Hydrogen, Chronology and Electrochemical Production

Authors

  • Charaf Laghlimi ERCI2A, FSTH, Abdelmalek Essaadi University, Tetouan, Morocco.
  • Abdelaziz Moutcine ERCI2A, FSTH, Abdelmalek Essaadi University, Tetouan, Morocco.
  • Younes Ziat The Moroccan Association of Sciences and Techniques for Sustainable Development (MASTSD), Beni Mellal, Morocco.
  • Hamza Belkhanchi The Moroccan Association of Sciences and Techniques for Sustainable Development (MASTSD), Beni Mellal, Morocco.
  • Ayoub Koufi The Moroccan Association of Sciences and Techniques for Sustainable Development (MASTSD), Beni Mellal, Morocco.
  • Souad Bouyassan Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, 23000, Morocco.

DOI:

https://doi.org/10.51646/jsesd.v14iSI_MSMS2E.405

Keywords:

Electrolysis, Green hydrogen, Batteries invented, Galvanic cells, Polymer electrolyte membrane, Alkaline water electrolysis.

Abstract

Human gluttony is having a catastrophic effect on the environment. Since the age of industry and the world wars, modern societies have hygienically depleted most of the earth's resources, thus depleting all the resources that will be essential for future generations. The problem doesn't stop there: greenhouse gas emissions have significantly increased the earth's temperature, causing terrible damage to the climate.  The production of green energy with no greenhouse effect seems essential to save the planet. Green hydrogen is a suitable and promising way to generate an energy source that produces H2O molecules instead of CO2. Water electrolysis is a very important technique for producing green H2 using an appropriate electrical current generated by a non-polluting energy source such as wind turbines. This review presents a historical and technical overview of the hydrogen element from its discovery to its current production. Throughout this work, we have tried to deal with the most significant historical periods.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

M. Hermesmann and T. E. Müller, “Green, turquoise, blue, or grey? Environmentally friendly hydrogen production in transforming energy systems”, Progress in Energy and Combustion Science, vol. 90, p. 100996, 2022. DOI: https://doi.org/10.1016/j.pecs.2022.100996

D. D. IEA, Global hydrogen review 2021, Public Report, 2021.

J. G. Martín, The future of hydrogen: Seizing todays opportunities, Economía industrial, no. 424, pp. 183-184, 2022.

A. Mehmeti, A. Angelis-Dimakis, G. Arampatzis, S. J. McPhail and S. Ulgiati, “Life cycle assessment and water footprint of hydrogen production methods: from conventional to emerging technologies”, Environments, vol. 5, no. 2, p. 24, 2018. DOI: https://doi.org/10.3390/environments5020024

S. Schneider, S. Bajohr, F. Graf and T. Kolb, “State of the art of hydrogen production via pyrolysis of natural gas”, ChemBioEng Reviews, vol. 7, no. 5, pp. 150-158, 2020. DOI: https://doi.org/10.1002/cben.202000014

H. Tüysüz, “Alkaline water electrolysis for green hydrogen production”, Accounts of Chemical Research, vol. 57, no. 4, pp. 558-567, 2024. DOI: https://doi.org/10.1021/acs.accounts.3c00709

S. A. Grigoriev, V. N. Fateev, D. G. Bessarabov and P. Millet, “Current status, research trends, and challenges in water electrolysis science and technology”, International Journal of Hydrogen Energy, vol. 45, no. 49, pp. 26036-26058, 2020. DOI: https://doi.org/10.1016/j.ijhydene.2020.03.109

S. Trasatti, “Water electrolysis: who first?”, Journal of electroanalytical chemistry (1992), vol. 476, no. 1, 90-91, 1999. DOI: https://doi.org/10.1016/S0022-0728(99)00364-2

