020-3268-4
Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, and P. M. Ajayan, "Vertical and in-plane heterostructures from WS₂/MoS₂ monolayers," Nature Materials, vol. 13, no. 12, pp. 1135–1142, Dec. 2014, doi: 10.1038/NMAT4091. DOI: https://doi.org/10.1038/nmat4091
M. J. Molaei, M. Younas, and M. Rezakazemi, "Van der Waals heterostructures in ultrathin 2D solar cells: State-of-the-art review," Materials Science and Engineering: B, vol. 285, p. 115936, 2022, doi: 10.1016/j.mseb.2022.115936. DOI: https://doi.org/10.1016/j.mseb.2022.115936
P. Wang, X. Li, Z. Xu, Z. Wu, S. Zhang, W. Xu, and S. Lin, "Tunable graphene/indium phosphide heterostructure solar cells," Nano Energy, vol. 13, pp. 509–517, 2015, doi: 10.1016/j.nanoen.2015.03.023. DOI: https://doi.org/10.1016/j.nanoen.2015.03.023
F. Yan, C. Hu, Z. Wang, H. Lin, and K. Wang, "Perspectives on photodetectors based on selenides and their van der Waals heterojunctions," Applied Physics Letters, vol. 118, no. 19, 2021, doi: 10.1063/5.0045941. DOI: https://doi.org/10.1063/5.0045941
S. Wang, C. Ren, H. Tian, J. Yu, and M. Sun, "MoS₂/ZnO van der Waals heterostructure as a high-efficiency water splitting photocatalyst: A first-principles study," Physical Chemistry Chemical Physics, vol. 20, no. 19, pp. 13394–13399, 2018, doi: 10.1039/C8CP00808F. DOI: https://doi.org/10.1039/C8CP00808F
R. D'Souza and S. Mukherjee, "Thermoelectric transport in graphene/h-BN/graphene heterostructures: A computational study," Physica E: Low-dimensional Systems and Nanostructures, vol. 81, pp. 96–101, 2016, doi: 10.1016/j.physe.2016.03.006. DOI: https://doi.org/10.1016/j.physe.2016.03.006
L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, and L. A. Ponomarenko, "Field-effect tunneling transistor based on vertical graphene heterostructures," Science, vol. 335, no. 6071, pp. 947–950, 2012, doi: 10.1126/science.1218461. DOI: https://doi.org/10.1126/science.1218461
A. O. M. Almayyali, B. B. Kadhim, and H. R. Jappor, "Stacking impact on the optical and electronic properties of two-dimensional MoSe₂/PtS₂ heterostructures formed by PtS₂ and MoSe₂ monolayers," Chemical Physics, vol. 532, p. 110679, 2020, doi: 10.1016/j.chemphys.2020.110679. DOI: https://doi.org/10.1016/j.chemphys.2020.110679
A. O. M. Almayyali, B. B. Kadhim, and H. R. Jappor, "RETRACTED: Tunable electronic and optical properties of 2D PtS₂/MoS₂ van der Waals heterostructure," Physica E: Low-dimensional Systems and Nanostructures, vol. 113, p. 113866, 2020, doi: 10.1016/j.physe.2019.113866. DOI: https://doi.org/10.1016/j.physe.2019.113866
X. Tian, L. Liu, Y. Du, J. Gu, J. B. Xu, and B. I. Yakobson, "Variable electronic properties of lateral phosphorene–graphene heterostructures," Physical Chemistry Chemical Physics, vol. 17, no. 47, pp. 31685–31692, 2015, doi: 10.1039/C5CP05443E. DOI: https://doi.org/10.1039/C5CP05443E
Y. Cai, G. Zhang, and Y. W. Zhang, "Electronic properties of phosphorene/graphene and phosphorene/hexagonal boron nitride heterostructures," The Journal of Physical Chemistry C, vol. 119, no. 24, pp. 13929–13936, 2015, doi: 10.1021/acs.jpcc.5b02634. DOI: https://doi.org/10.1021/acs.jpcc.5b02634
