Study of the Gravimetric, Electronic and Thermoelectric Properties of XAlH3 (X = Be, Na, K) as hydrogen storage perovskite using DFT and the BoltzTrap Software Package

Authors

  • Ayoub Koufi Engineering and Applied Physics Team (EAPT), Superior School of Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco.
  • Younes Ziat The Moroccan Association of Sciences and Techniques for Sustainable Development (MASTSD), Beni Mellal, Morocco.
  • Hamza Belkhanchi The Moroccan Association of Sciences and Techniques for Sustainable Development (MASTSD), Beni Mellal, Morocco.

DOI:

https://doi.org/10.51646/jsesd.v14iSI_MSMS2E.403

Keywords:

Electrical, DFT, Gravimetric, Merit factor, XAlH3.

Abstract

In the context of density functional theory (DFT), this study examines the structural, electronic, gravimetric and thermoelectric properties of perovskite compounds XAlH3 (X = Be, Na and K) using the generalized gradient approximation (GGA). Calculations were performed with the BoltzTrap software package integrated into the Wien2k code, enabling analysis of total energy and atomic volume using the Murnaghan equation of state. The results show that the materials behave like conductors due to the overlap of the conduction band and the valence band, with a zero band gap. NaAlH3 and KAlH3 show increasing electrical and thermal conductivity with temperature, while BeAlH3 exhibits non-linear behavior, peaking at 400 K. These results suggest that XAlH3 materials are promising for hydrogen storage applications and thermoelectric devices, underlining their potential to support a sustainable hydrogen economy.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

R. Šulc, & P. Ditl, A technical and economic evaluation of two different oxygen sources for a small oxy-combustion unit. Clea Prod, 309, 127427 (2021) DOI: https://doi.org/10.1016/j.jclepro.2021.127427

Q. Xu, Z. Zou, Y. Chen, K. Wang, Z. Du, J. Feng, & Y. Xiong, Performance of a novel-type of heat flue in a coke oven based on high-temperature and low-oxygen diffusion combustion technology. Fuel, 267, 117160 (2020) DOI: https://doi.org/10.1016/j.fuel.2020.117160

G. Varvoutis, A. Lampropoulos, E. Mandela, M. Konsolakis, & G. E. Marnellos, Recent advances on CO2 mitigation technologies: on the role of hydrogenation route via green H2. Energies, 15(13), 4790 (2022) DOI: https://doi.org/10.3390/en15134790

K. A. Trowell, S. Goroshin, D.L Frost, & J. M. Bergthorson, J. M. Aluminum and its role as a recyclable, sustainable carrier of renewable energy. Applied Energy, 275, 115112 (2020) DOI: https://doi.org/10.1016/j.apenergy.2020.115112

C. Ghenai, M. Albawab, & M. Bettayeb, Sustainability indicators for renewable energy systems using multi-criteria decision-making model and extended SWARA/ARAS hybrid method. Renewable Energy, 146, 580-597 (2020) DOI: https://doi.org/10.1016/j.renene.2019.06.157

M. Majid, Renewable energy for sustainable development in India: current status, future prospects, challenges, employment, and investment opportunities. Ener. Sust. and Soc, 10(1), 1-36 (2020) DOI: https://doi.org/10.1186/s13705-019-0232-1

V. Arun, R. Kannan, S. Ramesh, M. Vijayakumar, P. S. Raghavendran, M. Siva Ramkumar… & V. P. Sundramurthy, Review on Li‐Ion Battery vs Nickel Metal Hydride Battery in EV. Advances in Mate. Sci. and Eng, 7910072 (2022) DOI: https://doi.org/10.1155/2022/7910072

S. Arya, & S. Verma, Nickel‐metal hydride (Ni‐MH) batteries. Rechargeable Batteries: History, Prog. and Appli, 131-175 (2020) DOI: https://doi.org/10.1002/9781119714774.ch8

N. Sazali, Emerging technologies by hydrogen: A review. Hydrogen Energy, 45(38), 18753-18771 (2020) DOI: https://doi.org/10.1016/j.ijhydene.2020.05.021

