Charging Systems/Techniques of Electric Vehicle:
A Comprehensive Review
DOI:
https://doi.org/10.51646/jsesd.v13i2.203الكلمات المفتاحية:
Renewable Energy، Electric Vehicle، Charging Station، Converter، Efficiency.الملخص
Recent violent global climate change consequences necessities reducing the consumption of fossil fuel in different sectors. Electric Vehicles (EVs) are growing in popularity as eco-friendly and environmentally compatible solution in transportation industry. This article provides a thoroughly and comprehensive overview of the advancement of topologies and charging techniques for EV. The article is aimed to act as a guide for researchers/engineers in the field of EV and automotive industry. Charging circuits of EVs have been divided into several categories. Comprehensive comparisons are carried out and revealed in appropriate graphs/charts/tables. Moreover, a sufficient high number of recent and up-dated references are screened. Classifications of electric vehicle charging technologies based on their individual characteristics are provided.
التنزيلات
المقاييس
المراجع
G. Town, S. Taghizadeh, and S. Deilami, “Review of Fast Charging for Electrified Transport: Demand, Technology, Systems, and Planning,” Energies, vol. 15, no. 4, 2022, doi: 10.3390/en15041276. DOI: https://doi.org/10.3390/en15041276
P. Makeen, S. Memon, M. A. Elkasrawy, S. O. Abdullatif, and H. A. Ghali, “Smart green charging scheme of centralized electric vehicle stations,” Int. J. Green Energy, vol. 19, no. 5, pp. 490–498, 2022, doi: 10.1080/15435075.2021.1947822. DOI: https://doi.org/10.1080/15435075.2021.1947822
Y. Amry, E. Elbouchikhi, F. Le Gall, M. Ghogho, and S. El Hani, “Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges,” Energies, vol. 15, no. 16, pp. 1–30, 2022, doi: 10.3390/en15166037. DOI: https://doi.org/10.3390/en15166037
Y. Ota, H. Taniguchi, J. Baba, and A. Yokoyama, “Implementation of autonomous distributed V2G to electric vehicle and DC charging system,” Electr. Power Syst. Res., vol. 120, no. July, pp. 177–183, 2015, doi: 10.1016/j.epsr.2014.05.016. DOI: https://doi.org/10.1016/j.epsr.2014.05.016
A. Mahesh, B. Chokkalingam, and L. Mihet-Popa, “Inductive Wireless Power Transfer Charging for Electric Vehicles-A Review,” IEEE Access, vol. 9, pp. 137667–137713, 2021, doi: 10.1109/ACCESS.2021.3116678. DOI: https://doi.org/10.1109/ACCESS.2021.3116678
S. Panchanathan et al., “A Comprehensive Review of the Bidirectional Converter Topologies for the Vehicle-to-Grid System,” Energies, vol. 16, no. 5, 2023, doi: 10.3390/en16052503. DOI: https://doi.org/10.3390/en16052503
M. Shafique and X. Luo, “Environmental life cycle assessment of battery electric vehicles from the current and future energy mix perspective,” J. Environ. Manage., vol. 303, p. 114050, 2022. DOI: https://doi.org/10.1016/j.jenvman.2021.114050
A. Alsharif, C. W. Tan, R. Ayop, A. Dobi, and K. Y. Lau, “A comprehensive review of energy management strategy in Vehicle-to-Grid technology integrated with renewable energy sources,” Sustain. Energy Technol. Assessments, vol. 47, p. 101439, 2021. DOI: https://doi.org/10.1016/j.seta.2021.101439
Y. Xue, L. Cheng, K. Wang, J. An, and H. Guan, “System dynamics analysis of the relationship between transit metropolis construction and sustainable development of urban transportation—case study of Nanchang City, China,” Sustainability, vol. 12, no. 7, p. 3028, 2020. DOI: https://doi.org/10.3390/su12073028
H. S. Das, M. M. Rahman, S. Li, and C. W. Tan, “Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review,” Renew. Sustain. Energy Rev., vol. 120, no. February, 2020, doi: 10.1016/j.rser.2019.109618. DOI: https://doi.org/10.1016/j.rser.2019.109618
X. Xia and P. Li, “A review of the life cycle assessment of electric vehicles: Considering the influence of batteries,” Sci. Total Environ., vol. 814, p. 152870, 2022. DOI: https://doi.org/10.1016/j.scitotenv.2021.152870
S. Verma, G. Dwivedi, and P. Verma, “Life cycle assessment of electric vehicles in comparison to combustion engine vehicles: A review,” Mater. Today Proc., vol. 49, pp. 217–222, 2022. DOI: https://doi.org/10.1016/j.matpr.2021.01.666
M. S. Hossain, L. Kumar, M. M. Islam, and J. Selvaraj, “A comprehensive review on the integration of electric vehicles for sustainable development,” J. Adv. Transp., vol. 2022, pp. 1–26, 2022. DOI: https://doi.org/10.1155/2022/3868388
N. M. Manousakis, P. S. Karagiannopoulos, G. J. Tsekouras, and F. D. Kanellos, “Integration of Renewable Energy and Electric Vehicles in Power Systems: A Review,” Processes, vol. 11, no. 5, pp. 1–27, 2023, doi: 10.3390/pr11051544. DOI: https://doi.org/10.3390/pr11051544
S. Sachan, S. Deb, and S. N. Singh, “Different charging infrastructures along with smart charging strategies for electric vehicles,” Sustain. Cities Soc., vol. 60, p. 102238, 2020. DOI: https://doi.org/10.1016/j.scs.2020.102238
J. Ebrahimi, M. Abedini, M. M. Rezaei, and M. Nasri, “Optimum design of a multi-form energy in the presence of electric vehicle charging station and renewable resources considering uncertainty,” Sustain. Energy, Grids Networks, vol. 23, p. 100375, 2020. DOI: https://doi.org/10.1016/j.segan.2020.100375
A. Ghasemi-Marzbali, “Fast-charging station for electric vehicles, challenges and issues: A comprehensive review,” J. Energy Storage, vol. 49, p. 104136, 2022. DOI: https://doi.org/10.1016/j.est.2022.104136
F. Pardo-Bosch, P. Pujadas, C. Morton, and C. Cervera, “Sustainable deployment of an electric vehicle public charging infrastructure network from a city business model perspective,” Sustain. Cities Soc., vol. 71, p. 102957, 2021. DOI: https://doi.org/10.1016/j.scs.2021.102957
G. Sree Lakshmi, R. Olena, G. Divya, and I. Hunko, “Electric vehicles integration with renewable energy sources and smart grids,” in Advances in Smart Grid Technology: Select Proceedings of PECCON 2019—Volume I, Springer, 2020, pp. 397–411. DOI: https://doi.org/10.1007/978-981-15-7245-6_30
P. Barman et al., “Renewable energy integration with electric vehicle technology: A review of the existing smart charging approaches,” Renew. Sustain. Energy Rev., vol. 183, p. 113518, 2023. DOI: https://doi.org/10.1016/j.rser.2023.113518
S. Fan, J. Wen, J. Duan, Z. Song, and T. Liu, “A Full Load Range ZVS Isolated Three-Level DC/DC Converter with Active Commutation Auxiliary Circuit Suitable for Electric Vehicle Charging Application,” Appl. Sci., vol. 12, no. 16, 2022, doi: 10.3390/app12168325. DOI: https://doi.org/10.3390/app12168325
S. Bozhkov, “Structure of the Model of Hybrid Electric Vehicle Energy Efficiency,” Int. Sci. J. "TRANS MOTAUTO WORLD, vol. 79, no. 3, pp. 76–79, 2021.