M. T. Hossain and M. A. Rahman, "A first principle study of the structural, electronic, and temperature-dependent thermodynamic properties of graphene/MoS₂ heterostructure," Journal of Molecular Modeling, vol. 26, no. 1, pp. 1–8, 2020, doi: 10.1007/s00894-020-4306-y. DOI: https://doi.org/10.1007/s00894-020-4306-y
W. Hu and J. Yang, "Two-dimensional van der Waals heterojunctions for functional materials and devices," Journal of Materials Chemistry C, vol. 5, no. 47, pp. 12289–12297, 2017, doi: 10.1039/C7TC04697A. DOI: https://doi.org/10.1039/C7TC04697A
P. Vishnoi, K. Pramoda, U. Gupta, M. Chhetri, R. G. Balakrishna, and C. N. R. Rao, "Covalently linked heterostructures of phosphorene with MoS₂/MoSe₂ and their remarkable hydrogen evolution reaction activity," ACS Applied Materials & Interfaces, vol. 11, no. 31, pp. 27780–27787, 2019, doi: 10.1021/acsami.9b06910. DOI: https://doi.org/10.1021/acsami.9b06910
A. Y. Lu, H. Zhu, J. Xiao, C. P. Chuu, Y. Han, M. H. Chiu, and L. J. Li, "Janus monolayers of transition metal dichalcogenides," Nature Nanotechnology, vol. 12, no. 8, pp. 744–749, 2017, doi: 10.1038/nnano.2017.100. DOI: https://doi.org/10.1038/nnano.2017.100
M. Palsgaard, T. Gunst, T. Markussen, K. S. Thygesen, and M. Brandbyge, "Stacked Janus device concepts: abrupt pn-junctions and cross-plane channels," Nano Letters, vol. 18, no. 11, pp. 7275–7281, 2018, doi: 10.1021/acs.nanolett.8b03474. DOI: https://doi.org/10.1021/acs.nanolett.8b03474
A. C. Riis-Jensen, T. Deilmann, T. Olsen, and K. S. Thygesen, "Classifying the electronic and optical properties of Janus monolayers," ACS Nano, vol. 13, no. 11, pp. 13354–13364, 2019, doi: 10.1021/acsnano.9b06698. DOI: https://doi.org/10.1021/acsnano.9b06698
Y. Bai, Q. Zhang, N. Xu, K. Deng, and E. Kan, "The Janus structures of group-III chalcogenide monolayers as promising photocatalysts for water splitting," Applied Surface Science, vol. 478, pp. 522–531, 2019, doi: 10.1016/j.apsusc.2019.02.004. DOI: https://doi.org/10.1016/j.apsusc.2019.02.004
H. D. Bui, H. R. Jappor, and N. N. Hieu, "Tunable optical and electronic properties of Janus monolayers Ga₂SSe, Ga₂STe, and Ga₂SeTe as promising candidates for ultraviolet photodetectors applications," Superlattices and Microstructures, vol. 125, pp. 1–7, 2019, doi: 10.1016/j.spmi.2018.10.020. DOI: https://doi.org/10.1016/j.spmi.2018.10.020
A. Huang, W. Shi, and Z. Wang, "Optical properties and photocatalytic applications of two-dimensional Janus group-III monochalcogenides," The Journal of Physical Chemistry C, vol. 123, no. 18, pp. 11388–11396, 2019, doi: 10.1021/acs.jpcc.8b12450. DOI: https://doi.org/10.1021/acs.jpcc.8b12450
H. R. Jappor, M. M. Obeid, T. V. Vu, D. M. Hoat, H. D. Bui, N. N. Hieu, and R. Khenata, "RETRACTED: engineering the optical and electronic properties of Janus monolayer Ga₂SSe by biaxial strain," Superlattices and Microstructures, vol. 125, p. 105031, 2019, doi: 10.1016/j.spmi.2019.05.031. DOI: https://doi.org/10.1016/j.spmi.2019.05.031
G. Guo, G. Zhang, H. Wu, Y. Zhang, and Z. Xie, "Insights on the optoelectronic properties in two-dimensional Janus lateral In₂SeTe/Ga₂STe heterostructure," Thin Solid Films, vol. 718, p. 138479, 2021, doi: 10.1016/j.tsf.2020.138479. DOI: https://doi.org/10.1016/j.tsf.2020.138479
