Optimizing Solar Radiation Forecasting for Renewable Energy Systems:

A Comparative Analysis of Machine Learning and Feature Engineering Techniques

المؤلفون

DOI:

https://doi.org/10.51646/jsesd.v14i1.386

الكلمات المفتاحية:

Random Forest، XGBoost، MLP، Solar radiation، renewable energy optimization، solar energy forecasting، temporal features، meteorological data، solar energy systems.

الملخص

Accurate solar radiation prediction is pivotal for optimizing solar energy systems, as it allows for better energy storage, grid integration, and renewable energy planning. This study compares the predictive accuracy of three machine learning models—Random Forest, XGBoost, and Multilayer Perceptron (MLP)- in forecasting solar radiation based on a meteorological and temporal features dataset. The dataset, encompassing Temperature, humidity, wind speed, and sunrise/sunset times, was preprocessed through transformations (Box-Cox, logarithmic scaling) and feature selection methods (SelectKBest, Extra Trees Classifier) to enhance model performance. XGBoost demonstrated superior performance, achieving an R² of 0.93 and RMSE of 81.87, effectively capturing complex nonlinear relationships within the data. MLP, while slightly lower in R², yielded the lowest mean absolute error (MAE = 41.74), underscoring its precision in individual predictions. SelectKBest identified set Hour (sunset hour), Month, and Wind Direction as critical features, while Extra Trees prioritized Wind Direction, Minute, and Humidity, reflecting model-specific feature importance. Collectively, these models illustrate the benefits of integrating feature engineering with advanced machine learning for renewable energy optimization, with XGBoost and MLP demonstrating particular efficacy for accurate solar radiation forecasting. This study underscores the potential of machine learning in enhancing solar energy management, facilitating a more efficient transition to sustainable energy sources.

التنزيلات

بيانات التنزيل غير متوفرة بعد.

المقاييس

يتم تحميل المقاييس...

المراجع

Ahmad, I., Al-Turki, Y. A., Siddiqui, M. U., et al. (2015). Solar energy prediction using machine learning. Renewable and Sustainable Energy Reviews, 52, 1436-1444.

Inman, R. H., Pedro, H. T. C., & Coimbra, C. F. M. (2013). Solar forecasting methods for renewable energy integration. Progress in Energy and Combustion Science, 39(6), 535-576. DOI: https://doi.org/10.1016/j.pecs.2013.06.002

Obando, E. D., Carvajal, S. X., & Agudelo, J. P. (2019). Solar radiation prediction using machine learning techniques: A review. IEEE Latin America Transactions, 17(04), 684-697. DOI: https://doi.org/10.1109/TLA.2019.8891934

Bamisile, O., Oluwasanmi, A., Ejiyi, C., Yimen, N., Obiora, S., & Huang, Q. (2022). Comparison of machine learning and deep learning algorithms for hourly global/diffuse solar radiation predictions. International Journal of Energy Research, 46(8), 10052-10073. [1] M.N. Luis, H.D. Jones, and E.F. Edward, "Journal article title", Journal Name, vol. 1, no. 3, pp. 625–30, Jun. 2000. DOI: https://doi.org/10.1002/er.6529

Guermoui, M., Melgani, F., Gairaa, K., & Mekhalfi, M. L. (2020). A comprehensive review of hybrid models for solar radiation forecasting. Journal of Cleaner Production, 258, 120357.

Phan, Q. T., Wu, Y. K., & Phan, Q. D. (2021, November). Short-term solar power forecasting using xgboost with numerical weather prediction. In 2021 IEEE International Future Energy Electronics Conference (IFEEC) (pp. 1-6). IEEE. DOI: https://doi.org/10.1109/IFEEC53238.2021.9661874

Voyant, C., Notton, G., Kalogirou, S., Nivet, M. L., Paoli, C., Motte, F., & Fouilloy, A. (2017). Machine learning methods for solar radiation forecasting: A review. Renewable energy, 105, 569-582. DOI: https://doi.org/10.1016/j.renene.2016.12.095

Castangia, M., Aliberti, A., Bottaccioli, L., Macii, E., & Patti, E. (2021). A compound of feature selection techniques to improve solar radiation forecasting. Expert Systems with Applications, 178, 114979. DOI: https://doi.org/10.1016/j.eswa.2021.114979

