Techno-Economic and Environmental Study of Grid-Connected Solar Geothermal Battery System in Tunisian Universities
DOI:
https://doi.org/10.51646/jsesd.v14i1.516Keywords:
solar–geothermal systems, thermal imbalance, energy policy, energy modeling, multiobjective optimization.Abstract
This study aims to evaluate a hybrid energy system combining solar photovoltaic panels, ground-source heat pumps (GSHPs), and battery storage, within a unified university-based model applied to three distinct Tunisian climate zones: Beja, Gabes, and Borma. The methodology relied on a dynamic integration of OpenStudio and TRNSYS to accurately simulate annual thermal and electrical loads. A total of 35 design configurations per city were investigated, varying in borehole number and spacing, while system components were standardized to 1,137 photovoltaic panels rated at 450 W and 120 LiFePO₄ batteries with a storage capacity of 13.44 kWh. Results revealed that the imbalance between cooling and heating demands leads to gradual thermal accumulation in the ground, reducing system efficiency over time.To assess mitigation strategies, a composite objective function incorporating four indicators was employed: thermal accumulation, ground field volume, instantaneous operating cost rate, and grid dependency. The optimization process identified configurations capable of limiting ground temperature rise and supporting stable operation. Sensitivity analysis showed that increasing the weight of economic and spatial indicators reshuffles the ranking of certain configurations, highlighting the importance of prioritization based on design goals. The selected configurations demonstrated the ability to cover more than 70% of annual demand, with levelized cost of energy (LCOE) ranging from 0.023 to 0.114 USD/kWh and payback periods between 23 and 44 years, depending on whether the system operates under Tunisia’s restrictive grid policies or more supportive international frameworks. Annual loads ranged from 965 to 1,135 MWh, with peak cooling reaching 660 kW and heating between 324 and 416 kW. Simulations also revealed seasonal variations in battery performance, with average daily charge levels exceeding 50–55% in July and dropping to 17–20% in January, depending on location. The study emphasizes the need to align technical configurations with regulatory reforms to ensure economic viability and accelerate the transition to sustainable energy systems in academic institutions.
Downloads
Metrics
References
J. J. M. Guilhoto, N. Johnstone, F. Mattion, F. Papadimoulis, R. Quadrelli, and C. Webb, “Methodology for estimation of energy physical supply and use tables based on IEA’s world energy balances,” OECD Science, Technology and Industry Working Papers, no. 2021/13, OECD Publishing, 2021. https://doi.org/10.1787/d3058f43-en DOI: https://doi.org/10.1787/d3058f43-en
International Renewable Energy Agency, Global Renewables Outlook: Energy Transformation 2050, Abu Dhabi, 2020. https://www.irena.org/publications/2020/Apr/Global-Renewables-Outlook-2020
Y. F. Nassar, H. J. El-Khozondar, M. Elnaggar, F. F. El-Batta, R. J. El-Khozondar, and S. Y. Alsadi, “Renewable energy potential in the State of Palestine: Proposals for sustainability,” Renew. Energy Focus, vol. 49, p. 100576, 2024. https://doi.org/10.1016/j.ref.2024.100576 DOI: https://doi.org/10.1016/j.ref.2024.100576