N. Ma, W. Zhao, W. Wang, X. Li, & H. Zhou, Large scale of green hydrogen storage: Opportunities and challenges. Hydrogen Energy, 50, 379-396 (2023) DOI: https://doi.org/10.1016/j.ijhydene.2023.09.021

M. Aravindan, V. S. Hariharan, T. Narahari, A. Kumar, K. Madhesh, P. Kumar, & R. Prabakaran, Fuelling the future: A review of non-renewable hydrogen production and storage techniques. Rene. and Sust. Ene. Revi, 188, 113791 (2023) DOI: https://doi.org/10.1016/j.rser.2023.113791

E. B. Agyekum, C. Nutakor, A. M. Agwa, & S. Kamel, A critical review of renewable hydrogen production methods: factors affecting their scale-up and its role in future energy generation. Membranes, 12(2), 173 (2022) DOI: https://doi.org/10.3390/membranes12020173

B. Zhang, S. X. Zhang, R. Yao, Y. H. Wu, J. S. & Qiu, Progress and prospects of hydrogen production: Opportunities and challenges. Ele. Sci. and Tec , 19(2), 100080 (2021) DOI: https://doi.org/10.1016/j.jnlest.2021.100080

X. Xu, Q. Zhou, & D. Yu, The future of hydrogen energy: Bio-hydrogen production technology. Hydrogen Energy, 47(79), 33677-33698 (2022) DOI: https://doi.org/10.1016/j.ijhydene.2022.07.261

L. Van Hoecke, L. Laffineur, R. Campe, P. Perreault, S. W.Verbruggen, & S. Lenaerts, Challenges in the use of hydrogen for maritime applications. Ene. & Env. Sci, 14(2), 815-843 (2021) DOI: https://doi.org/10.1039/D0EE01545H

R. R. Ratnakar, N. Gupta, K. Zhang, C. van Doorne, J. Fesmire, B. Dindoruk, & V. Balakotaiah, Hydrogen supply chain and challenges in large-scale LH2 storage and transportation. Hydrogen Energy, 46(47), 24149-24168 (2021) DOI: https://doi.org/10.1016/j.ijhydene.2021.05.025

A. N. Sosa, F. Santiago, Á. Miranda, A. Trejo & al. Alkali andtransition metal atom-functionalized germanene for hydrogen storage: A DFT investigation, Hydrogen Energy, 46, 20245-20256 (2021) DOI: https://doi.org/10.1016/j.ijhydene.2020.04.129

L. Rtemi, W. El-Osta, and A. Attaiep, Hybrid System Modeling for Renewable Energy Sources, 12, 13–28 (2023) DOI: https://doi.org/10.51646/jsesd.v12i1.146

M. Usman, Hydrogen storage methods: Review and current status, Renew, 167, 112743 (2022) DOI: https://doi.org/10.1016/j.rser.2022.112743

Y. Pan & Y. Ende, Theoretical prediction of structure, electronic and optical properties of VH2 hydrogen storage material, Hydrogen Energy, 47, 27608-27616 (2022) DOI: https://doi.org/10.1016/j.ijhydene.2022.06.080

S. Y. Lee, J. H. Lee, Y. H. Kim, J. W. Kim, K. J. Lee, & S. J. Park, Recent progress using solid. State. Mate. for hyd. Sto : a short review. Processes, 10(2), 304 (2022) DOI: https://doi.org/10.3390/pr10020304

S. P. Filippov, & A. B. Yaroslavtsev, Hydrogen energy: Development prospects and materials. Russ. Che. Rev, 90(6), 627 (2021) DOI: https://doi.org/10.1070/RCR5014

M. K. Masood, W. Khan, K. Chaoui, Z. Ashraf, S. Bibi, A. Kanwal, ... & J. Rehman, Theoretical investigation of XSnH3 (X: Rb, Cs, and Fr) perovskite hydrides for hydrogen storage application. Hydrogen Energy, 63, 1248 (2024) DOI: https://doi.org/10.1016/j.ijhydene.2024.03.229