W. Van Harselaar, T. Hofman, and M. Brouwer, “Automated Dynamic Modeling of Arbitrary Hybrid and Electric Drivetrain Topologies,” IEEE Trans. Veh. Technol., vol. 67, no. 8, pp. 6921–6934, 2018, doi: 10.1109/TVT.2018.2834537. DOI: https://doi.org/10.1109/TVT.2018.2834537
B. Kabalan, E. Vinot, C. Yuan, R. Trigui, C. Dumand, and T. El Hajji, “Efficiency Improvement of a Series-Parallel Hybrid Electric Powertrain by Topology Modification,” IEEE Trans. Veh. Technol., vol. 68, no. 12, pp. 11523–11531, 2019, doi: 10.1109/TVT.2019.2952190. DOI: https://doi.org/10.1109/TVT.2019.2952190
M. Khodaparastan, A. A. Mohamed, and W. Brandauer, “Recuperation of regenerative braking energy in electric rail transit systems,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 8, pp. 2831–2847, 2019, doi: 10.1109/TITS.2018.2886809. DOI: https://doi.org/10.1109/TITS.2018.2886809
W. Xu, H. Chen, H. Zhao, and B. Ren, “Torque optimization control for electric vehicles with four in-wheel motors equipped with regenerative braking system,” Mechatronics, vol. 57, no. January 2018, pp. 95–108, 2019, doi: 10.1016/j.mechatronics.2018.11.006. DOI: https://doi.org/10.1016/j.mechatronics.2018.11.006
S. K. V K Guruprasad Rao Editors, Lecture Notes in Electrical Engineering 750 Smart Sensors Measurements and Instrumentation Select Proceedings of CISCON 2020. 2020. [Online]. Available: http://www.springer.com/series/7818
C. Gschwendtner, S. R. Sinsel, and A. Stephan, “Vehicle-to-X (V2X) implementation: An overview of predominate trial configurations and technical, social and regulatory challenges,” Renew. Sustain. Energy Rev., vol. 145, p. 110977, 2021, doi: 10.1016/j.rser.2021.110977. DOI: https://doi.org/10.1016/j.rser.2021.110977
Y. F. Zhou, L. J. Huang, X. X. Sun, L. H. Li, and J. Lian, “A Long-term Energy Management Strategy for Fuel Cell Electric Vehicles Using Reinforcement Learning,” Fuel Cells, vol. 20, no. 6, pp. 753–761, 2020, doi: 10.1002/fuce.202000095. DOI: https://doi.org/10.1002/fuce.202000095
C. Energy, “Plug-In Hybrid Electric Vehicles Plug-In Hybrid Electric Vehicles,” Power Electr. Veh. Green Energy Technol. https//doi.org/10.1007/978-981-15-9251-5_3, no. October 2014, 2007, doi: 10.1007/978-981-15-9251-5. DOI: https://doi.org/10.1007/978-981-15-9251-5
A. Faraz, A. Ambikapathy, S. Thangavel, K. Logavani, and G. Arun Prasad, “Battery Electric Vehicles (BEVs),” Green Energy Technol., no. January 2021, pp. 137–160, 2021, doi: 10.1007/978-981-15-9251-5_8. DOI: https://doi.org/10.1007/978-981-15-9251-5_8
U. Mitra, A. Arya, S. Gupta, and A. K. Gupta, “A Brief Overview on Fuel Cell Electric Vehicles,” 2022 Int. Conf. Emerg. Trends Eng. Med. Sci. ICETEMS 2022, no. April, pp. 124–129, 2022, doi: 10.1109/ICETEMS56252.2022.10093428. DOI: https://doi.org/10.1109/ICETEMS56252.2022.10093428
G. Rajendran, C. A. Vaithilingam, N. Misron, K. Naidu, and M. R. Ahmed, “A comprehensive review on system architecture and international standards for electric vehicle charging stations,” J. Energy Storage, vol. 42, no. August, p. 103099, 2021, doi: 10.1016/j.est.2021.103099. DOI: https://doi.org/10.1016/j.est.2021.103099
R. Bosshard and J. W. Kolar, “Inductive Power Transfer for Electric Vehicle Charging: Technical challenges and tradeoffs,” IEEE Power Electron. Mag., vol. 3, no. 3, pp. 22–30, 2016, doi: 10.1109/MPEL.2016.2583839. DOI: https://doi.org/10.1109/MPEL.2016.2583839
S. Niu, H. Xu, Z. Sun, Z. Y. Shao, and L. Jian, “The state-of-the-arts of wireless electric vehicle charging via magnetic resonance: principles, standards and core technologies,” Renew. Sustain. Energy Rev., vol. 114, no. June, p. 109302, 2019, doi: 10.1016/j.rser.2019.109302. DOI: https://doi.org/10.1016/j.rser.2019.109302
L. Sun, D. Ma, and H. Tang, “A review of recent trends in wireless power transfer technology and its applications in electric vehicle wireless charging,” Renew. Sustain. Energy Rev., vol. 91, no. December 2016, pp. 490–503, 2018, doi: 10.1016/j.rser.2018.04.016. DOI: https://doi.org/10.1016/j.rser.2018.04.016
P. Lazzeroni, V. Cirimele, and A. Canova, “Economic and environmental sustainability of Dynamic Wireless Power Transfer for electric vehicles supporting reduction of local air pollutant emissions,” Renew. Sustain. Energy Rev., vol. 138, no. October, p. 110537, 2021, doi: 10.1016/j.rser.2020.110537. DOI: https://doi.org/10.1016/j.rser.2020.110537