I. Gunnarsdottir, B. Davidsdottir, E. Worrell, and S. Sigurgeirsdottir, “Review of indicators for sustainable energy development,” Renew. Sustain. Energy Rev., vol. 133, p. 110294, 2020. https://doi.org/10.1016/j.rser.2020.110294 DOI: https://doi.org/10.1016/j.rser.2020.110294
T. Buettner, “World population prospects – A long view,” Economie et Statistique / Economics and Statistics, no. 520–521, pp. 9–29, 2020. https://doi.org/10.24187/ecostat.2020.520d.2030 DOI: https://doi.org/10.24187/ecostat.2020.520d.2030
T. Yan and X. Xu, “Utilization of ground heat exchangers: A review,” Curr. Sustain./Renew. Energy Rep., vol. 5, no. 3, pp. 189–198, 2018. https://doi.org/10.1007/s40518-018-0113-9 DOI: https://doi.org/10.1007/s40518-018-0113-9
A. Alaidroos and M. Krarti, “Optimal design of residential building envelope systems in the Kingdom of Saudi Arabia,” Energy Build., vol. 86, pp. 104–117, 2015. https://doi.org/10.1016/j.enbuild.2014.09.083 DOI: https://doi.org/10.1016/j.enbuild.2014.09.083
S. Ahmadi, A. H. Fakehi, A. Vakili, and M. Moeini-Aghtaie, “An optimization model for the long-term energy planning based on useful energy, economic and environmental pollution reduction in residential sector: A case of Iran,” J. Build. Eng., vol. 30, p. 101247, 2020. https://doi.org/10.1016/j.jobe.2020.101247 DOI: https://doi.org/10.1016/j.jobe.2020.101247
D. D’Agostino, P. Zangheri, L. Castellazzi, and D. Paci, “The use of ground source heat pump to achieve a net zero energy building,” Energies, vol. 13, no. 13, p. 3450, 2020. https://doi.org/10.3390/en13133450 DOI: https://doi.org/10.3390/en13133450
H. Kim and L. Junghans, “Economic feasibility of achieving net-zero emission building (NZEB) by applying solar and geothermal energy sources to heat pump systems,” J. Clean. Prod., vol. 416, p. 137822, 2023. https://doi.org/10.1016/j.jclepro.2023.137822 DOI: https://doi.org/10.1016/j.jclepro.2023.137822
Y. F. Nassar, H. J. El-Khozondar, and M. A. Fakher, “The role of hybrid renewable energy systems in covering power shortages in public electricity grid: An economic, environmental and technical optimization analysis,” J. Energy Storage, vol. 108, p. 115224, 2025. https://doi.org/10.1016/j.est.2024.115224 DOI: https://doi.org/10.1016/j.est.2024.115224
H. Al-Najjar, C. Pfeifer, R. Al Afif, and H. J. El-Khozondar, “Performance evaluation of a hybrid grid-connected photovoltaic biogas-generator power system,” Energies, vol. 15, no. 9, p. 3151, 2022. https://doi.org/10.3390/en15093151 DOI: https://doi.org/10.3390/en15093151
H. Al-Najjar, H. J. El-Khozondar, C. Pfeifer, and R. Al Afif, “Hybrid grid-tie electrification analysis of bio-shared renewable energy systems for domestic application,” Sustain. Cities Soc., vol. 77, p. 103538, 2022. https://doi.org/10.1016/j.scs.2021.103538 DOI: https://doi.org/10.1016/j.scs.2021.103538
Y. F. Nassar, H. J. El-Khozondar, M. Elnaggar, F. F. El-Batta, R. J. El-Khozondar, and S. Y. Alsadi, “Renewable energy potential in the State of Palestine: Proposals for sustainability,” Renew. Energy Focus, vol. 49, p. 100576, 2024. https://doi.org/10.1016/j.ref.2024.100576 DOI: https://doi.org/10.1016/j.ref.2024.100576
