Performance Analysis and Techno-Economic Evaluation of Solar Energy Retrofitting for Coal-Fired Power Plant in Central Kalimantan Province

Authors

  • Irfan Ali Master Program of Energy, School of Post Graduate Studies, Diponegoro University, Semarang Indonesia
  • Hadiyanto Hadiyanto Department of Chemical Engineering, Universitas Diponegoro, Semarang, Indonesia
  • Asep Yoyo Wardaya Department of Physics, Faculty of Science and Mathematics, Diponegoro University

DOI:

https://doi.org/10.51646/jsesd.v13i2.205

Keywords:

coal-fired power plant, CO2 emission, solar energy, retrofit scenario, power-boost (PB), fuel-save (FS).

Abstract

The power generation sector significantly contributes to climate change. Mitigation efforts are crucial to adhering to the global commitment to limit temperature increases below 2°C. One potential solution is retrofitting existing power plants with technologies that integrate renewable energy. This study explores the integration of solar energy into the operational processes of a coal-fired power plant in Central Kalimantan, replacing the extraction steam turbine in the high-pressure feed water heater No. 7. Using STEAG EBSILON for simulation, this research evaluates the power plant's performance before and after retrofitting in both power-boost (PB) and fuel-save (FS) modes under varying load conditions. The results demonstrate that thermal efficiency in both PB and FS modes increased by up to 2% compared to the base scenario. Specific fuel consumption decreased by 15.05 g/kWh in PB mode and 15.75 g/kWh in FS mode, leading to a reduction in coal consumption and CO2 emissions by 4.69% and 4.94% respectively. Additionally, the study observed that the solar percentage and solar-to-electricity efficiency increased as the load decreased. In FS mode, the solar electricity proportions at VWO, 100%, 75%, and 50% load rates were 5.23%, 5.53%, 7.76%, and 11.92%, respectively. The levelized cost of energy (LCOE) for solar electricity was calculated to be 431.82 IDR/kWh, with an expected investment return period of 5.87 years.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Indonesia, Pemerintah Pusat. 2016. Undang-undang (UU) Nomor 16 Tahun 2016 tentang Pengesahan Paris Agreement to The United Nations Framework Convention on Climate Change (Persetujuan Paris Atas Konvensi Kerangka Kerja Perserikatan Bangsa-Bangsa mengenai Perubahan Iklim). Lembaran Negara RI Tahun 2016, No. 115. Sekretariat Negara. Jakarta.

Yan, H., Liu, M., Wang, Z., Zhang, K., Chong, D., & Yan, J. (2023). Flexibility enhancement of solar-aided coal-fired power plant under different direct normal irradiance conditions. Energy, 262, 125349. https://doi.org/10.1016/j.energy.2022.125349. DOI: https://doi.org/10.1016/j.energy.2022.125349

Qin, J., Zhang, Q., Liu, Z., Hu, E., & Zhang, H. (2022). A strategy to flexibly operate a solar aided power generation plant for wide irradiation conditions. Applied Thermal Engineering, 213, 118659. https://doi.org/10.1016/j.applthermaleng.2022.118659. DOI: https://doi.org/10.1016/j.applthermaleng.2022.118659

Li, C., Zhai, R., & Sun, Y. (2022). Thermal and economic performances comparison of different pulverized coal power systems augmented by solar trough or tower technologies. Case Studies in Thermal Engineering, 34, 102009. https://doi.org/10.1016/j.csite.2022.102009. DOI: https://doi.org/10.1016/j.csite.2022.102009

Shagdar, E., Shuai, Y., Lougou, B. G., Mustafa, A., Choidorj, D., & Tan, H. (2022). New integration mechanism of solar energy into 300 MW coal-fired power plant: Performance and techno-economic analysis. Energy, 238, 122005. https://doi.org/10.1016/j.energy.2021.122005. DOI: https://doi.org/10.1016/j.energy.2021.122005

Wu, J., & Han, Y. (2023). Integration strategy optimization of solar-aided combined heat and power (CHP) system. Energy, 263, 125875. https://doi.org/10.1016/j.energy.2022.125875. DOI: https://doi.org/10.1016/j.energy.2022.125875

Han, Y., Yan, X., Sun, Y., & Wu, J. (2024). A novel solar-aided NOx removal system in peaking power plants. Energy, 132494. https://doi.org/10.1016/j.energy.2024.132494. DOI: https://doi.org/10.1016/j.energy.2024.132494

Han, Y., Sun, Y., & Wu, J. (2024). An efficient and low-cost solar-aided lignite drying power generation system based on cascade utilisation of concentrating and non-concentrating solar energy. Energy, 289, 129932. https://doi.org/10.1016/j.energy.2023.129932. DOI: https://doi.org/10.1016/j.energy.2023.129932

Pawellek, R., Löw, T., & Hirsch, T. (2009). EbsSolar – A solar library for EBSILON®Professional. https://elib.dlr.de/62438/.