V. B. Vu, J. M. Gonzalez-Gonzalez, V. Pickert, M. Dahidah, and A. Trivino, “A Hybrid Charger of Conductive and Inductive Modes for Electric Vehicles,” IEEE Trans. Ind. Electron., vol. 68, no. 12, pp. 12021–12033, 2021, doi: 10.1109/TIE.2020.3042162. DOI: https://doi.org/10.1109/TIE.2020.3042162
H. Wu, “A Survey of Battery Swapping Stations for Electric Vehicles: Operation Modes and Decision Scenarios,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 8, pp. 10163–10185, 2022, doi: 10.1109/TITS.2021.3125861. DOI: https://doi.org/10.1109/TITS.2021.3125861
F. Ahmad, M. S. Alam, I. S. Alsaidan, and S. M. Shariff, “Battery swapping station for electric vehicles: Opportunities and challenges,” IET Smart Grid, vol. 3, no. 3, pp. 280–286, 2020, doi: 10.1049/iet-stg.2019.0059. DOI: https://doi.org/10.1049/iet-stg.2019.0059
A. Ahmed, A. Alsharif, M. Khaleel, N. Fathi, A. Obelaid, M. Bajaj, A. Bhatt, S. Choudhury, Integrating Renewable Energy Sources with Electric Vehicle Infrastructure for Enhanced Renewability, 3ed EAI International Conference on Intelligent Systems and Machine Learning (ICISML-2023), 5th-6th January 2024, Pune – India.
D. Ronanki, A. Kelkar, and S. S. Williamson, “Extreme fast charging technology—prospects to enhance sustainable electric transportation,” Energies, vol. 12, no. 19, pp. 1–17, 2019, doi: 10.3390/en12193721.
J. R. Szymanski, M. Zurek-Mortka, and D. Acharjee, “Unidirectional voltage converter for battery electric vehicle ultrafast charger,” Microsyst. Technol., vol. 27, no. 8, pp. 2865–2872, 2021, doi: 10.1007/s00542-020-05038-7. DOI: https://doi.org/10.1007/s00542-020-05038-7
M. Quraan, M. Abu-Khaizaran, J. Sa’ed, W. Hashlamoun, and P. Tricoli, “Design and control of battery charger for electric vehicles using modular multilevel converters,” IET Power Electron., vol. 14, no. 1, pp. 140–157, 2021, doi: 10.1049/pel2.12018. DOI: https://doi.org/10.1049/pel2.12018
M. Brenna, F. Foiadelli, C. Leone, and M. Longo, “Electric Vehicles Charging Technology Review and Optimal Size Estimation,” J. Electr. Eng. Technol., vol. 15, no. 6, pp. 2539–2552, 2020, doi: 10.1007/s42835-020-00547-x. DOI: https://doi.org/10.1007/s42835-020-00547-x
S. Alatai, M. Salem, I. Alhamrouni, D. Ishak, A. Bughneda, and M. Kamarol, “Design Methodology and Analysis of Five-Level LLC Resonant Converter for Battery Chargers,” Sustain. Artic., 2022, doi: . https://doi.org/10.3390/su14148255. DOI: https://doi.org/10.3390/su14148255
A. Rajabi, F. M. Shahir, and R. Sedaghati, “New unidirectional step-up DC-DC converter for fuel-cell vehicle: Design and implementation,” Electr. Power Syst. Res., vol. 212, no. October, p. 108653, 2022, doi: 10.1016/j.epsr.2022.108653. DOI: https://doi.org/10.1016/j.epsr.2022.108653
E. Sustainable and E. Transportation, “Extreme Fast Charging Technology—Prospects to Enhance Sustainable Electric Transportation,” energies Rev., vol. 1, no. 120 V, pp. 1–17, 2019, doi: 10.3390/en12193721. DOI: https://doi.org/10.3390/en12193721
Y. Zhang, C. Zhang, J. Liu, and Y. Cheng, “Comparison of conventional dc-dc converter and a family of diode-assisted dc-dc converter,” Conf. Proc. - 2012 IEEE 7th Int. Power Electron. Motion Control Conf. - ECCE Asia, IPEMC 2012, vol. 3, pp. 1718–1723, 2012, doi: 10.1109/IPEMC.2012.6259095. DOI: https://doi.org/10.1109/IPEMC.2012.6259095
Y. Jang and M. M. Jovanović, “The TAIPEI rectifier-A new three-phase two-switch ZVS PFC DCM boost rectifier,” IEEE Trans. Power Electron., vol. 28, no. 2, pp. 686–694, 2013, doi: 10.1109/TPEL.2012.2205271. DOI: https://doi.org/10.1109/TPEL.2012.2205271
J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systemspart i,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176–198, 2013, doi: 10.1109/TPEL.2012.2197867. DOI: https://doi.org/10.1109/TPEL.2012.2197867
M. C. Ancuti, C. Sorandaru, S. Musuroi, and V. N. Olarescu, “High efficiency three-phase interleaved buck-Type PFC rectifier concepts,” IECON 2015 - 41st Annu. Conf. IEEE Ind. Electron. Soc., pp. 4990–4995, 2015, doi: 10.1109/IECON.2015.7392883. DOI: https://doi.org/10.1109/IECON.2015.7392883
J. Lei, S. Feng, J. Zhao, W. Chen, P. Wheeler, and M. Shi, “An Improved Three-Phase Buck Rectifier Topology with Reduced Voltage Stress on Transistors,” IEEE Trans. Power Electron., vol. 35, no. 3, pp. 2458–2466, 2020, doi: 10.1109/TPEL.2019.2931803. DOI: https://doi.org/10.1109/TPEL.2019.2931803
Q. Chen, J. Xu, F. Zeng, R. Huang, and L. Wang, “An Improved Three-Phase Buck Rectifier with Low Voltage Stress on Switching Devices,” IEEE Trans. Power Electron., vol. 36, no. 6, pp. 6168–6174, 2021, doi: 10.1109/TPEL.2020.3035030. DOI: https://doi.org/10.1109/TPEL.2020.3035030