E. Hakizimana, H. Umuhoza, E. Manishimwe, and V. Kayibanda, “Economic optimization of grid-connected photovoltaic solar systems in industrial energy: Case study SULFO Ltd – Rwanda,” J. Sol. Energy Sustain. Dev., vol. 13, no. 2, pp. 204–229, Aug. 2024. DOI: https://doi.org/10.51646/jsesd.v13i2.242
H. J. El-Khozondar and F. El-Batta, “Hybrid energy system for Dier El Balah quarantine center in Gaza Strip, Palestine,” in Proc. 2021 Int. Conf. on Electric Power Engineering – Palestine (ICEPE-P), Gaza, Palestine, 2021, pp. 1–6. https://doi.org/10.1109/ICEPE-P51568.2021.9423489 DOI: https://doi.org/10.1109/ICEPE-P51568.2021.9423489
A. A. Z. Diab, H. M. Sultan, I. S. Mohamed, O. N. Kuznetsov, and T. D. Do, “Application of different optimization algorithms for optimal sizing of PV/Wind/Diesel/Battery storage stand-alone hybrid microgrid,” IEEE Access, vol. 7, pp. 119223–119245, 2019. https://doi.org/10.1109/ACCESS.2019.2936656 DOI: https://doi.org/10.1109/ACCESS.2019.2936656
M. A. Nyasapoh, S. K. Debrah, and D. K. Twerefou, “Long-term electricity generation analysis and policy implications – the case of Ghana,” Cogent Eng., vol. 10, no. 1, 2023. https://doi.org/10.1080/23311916.2023.2209996 DOI: https://doi.org/10.1080/23311916.2023.2209996
G. A. James, F. S. Ahiabor, and E. M. Abalo, “Analysing the barriers to renewable energy adoption in Ghana using Delphi and a fuzzy synthetic evaluation approach,” Energy Sustain. Dev., vol. 85, p. 101667, 2025. https://doi.org/10.1016/j.esd.2025.101667 DOI: https://doi.org/10.1016/j.esd.2025.101667
M. Sakah, F. A. Diawuo, R. Katzenbach, and S. Gyamfi, “Towards a sustainable electrification in Ghana: A review of renewable energy deployment policies,” Renew. Sustain. Energy Rev., vol. 79, pp. 544–557, 2017. https://doi.org/10.1016/j.rser.2017.05.090 DOI: https://doi.org/10.1016/j.rser.2017.05.090
European Union, “Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources,” Official J. Eur. Union, no. 5, 2009.
A. Marina, S. Spoelstra, H. A. Zondag, and A. K. Wemmers, “An estimation of the European industrial heat pump market potential,” Renew. Sustain. Energy Rev., vol. 139, p. 110545, 2021. https://doi.org/10.1016/j.rser.2020.110545 DOI: https://doi.org/10.1016/j.rser.2020.110545
V. Battaglia, L. Vanoli, C. Verde, P. Nithiarasu, and J. R. Searle, “Dynamic modelling of geothermal heat pump system coupled with positive-energy building,” Energy, vol. 284, p. 126052, 2023. https://doi.org/10.1016/j.energy.2023.126052 DOI: https://doi.org/10.1016/j.energy.2023.128557
H. Boughanmi, M. Lazaar, A. Farhat, and A. Guizani, “Evaluation of soil thermal potential under Tunisian climate using a new conic basket geothermal heat exchanger,” Appl. Therm. Eng., vol. 113, pp. 1455–1465, 2017. https://doi.org/10.1016/j.applthermaleng.2016.10.204 DOI: https://doi.org/10.1016/j.applthermaleng.2016.10.204
A. Allouhi, “Techno-economic and environmental accounting analyses of an innovative power-to-heat concept based on solar PV systems and a geothermal heat pump,” Renew. Energy, vol. 191, pp. 649–661, 2022. https://doi.org/10.1016/j.renene.2022.04.001 DOI: https://doi.org/10.1016/j.renene.2022.04.001
D. A. Rodriguez-Alejandro et al., “Comprehensive analysis of a vertical ground-source heat pump for residential use in Mexico,” Geothermics, vol. 99, p. 102300, 2022. https://doi.org/10.1016/j.geothermics.2021.102300 DOI: https://doi.org/10.1016/j.geothermics.2021.102300