M. Mohan, N. P. Shetti, & T. M. Aminabhavi, Perovskites: A new generation electrode materials for storage applications. Power Sources, 574, 233166 (2023) DOI: https://doi.org/10.1016/j.jpowsour.2023.233166

JA. Nunez, High-pressure and high-temperature synthesis of light perovskite hydrides for hydrogen storage. Universit´e Grenoble Alpes; (2022)

K. Ikeda & al. Reversible hydriding and dehydriding reactions of perovskite-type hydride NaMgH3. Scripta. Mater 53(3), 319–22 (2005) DOI: https://doi.org/10.1016/j.scriptamat.2005.04.010

U. Rehman, Zia, & al. A DFT study of structural, electronic, mechanical, phonon, thermodynamic, and H2 storage properties of lead-free perovskite hydride MgXH3 (X= Cr, Fe, Mn). Phy. and Che. Solids, 186, 11801 (2024) DOI: https://doi.org/10.1016/j.jpcs.2023.111801

Z. Rehman, & al. Ab initio insight into the physical properties of MgXH3 (X= Co, Cu, Ni) lead-free perovskite for hydrogen storage application. Env. Sci. Poll. Cont. Ser, 30, 113889–113902 (2023) DOI: https://doi.org/10.1007/s11356-023-30279-0

C. Xia, H. Wang, J. K. Kim, & J. Wang, Rational design of metal oxide‐based heterostructure for efficient photocatalytic and photoelectrochemical systems. Adv. Fun. Mat, 31(12), 2008247 (2021) DOI: https://doi.org/10.1002/adfm.202008247

E. Mousset, & D. D. Dionysiou, Photoelectrochemical reactors for treatment of water and wastewater: a review. Env. Che. Let, 18(4), 1301-1318 (2020) DOI: https://doi.org/10.1007/s10311-020-01014-9

M. Miri, Y. Ziat, H. Belkhanchi, & Y. A. El Kadi, The effect of pressure on the structural, optoelectronic and mechanical conduct of the XZnF3 (X= Na, K and Rb) perovskite: First-principles study. Mod. Phys. B, 2550096. (2024) https://doi.org/10.1142/S0217979225500961. DOI: https://doi.org/10.1142/S0217979225500961

A. Koufi, Y. Ziat, H. Belkhanchi, M. Miri, N. Lakouari, & F. Z. Baghli, A computational study of the structural and thermal conduct of MgCrH3 and MgFeH3 perovskite-type hydrides: FP-LAPW and BoltzTraP insight. In E3S Web of Conferences (Vol. 582, p. 02003) (2024). https://doi.org/10.1051/e3sconf/202458202003 DOI: https://doi.org/10.1051/e3sconf/202458202003

A. Bouzaid, Y. Ziat, H. Belkhanchi, H. Hamdani, A. Koufi, M. Miri, ... & Z. Zarhri, Ab initio study of the structural, electronic, and optical properties of MgTiO3 perovskite materials doped with N and P. In E3S Web of Conferences (Vol. 582, p. 02006) (2024). https://doi.org/10.1051/e3sconf/202458202006 DOI: https://doi.org/10.1051/e3sconf/202458202006

Z. Zarhri, A. D. Cano, O. Oubram, Y. Ziat, & A. Bassam, Optical measurements and Burstein Moss effect in optical properties of Nb-doped BaSnO3 perovskite. Micro & Nano. 166, 207223 (2022) DOI: https://doi.org/10.1016/j.micrna.2022.207223

F. A. Zhao, H. Y. Xiao, Z. J. Liu, S. Li, & X. T. Zu, A DFT study of mechanical properties, thermal conductivity and electronic structures of Th-doped Gd2Zr2O7. Acta Materialia, 121, 299-309 (2016) DOI: https://doi.org/10.1016/j.actamat.2016.09.018

Y. Wang, Y. J. Hu, B. Bocklund, S. L. Shang, B. C. Zhou, Z. K. Liu, &. L. Q. Chen, First-principles thermodynamic theory of Seebeck coefficients. Physical. Review B, 98(22), 224101 (2018) DOI: https://doi.org/10.1103/PhysRevB.98.224101