J. Afsharian, D. Xu, B. Wu, B. Gong, and Z. Yang, “A New PWM and Commutation Scheme for One Phase Loss Operation of Three-Phase Isolated Buck Matrix-Type Rectifier,” IEEE Trans. Power Electron., vol. 33, no. 11, pp. 9854–9865, 2018, doi: 10.1109/TPEL.2018.2789905. DOI: https://doi.org/10.1109/TPEL.2018.2789905
L. Schrittwieser, M. Leibl, M. Haider, F. Thony, J. W. Kolar, and T. B. Soeiro, “99.3% Efficient Three-Phase Buck-Type All-SiC SWISS Rectifier for DC Distribution Systems,” IEEE Trans. Power Electron., vol. 34, no. 1, pp. 126–140, 2018, doi: 10.1109/TPEL.2018.2817074. DOI: https://doi.org/10.1109/TPEL.2018.2817074
B. Zhang, S. Xie, X. Wang, and J. Xu, “Modulation Method and Control Strategy for Full-Bridge-Based Swiss Rectifier to Achieve ZVS Operation and Suppress Low-Order Harmonics of Injected Current,” IEEE Trans. Power Electron., vol. 35, no. 6, pp. 6512–6522, 2020, doi: 10.1109/TPEL.2019.2951795. DOI: https://doi.org/10.1109/TPEL.2019.2951795
L. Schrittwieser, J. W. Kolar, and T. B. Soeiro, “Novel SWISS Rectifier Modulation Scheme Preventing Input Current Distortions at Sector Boundaries,” IEEE Trans. Power Electron., vol. 32, no. 7, pp. 5771–5785, 2017, doi: 10.1109/TPEL.2016.2609935. DOI: https://doi.org/10.1109/TPEL.2016.2609935
G. Rajendran, C. A. Vaithilingam, N. Misron, K. Naidu, and M. R. Ahmed, “Voltage oriented controller based vienna rectifier for electric vehicle charging stations,” IEEE Access, vol. 9, pp. 50798–50809, 2021, doi: 10.1109/ACCESS.2021.3068653. DOI: https://doi.org/10.1109/ACCESS.2021.3068653
H. R. I. Skdvh et al., “design of three phase vienna PFC Circuit with integral improved PI controller,” IEEE Int. Power Electron. Appl. Conf. Expo. 2018, doi: 10.1109/PEAC.2018.8590648. DOI: https://doi.org/10.1109/PEAC.2018.8590648
L. Huber, M. Kumar, and M. M. Jovanovic, “Performance Comparison of Three-Step and Six-Step PWM in Average-Current-Controlled Three-Phase Six-Switch Boost PFC Rectifier,” IEEE Trans. Power Electron., vol. 31, no. 10, pp. 7264–7272, 2016, doi: 10.1109/TPEL.2015.2506554. DOI: https://doi.org/10.1109/APEC.2015.7104600
A. Mallik, W. Ding, C. Shi, and A. Khaligh, “Input Voltage Sensorless Duty Compensation Control for a Three-Phase Boost PFC Converter,” IEEE Trans. Ind. Appl., vol. 53, no. 2, pp. 1527–1537, 2017, doi: 10.1109/TIA.2016.2626247. DOI: https://doi.org/10.1109/TIA.2016.2626247
P. Papamanolis, D. Bortis, F. Krismer, D. Menzi, and J. W. Kolar, “New EV battery charger PFC rectifier front-end allowing full power delivery in 3-phase and 1-phase operation,” Electron., vol. 10, no. 17, pp. 1–33, 2021, doi: 10.3390/electronics10172069. DOI: https://doi.org/10.3390/electronics10172069
I. Using et al., “A V2G Enabled Bidirectional Single / Three-Phase EV Charging,” Electron. 2022, 11, 1891. https//doi.org/10.3390/ Electron., 2022. DOI: https://doi.org/10.3390/electronics11121891
E. Couderc, “Single-Stage Isolated and Bidirectional Three-Phase Series-Resonant AC–DC Converter: Modulation for Active and Reactive Power Control,” Nat. Energy . Energies 2022, 15, 8070. https//doi.org/ 10.3390/en15218070, vol. 2, no. 10, p. 764, 2017, doi: 10.1038/s41560-017-0020-0. DOI: https://doi.org/10.1038/s41560-017-0020-0
P. Guzmán, N. Vázquez, M. Liserre, R. Orosco, J. Vaquero, and C. Hernández, “AC-DC DAB Converter with Power Factor Correction,” Energies, vol. 16, no. 1, 2023, doi: 10.3390/en16010320. DOI: https://doi.org/10.3390/en16010320
Y. Tang, W. Ding, and A. Khaligh, “A bridgeless totem-pole interleaved PFC converter for plug-in electric vehicles,” Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, vol. 2016-May, pp. 440–445, 2016, doi: 10.1109/APEC.2016.7467909. DOI: https://doi.org/10.1109/APEC.2016.7467909
X. Gong, G. Wang, and M. Bhardwaj, “6.6kW three-phase interleaved totem pole PFC design with 98.9% peak efficiency for HEV/EV onboard charger,” Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, vol. 2019-March, pp. 2029–2034, 2019, doi: 10.1109/APEC.2019.8722110. DOI: https://doi.org/10.1109/APEC.2019.8722110
M. Schweizer and J. W. Kolar, “Design and implementation of a highly efficient three-level T-type converter for low-voltage applications,” IEEE Trans. Power Electron., vol. 28, no. 2, pp. 899–907, 2013, doi: 10.1109/TPEL.2012.2203151. DOI: https://doi.org/10.1109/TPEL.2012.2203151