R. Saeidi, A. Karimi, and Y. Noorollahi, “The novel designs for increasing heat transfer in ground heat exchangers to improve geothermal heat pump efficiency,” Geothermics, vol. 116, p. 102844, 2024. https://doi.org/10.1016/j.geothermics.2023.102844 DOI: https://doi.org/10.1016/j.geothermics.2023.102844
H. M. Fouad, A. H. Mahmoud, and R. R. Moussa, “Effect of a geothermal heat pump system on cooling residential buildings in a hot, dry climate,” HBRC J., vol. 19, no. 1, pp. 483–507, 2023. https://doi.org/10.1080/16874048.2023.2285095 DOI: https://doi.org/10.1080/16874048.2023.2285095
U. Acar and O. Kaska, “Performance assessments of ground source heat pump assisted by various solar panels to achieve zero energy buildings,” J. Build. Eng., vol. 96, p. 110611, 2024. https://doi.org/10.1016/j.jobe.2024.110611 DOI: https://doi.org/10.1016/j.jobe.2024.110611
A. Ramos-Escudero, T. Magraner, and I. C. Gil-García, “Optimized spatial tool for the implementation of ground source heat pump coupled with photovoltaic panels heating systems in urban areas,” Energy Build., vol. 323, p. 114752, 2024. https://doi.org/10.1016/j.enbuild.2024.114752 DOI: https://doi.org/10.1016/j.enbuild.2024.114752
K. Salhein et al., “Heat Transfer Performance Factors in a Vertical Ground Heat Exchanger for a Geothermal Heat Pump System,” Energies, vol. 17, no. 19, p. 5003, 2024. https://doi.org/10.3390/en17195003 DOI: https://doi.org/10.3390/en17195003
M. Vojdani, I. Fakhari, and P. Ahmadi, “A novel triple pressure HRSG integrated with MED/SOFC/GT for cogeneration of electricity and freshwater,” Energy Convers. Manage., vol. 233, p. 113876, 2021. https://doi.org/10.1016/j.enconman.2021.113876 DOI: https://doi.org/10.1016/j.enconman.2021.113876
J. Liu, S. Cao, X. Chen, H. Yang, and J. Peng, “Energy planning of renewable applications in high-rise residential buildings integrating battery and hydrogen vehicle storage,” Appl. Energy, vol. 281, p. 116038, 2021. https://doi.org/10.1016/j.apenergy.2020.116038 DOI: https://doi.org/10.1016/j.apenergy.2020.116038
M. Bortolini, M. Gamberi, and A. Graziani, “Technical and economic design of photovoltaic and battery energy storage system,” Energy Convers. Manage., vol. 86, pp. 81–92, 2014. https://doi.org/10.1016/j.enconman.2014.04.089 DOI: https://doi.org/10.1016/j.enconman.2014.04.089
J. Neubauer and A. Pesaran, “The ability of battery second use strategies to impact plug-in electric vehicle prices,” J. Power Sources, vol. 196, no. 23, pp. 10351–10358, 2011. https://doi.org/10.1016/j.jpowsour.2011.06.053 DOI: https://doi.org/10.1016/j.jpowsour.2011.06.053
M. A. Cusenza et al., “Reuse of electric vehicle batteries in buildings,” Energy Build., vol. 186, pp. 339–354, 2019. https://doi.org/10.1016/j.enbuild.2019.01.032 DOI: https://doi.org/10.1016/j.enbuild.2019.01.032
S. B. Silva, M. M. Severino, and M. A. G. de Oliveira, “A stand-alone hybrid photovoltaic, fuel cell and battery system,” Renew. Energy, vol. 57, pp. 384–389, 2013. https://doi.org/10.1016/j.renene.2013.02.004 DOI: https://doi.org/10.1016/j.renene.2013.02.004