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, A. D. Corso, S. Giannozzi, M. de Gironcoli, F. (Giannozzi), A. Kokalj, and R. M. Wentzcovitch, "QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials," Journal of Physics: Condensed Matter, vol. 21, no. 39, p. 395502, 2009, doi: 10.1088/0953-8984/21/39/395502. DOI: https://doi.org/10.1088/0953-8984/21/39/395502
P. E. Blöchl, "Projector augmented-wave method," Physical Review B, vol. 50, no. 24, p. 17953, 1994, doi: 10.1103/PhysRevB.50.17953. DOI: https://doi.org/10.1103/PhysRevB.50.17953
J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," Physical Review Letters, vol. 77, no. 18, p. 3865, 1996, doi: 10.1103/PhysRevLett.77.3865. DOI: https://doi.org/10.1103/PhysRevLett.77.3865
J. Heyd, G. E. Scuseria, and M. Ernzerhof, "Hybrid functionals based on a screened Coulomb potential," The Journal of Chemical Physics, vol. 118, no. 18, pp. 8207–8215, 2003, doi: 10.1063/1.1564060. DOI: https://doi.org/10.1063/1.1564060
H. J. Monkhorst and J. D. Pack, "Special points for Brillouin-zone integrations," Physical Review B, vol. 13, no. 12, p. 5188, 1976, doi: 10.1103/PhysRevB.13.5188. DOI: https://doi.org/10.1103/PhysRevB.13.5188
A. Marini, C. Hogan, M. Grüning, and D. Varsano, "Yambo: an ab initio tool for excited state calculations," Computer Physics Communications, vol. 180, no. 8, pp. 1392–1403, 2009, doi: 10.1016/j.cpc.2009.02.003. DOI: https://doi.org/10.1016/j.cpc.2009.02.003
M. Ait Tamerd, M. Zanouni, A. Nid‐bahami, M. Diani, and A. Marjaoui, "Strain effects on the structural, electronic, optical and thermoelectric properties of Si₂SeS monolayer with puckered honeycomb structure: A first‐principles study," International Journal of Quantum Chemistry, vol. 122, no. 13, p. e26906, 2022, doi: 10.1002/qua.26906. DOI: https://doi.org/10.1002/qua.26906
A. Kokalj, "XCrySDen—a new program for displaying crystalline structures and electron densities," Journal of Molecular Graphics and Modelling, vol. 17, no. 3-4, pp. 176–179, 1999, doi: 10.1016/S1093-3263(99)00028-5. DOI: https://doi.org/10.1016/S1093-3263(99)00028-5
Y. Guo, S. Zhou, Y. Bai, and J. Zhao, "Enhanced piezoelectric effect in Janus group-III chalcogenide monolayers," Applied Physics Letters, vol. 110, no. 16, 2017, doi: 10.1063/1.4981877. DOI: https://doi.org/10.1063/1.4981877
P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, and K. Xiao, "Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates," Nano Letters, vol. 13, no. 4, pp. 1649–1654, 2013, doi: 10.1021/nl400107k. DOI: https://doi.org/10.1021/nl400107k
G. W. Mudd, S. A. Svatek, L. Hague, O. Makarovsky, Z. R. Kudrynskyi, C. J. Mellor, and A. Patanè, "High broad-band photoresponsivity of mechanically formed InSe–graphene van der Waals heterostructures," Advanced Materials (Deerfield Beach, Fla.), vol. 27, no. 25, p. 3760, 2015, doi: 10.1002/adma.201500889. DOI: https://doi.org/10.1002/adma.201500889
Z. Hussein, A. Laref, H. R. Alqahtani, E. A. Alghamdi, M. E. A. Monir, N. A. Noor, and H. A. Yakout, "Optoelectronic properties of solar cell materials based on copper-zinc-tin-sulfide Cu2ZnSn(SxTe1-x)4 alloys for photovoltaic device applications," Solar Energy, vol. 225, pp. 851–862, 2021, doi: 10.1016/j.solener.2021.07.019. DOI: https://doi.org/10.1016/j.solener.2021.07.019