S. Kulasekaran and R. Ayyanar, “A 500-kHz, 3.3-kW Power Factor Correction Circuit with Low-Loss Auxiliary ZVT Circuit,” IEEE Trans. Power Electron., vol. 33, no. 6, pp. 4783–4795, 2018, doi: 10.1109/TPEL.2017.2737660. DOI: https://doi.org/10.1109/TPEL.2017.2737660
V. Grigore and J. Kyyrä, “High power factor rectifier based on buck converter operating in discontinuous capacitor voltage mode,” IEEE Trans. Power Electron., vol. 15, no. 6, pp. 1241–1249, 2000, doi: 10.1109/63.892839. DOI: https://doi.org/10.1109/63.892839
F. Caricchi, F. Crescimbini, G. Noia, and D. Pirolo, “Experimental study of a bidirectional dc-dc converter for the dc link voltage control and the regenerative braking in PM motor drives devoted to electrical vehicles,” Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, vol. 1, pp. 381–386, 1994, doi: 10.1109/apec.1994.316373. DOI: https://doi.org/10.1109/APEC.1994.316373
T. Kang, C. Kim, Y. Suh, H. Park, B. Kang, and D. Kim, “A design and control of bi-directional non-isolated DC-DC converter for rapid electric vehicle charging system,” Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, pp. 14–21, 2012, doi: 10.1109/APEC.2012.6165792. DOI: https://doi.org/10.1109/APEC.2012.6165792
C. Dimna Denny and M. Shahin, “Analysis of bidirectional SEPIC/Zeta converter with coupled inductor,” Proc. IEEE Int. Conf. Technol. Adv. Power Energy, TAP Energy 2015, pp. 103–108, 2015, doi: 10.1109/TAPENERGY.2015.7229600. DOI: https://doi.org/10.1109/TAPENERGY.2015.7229600
F. Yi and F. Wang, “and Applications,” 2023.
V. Monteiro and J. A. Afonso, “Bidirectional Power Converters for EV Battery Chargers,” Energies 2023, 16, 1694. https// doi.org/10.3390/en16041694, pp. 2–5, 2023. DOI: https://doi.org/10.3390/en16041694
F. Mumtaz, N. Zaihar, S. Tanzim, B. Singh, and R. Kannan, “Review on non-isolated DC-DC converters and their control techniques for renewable energy applications,” Ain Shams Eng. J., 2021, doi: 10.1016/j.asej.2021.03.022. DOI: https://doi.org/10.1016/j.asej.2021.03.022
X. Cheng, C. Liu, D. Wang, and Y. Zhang, “State-of-The-Art Review on Soft-Switching Technologies for Non-Isolated DC-DC Converters,” IEEE Access, vol. PP, p. 1, 2021, doi: 10.1109/ACCESS.2021.3107861. DOI: https://doi.org/10.1109/ACCESS.2021.3107861
K. Kadirvel, R. Kannadasan, M. H. Alsharif, and Z. W. Geem, “Design and Modeling of Modified Interleaved Phase-Shifted Semi-Bridgeless Boost Converter for EV Battery Charging Applications,” Sustain., vol. 15, no. 3, 2023, doi: 10.3390/su15032712. DOI: https://doi.org/10.3390/su15032712
R. Kushwaha and B. Singh, “An improved battery charger for electric vehicle with high power factor,” 2018 IEEE Ind. Appl. Soc. Annu. Meet. IAS 2018, pp. 1–8, 2018, doi: 10.1109/IAS.2018.8544585. DOI: https://doi.org/10.1109/IAS.2018.8544585
A. Dixit, K. Pande, S. Gangavarapu, and A. K. Rathore, “DCM-Based Bridgeless PFC Converter for EV Charging Application,” IEEE J. Emerg. Sel. Top. Ind. Electron., vol. 1, no. 1, pp. 57–66, 2020, doi: 10.1109/jestie.2020.2999595. DOI: https://doi.org/10.1109/JESTIE.2020.2999595
S. Sharifi, M. Monfared, and M. Babaei, “Ferdowsi Rectifiers - Single-Phase Buck-Boost Bridgeless PFC Rectifiers with Low Semiconductor Count,” IEEE Trans. Ind. Electron., vol. 67, no. 11, pp. 9206–9214, 2020, doi: 10.1109/TIE.2019.2955430. DOI: https://doi.org/10.1109/TIE.2019.2955430
A. V. J. S. Praneeth and S. S. Williamson, “Modeling, Design, Analysis, and Control of a Nonisolated Universal On-Board Battery Charger for Electric Transportation,” IEEE Trans. Transp. Electrif., vol. 5, no. 4, pp. 912–924, 2019, doi: 10.1109/TTE.2019.2919197. DOI: https://doi.org/10.1109/TTE.2019.2919197
M. K. R. Noor et al., “Modified single-switch bridgeless PFC SEPIC structure by eliminating circulating current and power quality improvement,” IET Power Electron., vol. 12, no. 14, pp. 3792–3801, 2019, doi: 10.1049/iet-pel.2018.6076. DOI: https://doi.org/10.1049/iet-pel.2018.6076
R. Kushwaha and B. Singh, “A Modified Bridgeless Cuk Converter based EV Charger with Improved Power Quality,” ITEC 2019 - 2019 IEEE Transp. Electrif. Conf. Expo, no. 1, p. 1, 2019, doi: 10.1109/ITEC.2019.8790509. DOI: https://doi.org/10.1109/ITEC.2019.8790509
B. R. Ananthapadmanabha, R. Maurya, and S. R. Arya, “Improved Power Quality Switched Inductor Cuk Converter for Battery Charging Applications,” IEEE Trans. Power Electron., vol. 33, no. 11, pp. 9412–9423, 2018, doi: 10.1109/TPEL.2018.2797005. DOI: https://doi.org/10.1109/TPEL.2018.2797005