A. Behzadi and A. Arabkoohsar, “Feasibility study of a smart building energy system,” Energy, vol. 210, p. 118528, 2020. https://doi.org/10.1016/j.energy.2020.118528 DOI: https://doi.org/10.1016/j.energy.2020.118528
X. Wang and M. Dennis, “Influencing factors on the energy saving performance of battery storage and phase change cold storage in a PV cooling system,” Energy Build., vol. 107, pp. 84–92, 2015. https://doi.org/10.1016/j.enbuild.2015.08.008 DOI: https://doi.org/10.1016/j.enbuild.2015.08.008
K. Karakoulidis et al., “Techno-economic analysis of a stand-alone hybrid photovoltaic-diesel–battery-fuel cell power system,” Renew. Energy, vol. 36, no. 8, pp. 2238–2244, 2011. https://doi.org/10.1016/j.renene.2010.12.003 DOI: https://doi.org/10.1016/j.renene.2010.12.003
Y. Zhang, A. Lundblad, P. E. Campana, and J. Yan, “Comparative study of battery storage and hydrogen storage,” Energy Procedia, vol. 103, pp. 268–273, 2016. https://doi.org/10.1016/j.egypro.2016.11.284 DOI: https://doi.org/10.1016/j.egypro.2016.11.284
H. G. Ozcan et al., “Numerical simulation and parametric study of various operational factors,” Sustain. Cities Soc., vol. 67, p. 102754, 2021. https://doi.org/10.1016/j.scs.2021.102754 DOI: https://doi.org/10.1016/j.scs.2021.102754
D. Boruah and S. S. Chandel, “A comprehensive analysis of eight rooftop grid-connected solar PV plants,” Sol. Energy, vol. 266, p. 112154, 2023. https://doi.org/10.1016/j.solener.2023.112154 DOI: https://doi.org/10.1016/j.solener.2023.112154
Z. Zhang, K. Wen, and W. Sun, “Optimization and sustainability analysis of a hybrid diesel-solar-battery system,” Sustain. Energy Technol. Assess., vol. 55, p. 102913, 2023. https://doi.org/10.1016/j.seta.2022.102913 DOI: https://doi.org/10.1016/j.seta.2022.102913
R. Hemmati, “Dynamic expansion planning in active distribution grid,” Energy, vol. 277, p. 127719, 2023. https://doi.org/10.1016/j.energy.2023.127719 DOI: https://doi.org/10.1016/j.energy.2023.127719
K. Wang et al., “Emerging photo-integrated rechargeable aqueous zinc-ion batteries,” Carbon Neutralization, vol. 2, no. 1, pp. 37–53, 2023. https://doi.org/10.1002/cnl2.41 DOI: https://doi.org/10.1002/cnl2.41
J. Li, “Optimal sizing of grid-connected photovoltaic battery systems,” Renew. Energy, vol. 136, pp. 1245–1254, 2019. https://doi.org/10.1016/j.renene.2018.09.099 DOI: https://doi.org/10.1016/j.renene.2018.09.099
W. L. Schram, I. Lampropoulos, and W. G. J. H. M. van Sark, “Photovoltaic systems coupled with batteries,” Appl. Energy, vol. 223, pp. 69–81, 2018. https://doi.org/10.1016/j.apenergy.2018.04.023 DOI: https://doi.org/10.1016/j.apenergy.2018.04.023
O. Talent and H. Du, “Optimal sizing and energy scheduling of photovoltaic-battery systems,” Renew. Energy, vol. 129, Part A, pp. 513–526, 2018. https://doi.org/10.1016/j.renene.2018.06.009 DOI: https://doi.org/10.1016/j.renene.2018.06.016
K. Solaun and E. Cerdá, “Climate change impacts on renewable energy generation,” Renew. Sustain. Energy Rev., vol. 116, p. 109415, 2019. DOI: https://doi.org/10.1016/j.rser.2019.109415
L. Shi and M. Y. L. Chew, “A review on sustainable design of renewable energy systems,” Renew. Sustain. Energy Rev., vol. 16, no. 1, pp. 192–207, 2012. DOI: https://doi.org/10.1016/j.rser.2011.07.147
Rheem Manufacturing Company, Heavy Duty Electric Water Heater Installation and Operating Manual. Accessed Mar. 30, 2025.