R. T. Liu, Z. L. Xu, F. M. Li, F. Y. Chen, J. Y. Yu, Y. Yan, Y. Chen and B. Y. Xia, “Recent advances in proton exchange membrane water electrolysis”, Chemical Society Reviews, 2023. DOI: https://doi.org/10.1039/D2CS00681B

I. Shown, S. Samireddi and R. Ravi, “Basics of Water Electrolysis” In Handbook of Energy Materials, Singapore: Springer Nature Singapore, pp. 1-32. (2023). DOI: https://doi.org/10.1007/978-981-16-4480-1_36-1

P. Goel, P. Mandal, S. Chattopadhyay and V. K. Shahi, “Historical and Recent Developments in Anion Exchange Membranes (AEM)”, Alkaline Anion Exchange Membranes for Fuel Cells: From Tailored Materials to Novel Applications, pp. 15-35, 2024. DOI: https://doi.org/10.1002/9783527837588.ch2

S. E. Wolf, F. E. Winterhalder, V. Vibhu, L. B. de Haart, O. Guillon, R. A. Eichel and N. H. Menzler, “Solid oxide electrolysis cells–current material development and industrial application”, Journal of materials chemistry A, vol. 11, no. 34, pp. 17977-18028, 2023. DOI: https://doi.org/10.1039/D3TA02161K

N. A. Qasem and G. A. Abdulrahman, “A Recent Comprehensive Review of Fuel Cells: History, Types, and Applications”, International Journal of Energy Research, vol. 2024, no.1, pp. 7271748, 2024. DOI: https://doi.org/10.1155/2024/7271748

A. S. Emam, M. O. Hamdan, B. A. Abu-Nabah and E. Elnajjar, “A review on recent trends, challenges, and innovations in alkaline water electrolysis”, International Journal of Hydrogen Energy, vol. 64, pp. 599-625, 2024. DOI: https://doi.org/10.1016/j.ijhydene.2024.03.238

M. Klell, H. Eichlseder, A. Trattner, Fundamentals. In: Hydrogen in Automotive Engineering”, Springer Wiesbaden, 2023. DOI: https://doi.org/10.1007/978-3-658-35061-1

J. S. Rigden, “Hydrogen: the essential element”, Harvard University Press, 2003. DOI: https://doi.org/10.2307/j.ctv1pncpvj

A. Keçebaş and M. Kayfeci, “Hydrogen properties”, In Solar Hydrogen Production, Academic Press, pp. 3-29, 2019. DOI: https://doi.org/10.1016/B978-0-12-814853-2.00001-1

V. M. Petruševski and J. Cvetković, “On the ‘true position’of hydrogen in the periodic table”, Foundations of Chemistry, vol. 20, pp. 251-260, 2018. DOI: https://doi.org/10.1007/s10698-018-9306-y

K. Hentschel, “Prisms, Spectroscopes, Spectrographs, and Gratings”, A Companion to the History of Science, pp. 543-556, 2016. DOI: https://doi.org/10.1002/9781118620762.ch38

B. A. Paldus and R. N. Zare, “Historical Overview of Spectral Studies: From Sunlight to Lasers”, pp. 1-6, 1999. DOI: https://doi.org/10.1021/bk-1999-0720.ch001

K. J. Shayegan, S. Biswas, B. Zhao, S. Fan and H. A. Atwater, “Direct observation of the violation of Kirchhoff’s law of thermal radiation”, Nature Photonics, vol. 17, no. 10, pp. 891-896, 2023. DOI: https://doi.org/10.1038/s41566-023-01261-6

M. Giliberti and L. Lovisetti, “Bohr’s Hydrogen Atom. In Old Quantum Theory and Early Quantum Mechanics: A Historical Perspective Commented for the Inquiring Reader”, Cham: Springer Nature Switzerland, pp. 269-312, 2024. DOI: https://doi.org/10.1007/978-3-031-57934-9_7

H. B. Tilton, “The hydrogen atom: The Rutherford model”, In Models and modelers of hydrogen, pp. 33-47, 1996. DOI: https://doi.org/10.1142/9789812830876_0003

J. L. Heilbron, “Rutherford–bohr atom”, American Journal of Physics, vol. 49, no. 3, pp. 223-231, 1981. DOI: https://doi.org/10.1119/1.12521

H. Kragh, “Before Bohr: Theories of atomic structure 1850-1913”, RePoSS: Research Publications on Science Studies, vol. 10, 2010.