J. Gupta, R. Kushwaha, and B. Singh, “Improved Power Quality Transformerless Single-Stage Bridgeless Converter Based Charger for Light Electric Vehicles,” IEEE Trans. Power Electron., vol. 36, no. 7, pp. 7716–7724, 2021, doi: 10.1109/TPEL.2020.3048790. DOI: https://doi.org/10.1109/TPEL.2020.3048790
R. Kushwaha and B. Singh, “Bridgeless Isolated Zeta – Luo Converter-Based EV,” IEEE Trans. Ind. Appl., vol. 57, no. 1, pp. 628–636, 2021. DOI: https://doi.org/10.1109/TIA.2020.3036019
X. Lin and F. Wang, “AC-DC bridgeless buck converter with high PFC performance by inherently reduced dead zones,” IET Power Electron., vol. 11, no. 9, pp. 1575–1581, 2018, doi: 10.1049/iet-pel.2016.0962. DOI: https://doi.org/10.1049/iet-pel.2016.0962
M. Dhananjaya, D. Potnuru, P. Manoharan, and H. H. Alhelou, “Design and Implementation of Single-Input-Multi-Output DC-DC Converter Topology for Auxiliary Power Modules of Electric Vehicle,” IEEE Access, vol. 10, no. July, pp. 76975–76989, 2022, doi: 10.1109/ACCESS.2022.3192738. DOI: https://doi.org/10.1109/ACCESS.2022.3192738
H. D. C. G. Inverters et al., “An Efficient Design of High Step-Up Switched Z-Source (HS-SZSC) DC-DC Converter for Grid-Connected Inverters,” . Electron. 2022, 11, 2440. https//doi.org/ 10.3390/electronics11152440 Acad., 2022. DOI: https://doi.org/10.3390/electronics11152440
F. Pellitteri, V. Di Dio, C. Puccio, and R. Miceli, “A Model of DC-DC Converter with Switched-Capacitor Structure for Electric Vehicle Applications,” Energies, vol. 15, no. 3, 2022, doi: 10.3390/en15031224. DOI: https://doi.org/10.3390/en15031224
T. Sai, Y. Moon, and Y. Sugimoto, “Improved Quasi-Z-Source High Step-Up DC-DC Converter Based on Voltage-Doubler Topology,” Sensors (Basel)., vol. 22, no. 24, 2022, doi: 10.3390/s22249893. DOI: https://doi.org/10.3390/s22249893
V. Monteiro, J. C. Ferreira, A. A. Nogueiras Melendez, C. Couto, and J. L. Afonso, “Experimental Validation of a Novel Architecture Based on a Dual-Stage Converter for Off-Board Fast Battery Chargers of Electric Vehicles,” IEEE Trans. Veh. Technol., vol. 67, no. 2, pp. 1000–1011, 2018, doi: 10.1109/TVT.2017.2755545. DOI: https://doi.org/10.1109/TVT.2017.2755545
M. Hammami, A. Viatkin, M. Ricco, and G. Grandi, “A DC/DC Fast Charger for Electric Vehicles with Minimum Input/Output Ripple Based on Multiphase Interleaved Converters,” ICCEP 2019 - 7th Int. Conf. Clean Electr. Power Renew. Energy Resour. Impact, pp. 187–192, 2019, doi: 10.1109/ICCEP.2019.8890200. DOI: https://doi.org/10.1109/ICCEP.2019.8890200
X. Lin and F. Wang, “New Bridgeless Buck PFC Converter with Improved Input Current and Power Factor,” IEEE Trans. Ind. Electron., vol. 65, no. 10, pp. 7730–7740, 2018, doi: 10.1109/TIE.2018.2801782. DOI: https://doi.org/10.1109/TIE.2018.2801782
R. Kushwaha and B. Singh, “Design and Development of Modified BL Luo Converter for PQ Improvement in EV Charger,” IEEE Trans. Ind. Appl., vol. 56, no. 4, pp. 3976–3984, 2020, doi: 10.1109/TIA.2020.2988197. DOI: https://doi.org/10.1109/TIA.2020.2988197
J. Gnanavadivel, P. Yogalakshmi, N. S. Kumar, and K. S. K. Veni, “Design and development of single phase AC- DC discontinuous conduction mode modified bridgeless positive output Luo converter for power quality improvement,” IET Power Electron., vol. 12, no. 11, pp. 2722–2730, 2019, doi: 10.1049/iet-pel.2018.6059. DOI: https://doi.org/10.1049/iet-pel.2018.6059
Y. C. Liu, T. F. Pan, P. L. Tseng, C. C. Huang, Y. K. La, and H. J. Chiu, “Study and implementation of a two-phase interleaved bridgeless buck power factor corrector,” 1st Int. Futur. Energy Electron. Conf. IFEEC 2013, pp. 42–47, 2013, doi: 10.1109/ifeec.2013.6687476. DOI: https://doi.org/10.1109/IFEEC.2013.6687476
B. Lu, W. Hall, R. Brown, M. Soldano, and E. Segundo, “Bridgele ss PFC Implementation Using One Cycle Control Technique,” IEEE Access, 2005, doi: 10.1109/APEC.2005.1453073. DOI: https://doi.org/10.1109/APEC.2005.1453073
N. N. Do et al., “Design and implementation of a control method for gan-based totem-pole boost-type pfc rectifier in energy storage systems,” Energies, vol. 13, no. 23, 2020, doi: 10.3390/en13236297. DOI: https://doi.org/10.3390/en13236297
G. Anjinappa, D. B. Prabhakar, and W.-C. Lai, “Bidirectional Converter for Plug-In Hybrid Electric Vehicle On-Board Battery Chargers with Hybrid Technique,” World Electr. Veh. J., vol. 13, no. 11, p. 196, 2022, doi: 10.3390/wevj13110196. DOI: https://doi.org/10.3390/wevj13110196
J. H. Kim, I. O. Lee, and G. W. Moon, “Analysis and Design of a Hybrid-Type Converter for Optimal Conversion Efficiency in Electric Vehicle Chargers,” IEEE Trans. Ind. Electron., vol. 64, no. 4, pp. 2789–2800, 2017, doi: 10.1109/TIE.2016.2623261. DOI: https://doi.org/10.1109/TIE.2016.2623261