M. Bürkle, T. J. Hellmuth, F. Pauly, & Y. Asai, First-principles calculation of the thermoelectric figure of merit for [2, 2] paracyclophane-based single-molecule junctions. Physical Review B, 91(16), 165419 (2015) DOI: https://doi.org/10.1103/PhysRevB.91.165419

P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G. K. Madsen, & L. D. Marks. WIEN2k: An APW+ lo program for calculating the properties of solids. The Journal of chemical physics, 152(7) (2020). https://doi.org/10.1063/1.5143061. DOI: https://doi.org/10.1063/1.5143061

J. P. Perdew, k. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865. DOI: https://doi.org/10.1103/PhysRevLett.77.3865

W. Khan. Computational screening of BeXH3 (X: Al, Ga, and In) for optoelectronics and hydrogen storage applications. Mat. Sci. in Semic. Pro, 174, 108221 (2024) DOI: https://doi.org/10.1016/j.mssp.2024.108221

N. Xu, R. Song, J. Zhang, Y. Chen, S. Chen, Li, S., ... & W. Zhang, First-principles study on hydrogen storage properties of the new hydride perovskite XAlH3 (X= Na, K). Hydrogen. Energy, 60, 434-440 (2024) DOI: https://doi.org/10.1016/j.ijhydene.2024.02.148

E. Ededet, H. Louis, U. G. Chukwu, T. O. Magu, A. E. Udo, S. A. Adalikwu, & A. S. Adeyinka, A. S. Ab Initio Study of the Effects of d-Block Metal (Mn, Re, Tc) Encapsulation on the Electronic, Phonon, Thermodynamic, and Gravimetric, Hydrogen Capacity of BaXH4 Hydride Perovskites. Electronic. Materials, 53(1), 250-264 (2024) DOI: https://doi.org/10.1007/s11664-023-10759-2

H. H. Raza, G. Murtaza, S. Razzaq, & A. Azam, Improving thermodynamic properties and desorption temperature in MgH2 by doping Be: DFT study. Molecular Simulation, 49(5), 497-508 (2023) DOI: https://doi.org/10.1080/08927022.2023.2171075

A. Siddique, A. Khalil, B. S. Almutairi, M. B. Tahir, M. Sagir, Z. Ullah, ... & M. Alzaid. Structures and hydrogen storage properties of AeVH3 (Ae= Be, Mg, Ca, Sr) perovskite hydrides by DFT calculations Hydr. Ene, 48(63), 24401-24411 (2023) DOI: https://doi.org/10.1016/j.ijhydene.2023.03.139

B. P. Tarasov, P. V. Fursikov, A. A. Volodin, M. S. Bocharnikov, Y. Y. Shimkus, A. M. Kashin, ... & M. V. Lototskyy. Metal hydride hydrogen storage and compression systems for energy storage technologies. Hydr. Ene. , 46(25), 13647-13657 (2021) DOI: https://doi.org/10.1016/j.ijhydene.2020.07.085

M.Yaseen, H. Ambreen, Remsha, Mehmood, I. Munawar, Nessrin, Kattan,T. Alshahrani, S. Noreen, A. Laref. Investigation of optical and thermoelectric properties of PbTiO3 under pressure, Physica B: Cond. Mat, 615, 412857 (2021). DOI: https://doi.org/10.1016/j.physb.2021.412857

D. Chang-Hao, D. Zhi-Fu, D. Zhong-Ke D, P. Hui & al. XMoSiN (X=S, Se, Te): A novel 2D Janus semiconductor with ultra-high carrier mobility and excellent thermoelectric performance, Europhysics Letters, 143, 16002 (2023). DOI: https://doi.org/10.1209/0295-5075/acdb98

Downloads

Published

2024-12-27

How to Cite

Koufi, A., Ziat, Y., & Belkhanchi, H. (2024). Study of the Gravimetric, Electronic and Thermoelectric Properties of XAlH3 (X = Be, Na, K) as hydrogen storage perovskite using DFT and the BoltzTrap Software Package. Solar Energy and Sustainable Development Journal, 14(SI_MSMS2E), 53–66. https://doi.org/10.51646/jsesd.v14iSI_MSMS2E.403