H. Kragh, “Niels Bohr and the quantum atom: The Bohr model of atomic structure 1913-1925”, OUP Oxford, 2012. DOI: https://doi.org/10.1093/acprof:oso/9780199654987.001.0001

M. Eckert, “How Sommerfeld extended Bohr’s model of the atom (1913–1916)”, The European Physical Journal H, vol. 39, pp. 141-156, 2014. DOI: https://doi.org/10.1140/epjh/e2013-40052-4

A. M. R. P. Bopegedera, “A guided-inquiry lab for the analysis of the Balmer series of the hydrogen atomic spectrum”, Journal of Chemical Education, vol. 88, no. 1, pp. 77-81, 2011. DOI: https://doi.org/10.1021/ed1003146

J. B. Kaler, “Stars and their spectra: an introduction to the spectral sequence”, Cambridge University Press, 2011.

K. R. Lang and K. R. Lang, “Essential astrophysics”, Springer, 2013. DOI: https://doi.org/10.1007/978-3-642-35963-7

A. J. Ångström, “I. on the fraunhofer-lines visible in the solar spectrum”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 24, no. 158, pp. 1-11, 1862. DOI: https://doi.org/10.1080/14786446208643305

A. Unsöld and V. Weidemann, “Fraunhofer lines and the structure of stellar atmospheres”, Vistas in Astronomy, vol. 1, pp. 249-256, 1955. DOI: https://doi.org/10.1016/0083-6656(55)90033-7

S. Reif-Acherman, “Anders Jonas Ångström and the foundation of spectroscopy—Commemorative article on the second centenary of his birth”, Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 102, pp. 12-23, 2014. DOI: https://doi.org/10.1016/j.sab.2014.10.001

M. Koubiti, S. Loch, H. Capes, L. Godbert-Mouret, Y. Marandet, A. Meigs, , ... and H. Summers, “Smooth line merging into the continuum and Stark broadening of deuterium Balmer lines for plasma diagnostics”, Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 81, no. 1-4, pp. 265-273, 2003. DOI: https://doi.org/10.1016/S0022-4073(03)00079-7

J. Heyvaerts, “Astrophysique-2e éd.: Etoiles, univers et relativité”, Dunod, 2012.

H. Benson, “Physique III: Ondes, optique et physique modern”, de Boeck supérieur, vol. 3, 2016.

C. G. Parigger and E. U. G. E. N. E. Oks, “Hydrogen Balmer series spectroscopy in laser-induced breakdown plasmas”, Int. Rev. Atom. Mol. Phys, vol. 1, no. 1, pp. 13-23, 2010.

A. Sommerfeld, “On the theory of the Balmer series: Presented at the meeting on 6 December 1915”, The European Physical Journal H, vol. 39, no. 2, pp. 157-177, 2014. DOI: https://doi.org/10.1140/epjh/e2013-40053-8

B.P. Lavrov, A.V. Pipa, “Account of the fine structure of hydrogen atom levels in the effective emission cross sections of Balmer lines excited by electron impact in gases and plasma”. Opt. Spectrosc, vol. 92, pp. 647–657, 2002. DOI: https://doi.org/10.1134/1.1481126

T.D. Rossing, C.J. Chiaverina, “Light Sources and the Particle Nature of Light”, Light Science: Physics and the Visual Arts, pp. 171-202, 2019. DOI: https://doi.org/10.1007/978-3-030-27103-9_7