R. Kushwaha and B. Singh, “A Modified Luo Converter-Based Electric Vehicle Battery Charger with Power Quality Improvement,” IEEE Trans. Transp. Electrif., vol. 5, no. 4, pp. 1087–1096, 2019, doi: 10.1109/TTE.2019.2952089. DOI: https://doi.org/10.1109/TTE.2019.2952089
B. Singh and R. Kushwaha, “Power Factor Preregulation in Interleaved Luo Converter-Fed Electric Vehicle Battery Charger,” IEEE Trans. Ind. Appl., vol. 57, no. 3, pp. 2870–2882, 2021, doi: 10.1109/TIA.2021.3061964. DOI: https://doi.org/10.1109/TIA.2021.3061964
D. Raveendhra et al., “A High-Gain Multiphase Interleaved Differential Capacitor Clamped Boost Converter,” Electron., vol. 11, no. 2, 2022, doi: 10.3390/electronics11020264. DOI: https://doi.org/10.3390/electronics11020264
M. R. Mohammadi and H. Farzanehfard, “Family of Soft-Switching Bidirectional Converters with Extended ZVS Range,” IEEE Trans. Ind. Electron., vol. 64, no. 9, pp. 7000–7008, 2017, doi: 10.1109/TIE.2017.2686308. DOI: https://doi.org/10.1109/TIE.2017.2686308
S. H. Kim, H. J. Byun, J. Yi, and C. Y. Won, “A Bi-Directional Dual-Input Dual-Output Converter for Voltage Balancer in Bipolar DC Microgrid,” Energies, vol. 15, no. 14, 2022, doi: 10.3390/en15145043. DOI: https://doi.org/10.3390/en15145043
Y. R. Ong et al., “A Dual-Buck-Boost DC–DC/AC Universal Converter,” Electron., vol. 11, no. 13, pp. 1–12, 2022, doi: 10.3390/electronics11131973. DOI: https://doi.org/10.3390/electronics11131973
C. C. Lin, L. S. Yang, and G. W. Wu, “Study of a non-isolated bidirectional DC-DC converter,” IET Power Electron., vol. 6, no. 1, pp. 30–37, 2013, doi: 10.1049/iet-pel.2012.0338. DOI: https://doi.org/10.1049/iet-pel.2012.0338
A. Hussain, R. Akhtar, B. Ali, S. E. Awan, and S. Iqbal, “A novel bidirectional DC–DC converter with low stress and low magnitude ripples for stand-alone photovoltaic power systems,” Energies, vol. 12, no. 15, 2019, doi: 10.3390/en12152884. DOI: https://doi.org/10.3390/en12152884
S. Usha, C. Subramani, B. Dinesh Naidu, and M. S. R. Vishnu Venkatesh, “Analysis of non-isolated bidirectional active clamped DC-DC converter for PV and battery integrated systems,” Indian J. Sci. Technol., vol. 9, no. 22, pp. 1–7, 2016, doi: 10.17485/ijst/2016/v9i22/93191. DOI: https://doi.org/10.17485/ijst/2016/v9i22/93191
K. Venkata Govardhan Rao, M. K. Kumar, B. S. Goud, M. Bajaj, M. Abou Houran, and S. Kamel, “Design of a bidirectional DC/DC converter for a hybrid electric drive system with dual-battery storing energy,” Front. Energy Res., vol. 10, no. November, pp. 1–19, 2022, doi: 10.3389/fenrg.2022.972089. DOI: https://doi.org/10.3389/fenrg.2022.972089
B. Z. Chen, H. Liao, L. Chen, and J. F. Chen, “Design and Implementation of the Bidirectional DC‐DC Converter with Rapid Energy Conversion,” Energies, vol. 15, no. 3, 2022, doi: 10.3390/en15030898. DOI: https://doi.org/10.3390/en15030898
H. Liao, Y. Chen, and L. Chen, “Development of a Bidirectional DC–DC Converter with Rapid Energy Bidirectional Transition Technology,” Energies 2022, 15, 4583. https//doi.org/10.3390/ en15134583 Acad., 2022. DOI: https://doi.org/10.3390/en15134583
G. G. Ramanathan and N. Urasaki, “Non-Isolated Interleaved Hybrid Boost Converter for Renewable Energy Applications,” Energies, vol. 15, no. 2, pp. 1–14, 2022, doi: 10.3390/en15020610. DOI: https://doi.org/10.3390/en15020610
F. Mumtaz, N. Z. Yahaya, S. T. Meraj, N. Singh, and S. Singh, “A Novel Non-Isolated High-Gain Non-Inverting Interleaved DC – DC Converter,” Micromachines 2023, 14, 585. https//doi.org/ 10.3390/mi14030585 Acad., pp. 1–17, 2023. DOI: https://doi.org/10.3390/mi14030585
M. L. Alghaythi, “A Non-Isolated High Voltage Gain DC–DC Converter Suitable for Sustainable Energy Systems,” Sustainability, vol. 15, no. 15, p. 12058, Aug. 2023, doi: 10.3390/su151512058. DOI: https://doi.org/10.3390/su151512058
M. I. Shahzad, S. Iqbal, and S. Taib, “Interleaved LLC Converter with Cascaded Voltage-Doubler Rectifiers for Deeply Depleted PEV Battery Charging,” IEEE Trans. Transp. Electrif., vol. 4, no. 1, pp. 89–98, 2017, doi: 10.1109/TTE.2017.2753407. DOI: https://doi.org/10.1109/TTE.2017.2753407
L. Zhao, Y. Pei, X. Liu, W. Fan, and Y. Du, “Design Methodology of CLLC Resonant Converters for Electric Vehicle Battery Chargers,” Zhongguo Dianji Gongcheng Xuebao/Proceedings Chinese Soc. Electr. Eng., vol. 40, no. 15, pp. 4965–4976, 2020, doi: 10.13334/j.0258-8013.pcsee.191289.