Chen, H., Wu, Y., Zeng, Y., Xu, G., & Liu, W. (2021). Performance analysis of a solar-aided waste-to-energy system based on steam reheating. Applied Thermal Engineering, 185, 116445. https://doi.org/10.1016/j.applthermaleng.2020.116445. DOI: https://doi.org/10.1016/j.applthermaleng.2020.116445

Ahmadi, G., Toghraie, D., & Akbari, O. A. (2017). Solar parallel feed water heating repowering of a steam power plant: A case study in Iran. Renewable & Sustainable Energy Reviews, 77, 474–485. https://doi.org/10.1016/j.rser.2017.04.019. DOI: https://doi.org/10.1016/j.rser.2017.04.019

Zhai, R., Yang, Y., Zhu, Y., & Chen, D. (2013). The Evaluation of Solar Contribution in Solar Aided Coal-Fired Power Plant. International Journal of Photoenergy, 2013, 1–9. https://doi.org/10.1155/2013/197913. DOI: https://doi.org/10.1155/2013/197913

Yong, Q., Jin, K., Li, X., & Yang, R. (2023). Thermo-economic analysis for a novel grid-scale pumped thermal electricity storage system coupled with a coal-fired power plant. Energy, 280, 128109. https://doi.org/10.1016/j.energy.2023.128109. DOI: https://doi.org/10.1016/j.energy.2023.128109

Xue, X., Han, W., Wang, Z., Jin, H., & Wang, X. (2023). Proposal and assessment of a solar-coal thermochemical hybrid power generation system. Applied Thermal Engineering, 219, 119584.https://doi.org/10.1016/j.applthermaleng.2022.119584. DOI: https://doi.org/10.1016/j.applthermaleng.2022.119584

Yuanhui, W., Liqiang, D., Shuaiyu, J., Jiaping, G., Hanfei, Z., Ming, Y., & Xingqi, D. (2024). Optimization study of a high-proportion of solar tower aided coal-fired power generation system integrated with thermal energy storage. Energy, 132724. https://doi.org/10.1016/j.energy.2024.132724. DOI: https://doi.org/10.1016/j.energy.2024.132724

Hong, H., Peng, S., Zhao, Y., Liu, Q., & Jin, H. (2014). A Typical Solar-coal Hybrid Power Plant in China. Energy Procedia, 49, 1777–1783. https://doi.org/10.1016/j.egypro.2014.03.188. DOI: https://doi.org/10.1016/j.egypro.2014.03.188

Azubuike, U. G., Egbuhuzor, L. C., Njoku, H. O., & Ekechukwu, O. V. (2023). Exergy analysis of a steam power plant at full and partial load conditions. International Journal of Exergy, 40(2), 182. https://doi.org/10.1504/ijex.2023.128784. DOI: https://doi.org/10.1504/IJEX.2023.128784

Li, C., Zhai, R., Zhang, B., & Chen, W. (2020). Thermodynamic performance of a novel solar tower aided coal-fired power system. Applied Thermal Engineering, 171, 115127. https://doi.org/10.1016/j.applthermaleng.2020.115127. DOI: https://doi.org/10.1016/j.applthermaleng.2020.115127

Tong, Y., Duan, L., Jiang, Y., Yang, M., & Pang, L. (2022). Performance study of solar tower aided supercritical CO2 coal-fired power generation system with different schemes. Energy Conversion and Management, 252, 115113. https://doi.org/10.1016/j.enconman.2021.115113. DOI: https://doi.org/10.1016/j.enconman.2021.115113

Haiping C, Heng Z, Yuegang B, Haowen L, Xuelei Z. The performance analysis and evaluation of C-PV/T aided power generation system. Int J Energy Res 2018;42:863e76.https://doi.org/10.1002/er.3833. DOI: https://doi.org/10.1002/er.3833

Downloads

Published

2024-08-19

How to Cite

Ali, I., Hadiyanto, H., & Wardaya, A. Y. (2024). Performance Analysis and Techno-Economic Evaluation of Solar Energy Retrofitting for Coal-Fired Power Plant in Central Kalimantan Province. Solar Energy and Sustainable Development Journal, 13(2), 138–150. https://doi.org/10.51646/jsesd.v13i2.205

Issue

Section

Articles