H. Zhang, Y. Ma, K. Liao, W. Yang, Z. Liu, D. Ding, H. Yan, W. Li and L. Zhang, “Rydberg atom electric field sensing for metrology, communication and hybrid quantum systems”, Science Bulletin, 2024. DOI: https://doi.org/10.1016/j.scib.2024.03.032

E. Tiesinga, P.J. Mohr, D.B. Newell and B. N. Taylor, “Codata recommended values of the fundamental physical constants: 2018”, Journal of physical and chemical reference data, vol. 50, no. 3, 2021. DOI: https://doi.org/10.1063/5.0064853

B.J. Dixon, J. Tang and J.H. Zhang, “The evolution of molecular hydrogen: a noteworthy potential therapy with clinical significance”, Med Gas Res, vol. 3, no. 10, pp. 1-12, 2013. DOI: https://doi.org/10.1186/2045-9912-3-10

N. Sridhar, A. Anderko, “Electrolyte based modeling of corrosion processes in Sulfuric Acid mixtures, Part 1: nonoxidizing Conditions”, Corrosion, vol. 77, no. 9, pp. 935-948, 2021. DOI: https://doi.org/10.5006/3872

B.T. Ellison, W.R. Schmeal, “Corrosion of steel in concentrated sulfuric acid”, J Electrochem Soc, vol. 125, no. 4, p. 524, 1978. DOI: https://doi.org/10.1149/1.2131491

J. T. Hancock and T. W. LeBaron, “The early history of hydrogen and other gases in respiration and biological systems: Revisiting Beddoes, Cavallo, and Davy”, Oxygen, vol. 3, no. 1, 102-119, 2023. DOI: https://doi.org/10.3390/oxygen3010008

S. J. McPhail, V. Cigolotti, A. Moreno and L. Jörissen, “Prospects of hydrogen as a Future Energy Carrier”, Fuel Cells in the Waste-to-Energy Chain: Distributed Generation Through Non-Conventional Fuels and Fuel Cells, pp. 189-203, 2012. DOI: https://doi.org/10.1007/978-1-4471-2369-9_12

H. Cavendish, “XIX, Three papers, containing experiments on factitious air”, Philosophical Transactions of the Royal Society of London, vol. 56, 141-184, 1766. DOI: https://doi.org/10.1098/rstl.1766.0019

A. E. Karaca and I. Dincer, “An updated overview of Canada's hydrogen related research and development activities”, International Journal of Hydrogen Energy, vol. 46, no. 69, pp. 34515-34525, 2021. DOI: https://doi.org/10.1016/j.ijhydene.2021.07.235

R. T. Vashi and K. Desai, “Aniline as corrosion inhibitor for zinc in hydrochloric acid”, Chem Sci Trans, vol. 2, no. 2, pp. 670-676, 2013. DOI: https://doi.org/10.7598/cst2013.423

D. Fauque, “Lavoisier et la naissance de la chimie moderne”, Paris: Vuibert, p. 253, 2003. [52]D.L. Baulch, C.J. Cobos, R.A. Cox, P. Frank, G. Hayman, Th. Just, J.A. Kerr, T. Murrels, M.J. Pilling, J. Troe, R.W. Walker, J. Warnatz, “Summary table of evaluated kinetic data for combustion modeling: Supplement 1 Combust”, Flame, vol. 98 , pp. 59-79, 1994. DOI: https://doi.org/10.1016/0010-2180(94)90198-8

A. L. de Lavoisier, “Traité élémentaire de chimie”, Maxtor France, 2019.

M. Crosland, “Comité Lavoisier De L'Académie Des Sciences. Ouvres de Lavoisier: Correspondence”, Fascicule IV, 1784–1786. Paris: Editions Belin, 1986. Pp. xv+ 351. ISBN 2-7011-1085-8. FF 460.00. The British Journal for the History of Science, vol. 21, no. 3, 365-366, 1988. DOI: https://doi.org/10.1017/S000708740002505X

M. I. C. H. E. L. E. Giua, “ L'apport italien à l'étude des molécules et des macromolécules après Avogadro. Cahiers d'Histoire Mondiale”, Journal of World History. Cuadernos de Historia Mundial, vol. 7, no. 1, p. 485, 1962.