H. Haga and F. Kurokawa, “Modulation method of a full-bridge three-level LLC resonant converter for battery charger of electrical vehicles,” IEEE Trans. Power Electron., vol. 32, no. 4, pp. 2498–2507, 2017, doi: 10.1109/TPEL.2016.2570800. DOI: https://doi.org/10.1109/TPEL.2016.2570800
Y. C. Liu, Y. L. Syu, N. A. Dung, C. Chen, K. De Chen, and K. A. Kim, “High-Switching-Frequency TCM Digital Control for Bidirectional-Interleaved Buck Converters Without Phase Error for Battery Charging,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 8, no. 3, pp. 2111–2123, 2020, doi: 10.1109/JESTPE.2019.2954602. DOI: https://doi.org/10.1109/JESTPE.2019.2954602
S. A. Assadi, H. Matsumoto, M. Moshirvaziri, M. Nasr, M. S. Zaman, and O. Trescases, “Active Saturation Mitigation in High-Density Dual-Active-Bridge DC-DC Converter for On-Board EV Charger Applications,” IEEE Trans. Power Electron., vol. 35, no. 4, pp. 4376–4387, 2020, doi: 10.1109/TPEL.2019.2939301. DOI: https://doi.org/10.1109/TPEL.2019.2939301
Y. Yan, H. Bai, A. Foote, and W. Wang, “Securing Full-Power-Range Zero-Voltage Switching in Both Steady-State and Transient Operations for a Dual-Active-Bridge-Based Bidirectional Electric Vehicle Charger,” IEEE Trans. Power Electron., vol. 35, no. 7, pp. 7506–7519, 2020, doi: 10.1109/TPEL.2019.2955896. DOI: https://doi.org/10.1109/TPEL.2019.2955896
Y. Xuan, X. Yang, W. Chen, T. Liu, and X. Hao, “A Three-Level Dual-Active-Bridge Converter with Blocking Capacitors for Bidirectional Electric Vehicle Charger,” IEEE Access, vol. 7, pp. 173838–173847, 2019, doi: 10.1109/ACCESS.2019.2957022. DOI: https://doi.org/10.1109/ACCESS.2019.2957022
Y. Wu and K. Chen, “High Efficiency and High Voltage Conversion Ratio Bidirectional Isolated DC–DC Converter for Energy Storage Systems,” Process. 2022, 10, 2711. https//doi.org/ 10.3390/pr10122711 Acad., 2022. DOI: https://doi.org/10.3390/pr10122711
B. R. De Almeida, J. W. M. De Araújo, P. P. Praça, and D. D. S. Oliveira, “A Single-Stage Three-Phase Bidirectional AC/DC Converter With High-Frequency Isolation and PFC,” IEEE Trans. Power Electron., vol. 33, no. 10, pp. 8298–8307, 2018, doi: 10.1109/TPEL.2017.2775522. DOI: https://doi.org/10.1109/TPEL.2017.2775522
H. Li, Z. Zhang, S. Wang, J. Tang, X. Ren, and Q. Chen, “A 300-kHz 6.6-kW SiC Bidirectional LLC Onboard Charger,” IEEE Trans. Ind. Electron., vol. 67, no. 2, pp. 1435–1445, 2020, doi: 10.1109/TIE.2019.2910048. DOI: https://doi.org/10.1109/TIE.2019.2910048
M. Yaqoob, K. H. Loo, and Y. M. Lai, “A Four-Degrees-of-Freedom Modulation Strategy for Dual-Active-Bridge Series-Resonant Converter Designed for Total Loss Minimization,” IEEE Trans. Power Electron., vol. 34, no. 2, pp. 1065–1081, 2019, doi: 10.1109/TPEL.2018.2865969. DOI: https://doi.org/10.1109/TPEL.2018.2865969
B. Li, Q. Li, and F. C. Lee, “A WBG based three phase 12.5 kW 500 kHz CLLC resonant converter with integrated PCB winding transformer,” Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, vol. 2018-March, pp. 469–475, 2018, doi: 10.1109/APEC.2018.8341053. DOI: https://doi.org/10.1109/APEC.2018.8341053
S. Habib, “Assessment of electric vehicles concerning impacts , charging infrastructure with unidirectional and bidirectional chargers , and power flow comparisons,” WILY ENERGY Res., no. June 2018, 2017, doi: 10.1002/er.4033. DOI: https://doi.org/10.1002/er.4033
W. Zheng, C. Hu, B. Zhao, X. Su, G. Wang, and X. Hou, “Design for a Four-Stage DC/DC High-Voltage Converter with High Precision and a Small Ripple,” Energies, vol. 16, no. 1, 2023, doi: 10.3390/en16010389. DOI: https://doi.org/10.3390/en16010389
S. J. Park, J. W. Park, K. H. Kim, and F. S. Kang, “Battery Energy Storage System with Interleaving Structure of Dual-Active-Bridge Converter and Non-Isolated DC-to-DC Converter with Wide Input and Output Voltage,” IEEE Access, vol. 10, no. November, pp. 127205–127224, 2022, doi: 10.1109/ACCESS.2022.3226779. DOI: https://doi.org/10.1109/ACCESS.2022.3226779
H. A. Gabbar and A. Elshora, “Modular Multi-Input DC/DC Converter for EV Fast Charging,” Technologies, vol. 10, no. 6, p. 113, 2022, doi: 10.3390/technologies10060113. DOI: https://doi.org/10.3390/technologies10060113
D. Folder, P. Folder, P. Folder, P. Folder, P. Folder, and P. Folder, “Bidirectional, Dual Active Bridge Reference Design for Level 3 Electric Vehicle Charging Stations,” Texas Instruments, Can. Automob. Assoc., no. July, pp. 1–86, 2022.
N. Z. Jin, Y. Feng, Z. Y. Chen, and X. G. Wu, “Bidirectional CLLLC Resonant Converter Based on Frequency-Conversion and Phase-Shift Hybrid Control,” Electron., vol. 12, no. 7, 2023, doi: 10.3390/electronics12071605. DOI: https://doi.org/10.3390/electronics12071605
A. Alsharif et al., “Impact of Electric Vehicle on Residential Power Distribution Considering Energy Management Strategy and Stochastic Monte Carlo Algorithm,” Energies, vol. 16, no. 3, pp. 1–22, 2023, doi: 10.3390/en16031358. DOI: https://doi.org/10.3390/en16031358
التنزيلات
منشور
كيفية الاقتباس
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2024 Solar Energy and Sustainable Development Journal
هذا العمل مرخص بموجب Creative Commons Attribution-NonCommercial 4.0 International License.