Bosch Thermotechnology, WW Series, Bosch Home Comfort. Accessed Mar. 30, 2025. https://www.bosch-homecomfort.com/us/en/ocs/residential/ww-series-20078866-p
One Building Energy Climate Data, “EnergyPlus weather data by region,” 2024. https://climate.onebuilding.org/
H. E. Beck, T. R. McVicar, N. Vergopolan, A. Berg, and E. F. Wood, “High-resolution (1 km) Köppen-Geiger maps for 1901–2099 based on constrained CMIP6 projections,” Sci. Data, vol. 10, p. 724, 2023. https://doi.org/10.1038/s41597-023-02549-6 DOI: https://doi.org/10.1038/s41597-023-02549-6
S. Alkan and Y. Ates, “Pilot scheme conceptual analysis of rooftop East–West-oriented solar energy system with optimizer,” Energies, vol. 16, no. 5, p. 2396, 2023. https://doi.org/10.3390/en16052396 DOI: https://doi.org/10.3390/en16052396
A. Malara, C. Marino, A. Nucara, M. Pietrafesa, F. Scopelliti, and G. Streva, “Energetic and economic analysis of shading effects on PV panels energy production,” Int. J. Heat Technol., vol. 34, no. 3, pp. 465–472, 2016. https://doi.org/10.18280/ijht.340316 DOI: https://doi.org/10.18280/ijht.340316
H. J. El-Khozondar, A. A. Asfour, Y. F. Nassar, S. W. Shaheen, M. F. El-Zaety, R. J. El-Khozondar, M. M. Khaleel, A. A. Ahmed, and A. H. Alsharif, “Photovoltaic solar energy for street lighting: A case study at Kuwaiti Roundabout, Gaza Strip, Palestine,” Power Eng. Eng. Thermophys., vol. 3, no. 2, pp. 77–91, 2024. https://doi.org/10.56578/peet030201 DOI: https://doi.org/10.56578/peet030201
Y. F. Nassar and A. A. Salem, “The reliability of the photovoltaic utilization in southern cities of Libya,” Desalination, vol. 209, pp. 86–90, 2007. https://doi.org/10.1016/j.desal.2007.04.013 DOI: https://doi.org/10.1016/j.desal.2007.04.013
Y. F. Nassar, H. J. El-Khozondar, S. Y. Alsadi, N. M. Abuhamoud, and G. M. Miskeen, “Atlas of PV Solar Systems Across Libyan Territory,” in Proc. 2022 Int. Conf. on Engineering & MIS (ICEMIS), Istanbul, Turkey, 2022, pp. 1–6. https://doi.org/10.1109/ICEMIS56295.2022.9914355 DOI: https://doi.org/10.1109/ICEMIS56295.2022.9914355
Solar-Fabrik, “Mono S4 Halfcut | Trend White.” Accessed Mar. 30, 2025. https://solar-fabrik.de/en/solar-modules/mono-s4-halfcut-trend-white/
M. H. Abuqila, Y. F. Nassar, and M. A. Nyasapoh, “Estimation of the storage capacity of electric vehicle batteries under real weather and drive-mode conditions: A case study,” Wadi Alshatti Univ. J. Pure Appl. Sci., vol. 3, no. 1, pp. 59–71, Jan.–Jun. 2025. https://doi.org/10.63318/waujpasv3i1_10 DOI: https://doi.org/10.63318/waujpasv3i1_10
MG Solar Shop, “Cegasa eBick 280 PRO LiFePO4 battery extension 13.44 kWh,” MG Solar Shop. Accessed Mar. 30, 2025. https://www.mg-solar-shop.com/cegasa-ebick-280-pro-lifepo4-battery-extension-13.44-kwh
J. Claesson and P. Eskilson, “Conductive heat extraction to a deep borehole: Thermal analyses and dimensioning rules,” Energy, vol. 13, no. 6, pp. 509–527, 1988. https://doi.org/10.1016/0360-5442(88)90005-9 DOI: https://doi.org/10.1016/0360-5442(88)90005-9
M. Ahmadfard and M. Bernier, “A review of vertical ground heat exchanger sizing tools including an inter-model comparison,” Renew. Sustain. Energy Rev., vol. 110, pp. 247–265, 2019. https://doi.org/10.1016/j.rser.2019.04.045 DOI: https://doi.org/10.1016/j.rser.2019.04.045
Grant Thornton, Africa Renewable Energy Discount Rate Survey – 2018, in collaboration with Renewables in Africa and Clean Energy Pipeline, Oct. 2018.