Wang, L., Kisi, O., Zounemat-Kermani, M., Salazar, G. A., Zhu, Z., & Gong, W. (2016). Solar radiation prediction using different techniques: model evaluation and comparison. Renewable and Sustainable Energy Reviews, 61, 384-397. DOI: https://doi.org/10.1016/j.rser.2016.04.024

Guermoui, M., Melgani, F., Gairaa, K., & Mekhalfi, M. L. (2020). A comprehensive review of hybrid models for solar radiation forecasting. Journal of Cleaner Production, 258, 120357. DOI: https://doi.org/10.1016/j.jclepro.2020.120357

Faceira, J., Afonso, P., & Salgado, P. (2015). Prediction of solar radiation using artificial neural networks. In CONTROLO'2014–Proceedings of the 11th Portuguese Conference on Automatic Control (pp. 397-406). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-10380-8_38

Ren, Y., Suganthan, P. N., & Srikanth, N. (2015). Ensemble methods for wind and solar power forecasting—A state-of-the-art review. Renewable and Sustainable Energy Reviews, 50, 82-91. DOI: https://doi.org/10.1016/j.rser.2015.04.081

Bairy, S. P., Nagula, S. T., Rahul, D., & Dileep, P. (2024). PREDICTING SOLAR POWER OUTPUT USING MACHINE LEARNING TECHNIQUES. International Journal of Information Technology and Computer Engineering, 12(1), 269-275.

Hedar, A. R., Almaraashi, M., Abdel-Hakim, A. E., & Abdulrahim, M. (2021). Hybrid machine learning for solar radiation prediction in reduced feature spaces. Energies, 14(23), 7970. DOI: https://doi.org/10.3390/en14237970

Mohamed, M., Mahmood, F. E., Abd, M. A., Chandra, A., & Singh, B. (2022). Dynamic forecasting of solar energy microgrid systems using feature engineering. IEEE Transactions on Industry Applications, 58(6), 7857-7869. DOI: https://doi.org/10.1109/TIA.2022.3199182

Hole, Shreyas Rajendra, and Agam Das Goswami. "EPCMSDB: Design of an ensemble predictive control model for solar PV MPPT deployments via dual bioinspired optimizations." Science and Technology for Energy Transition 79 (2024): 8. DOI: https://doi.org/10.2516/stet/2024002

Rajendra Hole, Shreyas, and Agam Das Goswami. "Design GA & PSO-Based High-Efficiency SEPIC DC-DC Converter for Context-Aware Duty Cycle Control." Electric Power Components and Systems (2023): 1-20. DOI: https://doi.org/10.1080/15325008.2023.2275702

Hole, Shreyas Rajendra, and Agam Das Goswami. "Design of a novel hybrid soft computing model for passive components selection in multiple load Zeta converter topologies of solar PV energy system." Energy Harvesting and Systems 11.1 (2024): 20230029. DOI: https://doi.org/10.1515/ehs-2023-0029

Hole, Shreyas Rajendra, and Agam Das Goswami. "Analysis and performance of solar photovoltaic energy system in India: case study." 2022 4th International Conference on Inventive Research in Computing Applications (ICIRCA). IEEE, 2022. DOI: https://doi.org/10.1109/ICIRCA54612.2022.9985490

Hole, Shreyas R., and Agam Das Goswami. "Design of an efficient MPPT optimization model via accurate shadow detection for solar photovoltaic." Energy Harvesting and Systems 10.2 (2023): 377-383. DOI: https://doi.org/10.1515/ehs-2022-0151

Goswami, Agam Das, and Shreyas R. Hole. "Analysis and Comparison of the DC-DC converter with soft Computing algorithm." EAI Endorsed Transactions on Scalable Information Systems 11.2 (2024). DOI: https://doi.org/10.4108/eetsis.4050

Hole, Shreyas Rajendra, and Agam Das Goswami. "Quantitative analysis of DC–DC converter models: a statistical perspective based on solar photovoltaic power storage." Energy Harvesting and Systems 9.1 (2022): 113-121. DOI: https://doi.org/10.1515/ehs-2021-0027

التنزيلات

منشور

2025-04-13

كيفية الاقتباس

Sagar, A., Hole, S., & Kolluru, V. (2025). Optimizing Solar Radiation Forecasting for Renewable Energy Systems: : A Comparative Analysis of Machine Learning and Feature Engineering Techniques . Solar Energy and Sustainable Development Journal, 14(1), 295–315. https://doi.org/10.51646/jsesd.v14i1.386

إصدار

القسم

Articles