Z. Hui, X. Tang, R. Wei, L. Hu, J. Yang, H. Luo, X. Zhang, Y. Yang, and Y. Sun, "Facile chemical solution deposition of nanocrystalline CrN thin films with low magnetoresistance," RSC Advances, vol. 4, no. 24, pp. 12568–12571, 2014, doi: 10.1039/C4RA00263F. DOI: https://doi.org/10.1039/C4RA00263F
B. T. Beshir, K. O. Obodo, and G. A. Asres, "Janus transition metal dichalcogenides in combination with MoS2 for high-efficiency photovoltaic applications: A DFT study," RSC Advances, vol. 12, no. 22, pp. 13749–13755, 2022, doi: 10.1039/D2RA00775D. DOI: https://doi.org/10.1039/D2RA00775D
B. J. Wang, X. H. Li, R. Zhao, X. L. Cai, W. Y. Yu, W. B. Li, and S. H. Ke, "Electronic structures and enhanced photocatalytic properties of blue phosphorene/BSe van der Waals heterostructures," Journal of Materials Chemistry A, vol. 6, no. 19, pp. 8923–8929, 2018. DOI: https://doi.org/10.1039/C8TA01019F
T. A. Alrebdi and B. Amin, "Van der Waals heterostructure of Janus transition metal dichalcogenides monolayers (WSSe-WX2 (X = S, Se))," Chemical Physics, vol. 549, p. 111252, 2021, doi: 10.1016/j.chemphys.2021.111252. DOI: https://doi.org/10.1016/j.chemphys.2021.111252
R. González-Reyes, J. D. Correa, F. M. Nava-Maldonado, K. A. Rodríguez-Magdaleno, M. E. Mora-Ramos, and J. C. Martínez-Orozco, "Black Phosphorene/MoS2 van der Waals heterostructure: Electronic and optical properties," Physica B: Condensed Matter, vol. 673, p. 415489, 2024, doi: 10.1016/j.physb.2023.415489. DOI: https://doi.org/10.1016/j.physb.2023.415489
Y. Zhao, Q. Tan, H. Li, Z. Li, Y. Wang, and L. Ma, "Tunable electronic and photoelectric properties of Janus group-III chalcogenide monolayers and based heterostructures," Scientific Reports, vol. 14, no. 1, p. 10698, 2024, doi: 10.1038/s41598-024-61373-z. DOI: https://doi.org/10.1038/s41598-024-61373-z
S. V. Eremeev, M. Papagno, I. Grimaldi, O. De Luca, L. Ferrari, A. K. Kundu, G. Autès, L. Moreschini, A. Crepaldi, M. Battiato, O. V. Yazyev, F. Parmigiani, and D. Pacilè, "Insight into the electronic structure of semiconducting ε-GaSe and ε-InSe," Physical Review Materials, vol. 4, no. 8, p. 084603, Aug. 2020, doi: 10.1103/PhysRevMaterials.4.084603. DOI: https://doi.org/10.1103/PhysRevMaterials.4.084603
J. Zhou, J. Shi, Q. Zeng, Y. Chen, L. Niu, F. Liu, Y. Wang, D. Huang, Y. Cai, H. Lin, S. T. Pantelides, and Z. Liu, "InSe monolayer: synthesis, structure and ultra-high second-harmonic generation," 2D Materials, vol. 5, no. 2, p. 025019, Mar. 2018, doi: 10.1088/2053-1583/aab390. DOI: https://doi.org/10.1088/2053-1583/aab390
H. R. Jappor and M. A. Habeeb, "Tunable electronic and optical properties of GaS/GaSe van der Waals heterostructure," Current Applied Physics, vol. 18, no. 6, pp. 673–680, June 2018, doi: 10.1016/j.cap.2018.03.019. DOI: https://doi.org/10.1016/j.cap.2018.03.019
F. Opoku, A. Aniagyei, O. Akoto, E. E. Kwaansa-Ansah, N. K. Asare-Donkor, and A. A. Adimado, "Investigation of 2D Janus Al₂OS/Ga₂SSe van der Waals heterojunction as next-generation thermoelectric and photocatalytic devices," Next Materials, vol. 1, no. 4, p. 100042, Dec. 2023, doi: 10.1016/j.nxmate.2023.100042. DOI: https://doi.org/10.1016/j.nxmate.2023.100042