J. L. Gay-Lussac, “Mémoire sur la combinaison des substances gazeuses, les unes avec les autres”, Mémoires de la Société d’Arcueil, vol. 2, pp. 207-234, 1809.

B. Fernandez, “ Les deux hypothèses d’Avogadro en 1811”, Bibnum. Textes fondateurs de la science, 2009. DOI: https://doi.org/10.4000/bibnum.448

A. F. Chalmers, “The scientist's atom and the philosopher's stone: How science succeeded and philosophy failed to gain knowledge of atoms”, Dordrecht: Springer, Vol. 279, 2009.

A. Verkhratsky, O. A. Krishtal and O. H. Petersen, “From Galvani to patch clamp: the development of electrophysiology”, Pflügers Archiv, vol. 453, pp. 233-247, 2006. DOI: https://doi.org/10.1007/s00424-006-0169-z

L. Galvani, « De viribus electricitatis in motu musculari. Commentarius”, De Bonoiensi Scientiarum et Artium Intituo atque Academie Commentarii, vol. 7, pp. 363-418, 1791. DOI: https://doi.org/10.5479/sil.324681.39088000932442

N. Kipnis, “Luigi Galvani and the debate on animal electricity, 1791–1800”, Annals of science, vol. 44, no. 2, pp. 107-142, 1987. DOI: https://doi.org/10.1080/00033798700200151

L. Falomo Bernarduzzi, E. M. Bernardi, A. Ferrari, M. C. Garbarino and A. Vai, “Augmented reality application for handheld devices: how to make it happen at the Pavia university history museum”, Science & education, 30, pp. 755-773, 2021. DOI: https://doi.org/10.1007/s11191-021-00197-z

R. Seligardi, “Le applicazioni della chimica nei periodici di LV Brugnatelli ”, Taddia M.(a cura di), Atti del XIV Convegno Nazionale Storia e Fondamenti della Chimica, ARACNE, Roma, pp. 331-342, 2011.

M. Bresadola, “Animal electricity at the end of the eighteenth century: the many facets of a great scientific controversy”, Journal of the History of the Neurosciences, vol. 17, no. 1, pp. 8-32, 2008. DOI: https://doi.org/10.1080/09647040600764787

R. W. Baloh, “Electricity and the Nervous System. In Brain Electricity: The Interwoven History of Electricity and Neuroscience”, Cham: Springer Nature Switzerland, pp. 125-158, 2024. DOI: https://doi.org/10.1007/978-3-031-62994-5_5

M. Piccolino, “Luigi Galvani's path to animal electricity”, Comptes rendus biologies, vol. 329, no. 5-6, pp. 303-318, 2006. DOI: https://doi.org/10.1016/j.crvi.2006.03.002

A. Volta, “XVII. On the electricity excited by the mere contact of conducting substances of different kinds. In a letter from Mr. Alexander Volta, FRS Professor of Natural Philosophy in the University of Pavia, to the Rt. Hon. Sir Joseph Banks, Bart. KBPR S”, Philosophical transactions of the Royal Society of London, no. 90, pp. 403-431, 1800. DOI: https://doi.org/10.1098/rstl.1800.0018

J. Jayaprabakar, J. Aravind Kumar, J. Parthipan, A. Karthikeyan, M. Anish, Nivin Joy, “Review on hybrid electro chemical energy storage techniques for electrical vehicles: Technical insights on design, performance, energy management, operating issues & challenges”, Journal of Energy Storage,vol. 72, 2023. DOI: https://doi.org/10.1016/j.est.2023.108689