I. Dincer, M. A. Rosen, and P. Ahmadi, Optimization of Energy Systems. Hoboken, NJ, USA: Wiley, 2017. DOI: https://doi.org/10.1002/9781118894484
S. M. Ahmad, A. Agrira, and Y. F. Nassar, “The impact of loss of power supply probability on design and performance of wind/pumped hydropower energy storage hybrid system,” Wadi Alshatti University Journal of Pure and Applied Sciences, vol. 3, no. 2, pp. 52–62, Jul.–Dec. 2025. https://doi.org/10.63318/waujpasv3i2_06 DOI: https://doi.org/10.63318/waujpasv3i2_06
Republic of Tunisia, “Law No. 2015-12 of 11 May 2015 on the production of electricity from renewable energies,” Official Gazette of the Republic of Tunisia, no. 38, pp. 1243–1247, May 12, 2015.
K. Kusakana, “Optimal electricity cost minimization of a grid-interactive pumped hydro storage using ground water in a dynamic electricity pricing environment,” Energy Reports, vol. 5, pp. 159–169, 2019. https://doi.org/10.1016/j.egyr.2019.01.004 DOI: https://doi.org/10.1016/j.egyr.2019.01.004
M. Abdunnabi, N. Etiab, Y. F. Nassar, H. J. El-Khozondar, and R. Khargotra, “Energy savings strategy for the residential sector in Libya and its impacts on the global environment and the nation economy,” Adv. Build. Energy Res., vol. 17, no. 4, pp. 379–411, 2023. https://doi.org/10.1080/17512549.2023.2209094 DOI: https://doi.org/10.1080/17512549.2023.2209094
M. A. Eteriki, W. A. El-Osta, Y. F. Nassar, and H. J. El-Khozondar, “Effect of implementation of energy efficiency in residential sector in Libya,” in Proc. 8th Int. Eng. Conf. on Renewable Energy & Sustainability (ieCRES), Gaza, Palestine, 2023, pp. 1–6. https://doi.org/10.1109/ieCRES57315.2023.10209521 DOI: https://doi.org/10.1109/ieCRES57315.2023.10209521
G. N. B. Hendi, A. D. Zand, and M. R. Abyaneh, “Assessing the life-cycle greenhouse gas (GHG) emissions of renewable and fossil fuel energy sources in Iran,” Environ. Energy Econ. Res., vol. 5, no. 2, pp. 1–9, 2021. https://doi.org/10.22097/eeer.2021.258370.1176
A. M. Makhzom, K. R. Aissa, A. A. Alshanokie, Y. F. Nassar, H. J. El-Khozondar, M. A. Salem, M. Khaleel, M. Bazina, and M. Elmnifi, “Carbon dioxide life cycle assessment of the energy industry sector in Libya: A case study,” Int. J. Electr. Eng. Sustain., vol. 1, no. 3, pp. 145–163, Sep. 2023.
S. Malefaki, D. Markatos, A. Filippatos, and S. A. Pantelakis, “A comparative analysis of multi-criteria decision-making methods and normalization techniques in holistic sustainability assessment for engineering applications,” Aerospace, vol. 12, no. 2, p. 100, 2025. https://doi.org/10.3390/aerospace12020100 DOI: https://doi.org/10.3390/aerospace12020100
Y. F. Nassar, S. Y. Alsadi, H. J. El-Khozondar, and others, “Design of an isolated renewable hybrid energy system: a case study,” Materials for Renewable and Sustainable Energy, vol. 11, pp. 225–240, 2022. https://doi.org/10.1007/s40243-022-00216-1 DOI: https://doi.org/10.1007/s40243-022-00216-1
U.S. International Trade Administration, Tunisia – Electrical Power Systems and Renewable Energy. https://www.trade.gov/country-commercial-guides/tunisia-electrical-power-systems-and-renewable-energy
E. Omri, N. Chtourou, and D. Bazin, “Solar thermal energy for sustainable development in Tunisia: The case of the PROSOL project,” Renew. Sustain. Energy Rev., vol. 41, pp. 1312–1323, 2015. https://doi/10.1016/j.rser.2014.09.023. DOI: https://doi.org/10.1016/j.rser.2014.09.023

Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Solar Energy and Sustainable Development Journal

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.