S. S. Ullah, M. Farooq, H. U. Din, Q. Alam, M. Idrees, M. Bilal, and B. Amin, "First principles study of electronic and optical properties and photocatalytic performance of GaN–SiS van der Waals heterostructure," RSC Advances, vol. 11, no. 52, pp. 32996–33003, Sept. 2021, doi: 10.1039/D1RA06011B. DOI: https://doi.org/10.1039/D1RA06011B
H. T. Do, T. V. Vu, A. A. Lavrentyev, N. Q. Cuong, P. V. Cuong, and H. D. Tong, "Electronic structure and interface contact of two-dimensional van der Waals boron phosphide/Ga₂SSe heterostructures," RSC Advances, vol. 12, no. 30, pp. 19115–19121, Aug. 2022, doi: 10.1039/D2RA02748H. DOI: https://doi.org/10.1039/D2RA02748H
C. He, F. S. Han, J. H. Zhang, and W. X. Zhang, "The In₂SeS/gC₃N₄ heterostructure: A new two-dimensional material for photocatalytic water splitting," Journal of Materials Chemistry C, vol. 8, no. 20, pp. 6923–6930, May 2020, doi: 10.1039/D0TC00852D. DOI: https://doi.org/10.1039/D0TC00852D
S. Rühle, "Tabulated values of the Shockley–Queisser limit for single-junction solar cells," Solar Energy, vol. 130, pp. 139–147, 2016, doi: 10.1016/j.solener.2016.02.015. DOI: https://doi.org/10.1016/j.solener.2016.02.015
M. H. Dalsaniya, T. K. Gajaria, N. N. Som, P. K. Jha, P. Śpiewak, and K. J. Kurzydłowski, "Type-II GeAs/GaSe heterostructure as suitable candidate for solar power conversion efficiency," Solar Energy, vol. 223, pp. 87–99, May 2021, doi: 10.1016/j.solener.2021.05.034. DOI: https://doi.org/10.1016/j.solener.2021.05.034
X. H. Li, B. J. Wang, H. Li, X. F. Yang, R. Q. Zhao, X. T. Jia, and S. H. Ke, "Two-dimensional layered Janus-In₂SeTe/C₂N van der Waals heterostructures for photocatalysis and photovoltaics: first-principles calculations," New Journal of Chemistry, vol. 44, no. 37, pp. 16092–16100, Oct. 2020, doi: 10.1039/D0NJ03296D. DOI: https://doi.org/10.1039/D0NJ03296D
T. Z. Wen, Y. H. Yang, and J. L. Li, "A novel Black-P/Blue-P heterostructure for the photovoltaic applications," Chemical Physics Letters, vol. 812, p. 140242, Jan. 2023, doi: 10.1016/j.cplett.2022.140242. DOI: https://doi.org/10.1016/j.cplett.2022.140242
Y. Ding, S. Fang, H. Zhou, J. Qi, J. Fan, R. Zhang, Y. Wang, J. Liu, X. Chen, L. Sun, and H. Tang, "High-performance type II WSOx/WS₂-based heterojunction photodetectors," Applied Surface Science, vol. 683, p. 161848, 2025, doi: 10.1016/j.apsusc.2024.161848. DOI: https://doi.org/10.1016/j.apsusc.2024.161848
Z. Guan, C. S. Lian, S. Hu, S. Ni, J. Li, and W. Duan, "Tunable structural, electronic, and op-tical properties of layered two-dimensional C₂N and MoS₂ van der Waals heterostructure as pho-tovoltaic material," The Journal of Physical Chemistry C, vol. 121, no. 6, pp. 3654–3660, 2017, doi: 10.1021/acs.jpcc.6b12681. DOI: https://doi.org/10.1021/acs.jpcc.6b12681
Y. Xu, D. Li, Q. Zeng, H. Sun, and P. Li, "Type-II 2D AgBr/SiH van der Waals heterostruc-tures with tunable band edge positions and enhanced optical absorption coefficients for photocata-lytic water splitting," RSC Advances, vol. 13, no. 40, pp. 27676–27685, 2023, doi: 10.1039/D3RA05079C. DOI: https://doi.org/10.1039/D3RA05079C