B. Scrosati, “History of lithium batteries”, Journal of solid state electrochemistry, vol. 15, no. 7, pp. 1623-1630, 2011. DOI: https://doi.org/10.1007/s10008-011-1386-8

J. Frazelle, “Battery day”, Communications of the ACM, vol. 64, no 5, pp. 52-59, 2021. DOI: https://doi.org/10.1145/3434222

Z. Ahmad, “Principles of corrosion engineering and corrosion control”, Elsevier, pp. 9-56, 2006, ISBN 9780750659246. DOI: https://doi.org/10.1016/B978-075065924-6/50003-9

Y. Gao, Z. Pan, , J. Sun, Z. Liu and J. Wang, “High-Energy Batteries: Beyond Lithium-Ion and Their Long Road to Commercialisation”, Nano-Micro Lett, vol. 14, no. 94, 2022. DOI: https://doi.org/10.1007/s40820-022-00844-2

L. Fabbrizzi, “Strange case of Signor Volta and Mister Nicholson: how electrochemistry developed as a consequence of an editorial misconduct”, Angewandte Chemie International Edition, vol. 58, no. 18, pp. 5810-5822, 2019. DOI: https://doi.org/10.1002/anie.201813519

T. P. Silverstein, “Oxidation and reduction: too many definitions?”, Journal of Chemical Education, vol. 88, no. 3, pp. 279-281, 2011. DOI: https://doi.org/10.1021/ed100777q

T. B. Clarke, M. W. Glasscott and J. E. Dick, “The role of oxygen in the voltaic pile”, Journal of Chemical Education, vol. 98, no. 9, pp. 2927-2936, 2021. DOI: https://doi.org/10.1021/acs.jchemed.1c00016

S. Ross and M. Faraday, “Faraday consults the scholars: the origins of the terms of electrochemistry”, Notes and Records of the Royal Society of London, vol. 16, no. 2, pp.187-220, 1961. DOI: https://doi.org/10.1098/rsnr.1961.0038

F. Scholz, “Wilhelm Ostwald’s Role in the Genesis and Evolution of the Nernst Equation”, J. Solid State Electrochem, vol. 21, no. 7, pp. 1847−1859, 2017. DOI: https://doi.org/10.1007/s10008-017-3619-y

K. C. De Berg, “The development of the theory of electrolytic dissociation”, Science & Education, vol. 12, pp. 397-419, 2003. DOI: https://doi.org/10.1023/A:1024438216974

T. Placke, R. Kloepsch, S. Dühnen and M. Winter, “Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density”, Journal of Solid State Electrochemistry, vol. 21, pp. 1939-1964, 2017. DOI: https://doi.org/10.1007/s10008-017-3610-7

M. Fichtner, K. Edström, E. Ayerbe, M. Berecibar, A. Bhowmik, I. E. Castelli, S. Clark, R. Dominko, M. Erakca, A. A. Franco, A. Grimaud, B. Horstmann, A. Latz, H. Lorrmann, M. Meeus, R. Narayan, F. Pammer, J. Ruhland, H. Stein, T. Vegge and M. Weil, “Rechargeable batteries of the future—the state of the art from a BATTERY 2030+ perspective”, Advanced Energy Materials, vol. 12, no.17, p. 2102904, 2022. DOI: https://doi.org/10.1002/aenm.202102904

J. B. Calvert, “The electromagnetic telegraph”, 2008.

I. Aguilar, P. Lemaire, N. Ayouni, E. Bendadesse, A. V. Morozov, O. Sel, V. Balland, B. Limoges, A. M. Abakumov, E. Raymundo-Piñero, A. Slodczyk, A. Canizarès, D. Larcher, J.M. Tarascon, “Identifying interfacial mechanisms limitations within aqueous Zn-MnO2 batteries and means to cure them with additives”, Energy Storage Materials, vol. 53, pp. 238-253, 2022. DOI: https://doi.org/10.1016/j.ensm.2022.08.043

D. Winterbone and A. Turan, “Advanced thermodynamics for engineers”, Butterworth-Heinemann, 2015.

A. V. Da Rosa and J. C. Ordonez, “Fundamentals of renewable energy processes”, Academic Press, 2021.

V. S. Bagotsky, A. M. Skundin and Y. M. Volfkovich, “Electrochemical power sources: batteries, fuel cells, and supercapacitors”, John Wiley & Sons, 2015. DOI: https://doi.org/10.1002/9781118942857

M. V. Reddy, A. Mauger, C. M. Julien, A. Paolella, K. Zaghib, Materials, vol. 13, pp. 1884, 2020. DOI: https://doi.org/10.3390/ma13081884

S.H. Chang, M.F. Rajuli, “An overview of pure hydrogen production via electrolysis and hydrolysis”, International Journal of Hydrogen Energy, vol 84, pp. 521-538, 2024. DOI: https://doi.org/10.1016/j.ijhydene.2024.08.245

N. Buckley, “Some Observations on the History of Electrochemistry in Europe”, In Electrochemical Society Meeting Abstracts, The Electrochemical Society, Inc, vol. 244, no. 67, pp. 3210-3210, 2023. DOI: https://doi.org/10.1149/MA2023-02673210mtgabs

T. Smolinka, H. Bergmann, J. Garche and M. Kusnezoff, “The history of water electrolysis from its beginnings to the present”, In Electrochemical power sources: fundamentals, systems, and applications,pp. 83-164, 2022. DOI: https://doi.org/10.1016/B978-0-12-819424-9.00010-0

R. De Levie, “The electrolysis of water”, Journal of Electroanalytical Chemistry, vol. 476, no. 1, 92-93, 1999. DOI: https://doi.org/10.1016/S0022-0728(99)00365-4

V. A. Shaposhnik, “Prospects of membrane catalysis in hydrogen energetics. Mini review”, Condensed Matter and Interphases, vol. 26, no. 1, pp. 37-44, 2024. DOI: https://doi.org/10.17308/kcmf.2024.26/11807

F. A. C. Gren, “Beschreibung eines Apparats, durch den verstarken electrischen Funken brennbare und Lebensluft aus dem Wasser zu erhalten”, Journal der Physik, vol. 2, pp. 194-198, 1790.

G. Pearson, “VII. Experiments and observations, made with the view of ascertaining the nature of the gaz produced by passing electric discharges through water”, Philosophical Transactions of the Royal Society of London, no. 87, 142-158, 1797. DOI: https://doi.org/10.1098/rstl.1797.0008

S. Anwar, F. Khan, Y. Zhang and A. Djire, “Recent development in electrocatalysts for hydrogen production through water electrolysis”, Int J Hydrogen Energy, vol. 46, no. 63, pp. 32284e317, 2021. DOI: https://doi.org/10.1016/j.ijhydene.2021.06.191

Y. Leng, G. Chen, A.J. Mendoza, T.B. Tighe, M.A. Hickner and C.Y. Wang,” Solid-state water electrolysis with an alkaline membrane”, J Am Chem Soc, vol. 134, pp. 9054-9057, 2012. DOI: https://doi.org/10.1021/ja302439z

J. Rossmeisl, Z.W. Qu, H. Zhu, G.J. Kroes and J.K. Nørskov, “Electrolysis of water on oxide surfaces”, J Electroanal Chem, vol. 607 , pp. 83-89, 2007. DOI: https://doi.org/10.1016/j.jelechem.2006.11.008

D. Bessarabov, H. Wang and N. Zhao, “PEM electrolysis for hydrogen production”, CRC Press, Boca Ration, 2015. DOI: https://doi.org/10.1201/b19096

R.B. Sutherland, “Performance of different proton exchange membrane water electrolyser components”, North-West university, Potchefstroom, South Africa, 2012.

H. Wendt and H. Hofmann, “ Ceramic diaphragms for advanced alkaline water electrolysis”, J Appl Electrochem, vol. 19 ), pp. 605-610, 1989. DOI: https://doi.org/10.1007/BF01022121

J.C. Ganley, “High temperature and pressure alkaline electrolysis”, Int J Hydrog Energy, vol. 34, pp. 3604-3611, 2009. DOI: https://doi.org/10.1016/j.ijhydene.2009.02.083

A. Ursua, L.M. Gandia and P. Sanchis, “Hydrogen production from water electrolysis: current status and future trends”, Proc IEEE, vol. 100 , pp. 410-426, 2012. DOI: https://doi.org/10.1109/JPROC.2011.2156750

D. Ferrero, A. Lanzini, M. Santarelli and P. Leone, “A comparative assessment on hydrogen production from low- and high-temperature electrolysis”, Int J Hydrog Energy, vol. 38, pp. 3523-3536, 2013. DOI: https://doi.org/10.1016/j.ijhydene.2013.01.065

G. Ji, J.G. Yao, P.T. Clough, J.C.D. da Costa, E.J. Anthony, P.S. Fennell, et al, “Enhanced hydrogen production from thermochemical processes”, Energy Environ Sci, vol. 11, pp. 2647-2672, 2018. DOI: https://doi.org/10.1039/C8EE01393D

H. Song, Y. Liu, H. Bian, M. Shen and X. Lin, “Energy, environment, and economic analyses on a novel hydrogen production method by electrified steam methane reforming with renewable energy accommodation”, Energy Conversion and Management, vol. 258, p. 115513, 2022. DOI: https://doi.org/10.1016/j.enconman.2022.115513

A. Bouzaid, Y. Ziat, H. Belkhanchi, H. Hamdani, A. Koufi, M. Miri, and Z. Zarhri, “Ab initio study of the structural, electronic, and optical properties of MgTiO3 perovskite materials doped with N and P”, In E3S Web of Conferences, EDP Sciences, vol. 582, p. 02006, 2024. https://doi.org/10.1051/e3sconf/202458202006 DOI: https://doi.org/10.1051/e3sconf/202458202006

A. Koufi, Y. Ziat, H. Belkhanchi, M. Miri, N. Lakouari and F. Z. Baghli, “A computational study of the structural and thermal conduct of MgCrH3 and MgFeH3 perovskite-type hydrides: FP-LAPW and BoltzTraP insight”, In E3S Web of Conferences, EDP Sciences, vol. 582, p. 02003, 2024. https://doi.org/10.1051/e3sconf/202458202003 DOI: https://doi.org/10.1051/e3sconf/202458202003

C. Liu, J. Park, H. A. De Santiago, B. Xu, W. Li, D. Zhang, ... and X. Liu, “Perovskite Oxide Materials for Solar Thermochemical Hydrogen Production from Water Splitting through Chemical Looping”, ACS catalysis, vol. 14, pp. 14974-15013, 2024. DOI: https://doi.org/10.1021/acscatal.4c03357

G.Calabrese, E. Mastronardo, E. Proverbio and C. Milone, “ABO3 pervskite oxides as candidate materials for hydrogen storage”, In XIII Congresso Nazionale AICIng e II Congresso Nazionale della Divisione di Chimica per le Tecnologie della SCI Atti del convegno, EdiSES Edizioni Srl, pp. 193-193, 2023.

Downloads

Published

2024-12-27

How to Cite

Laghlimi, C. . ., Moutcine , A., Ziat , Y. ., Belkhanchi , H., Koufi , A., & Bouyassan , S. (2024). Hydrogen, Chronology and Electrochemical Production. Solar Energy and Sustainable Development Journal, 14(SI_MSMS2E), 22–37. https://doi.org/10.51646/jsesd.v14iSI_MSMS2E.405