Optimizing Solar Radiation Forecasting for Renewable Energy Systems:
A Comparative Analysis of Machine Learning and Feature Engineering Techniques
DOI:
https://doi.org/10.51646/jsesd.v14i1.386Keywords:
Random Forest, XGBoost, MLP, Solar radiation, renewable energy optimization, solar energy forecasting, temporal features, meteorological data, solar energy systems.Abstract
Accurate solar radiation prediction is pivotal for optimizing solar energy systems, as it allows for better energy storage, grid integration, and renewable energy planning. This study compares the predictive accuracy of three machine learning models—Random Forest, XGBoost, and Multilayer Perceptron (MLP)- in forecasting solar radiation based on a meteorological and temporal features dataset. The dataset, encompassing Temperature, humidity, wind speed, and sunrise/sunset times, was preprocessed through transformations (Box-Cox, logarithmic scaling) and feature selection methods (SelectKBest, Extra Trees Classifier) to enhance model performance. XGBoost demonstrated superior performance, achieving an R² of 0.93 and RMSE of 81.87, effectively capturing complex nonlinear relationships within the data. MLP, while slightly lower in R², yielded the lowest mean absolute error (MAE = 41.74), underscoring its precision in individual predictions. SelectKBest identified set Hour (sunset hour), Month, and Wind Direction as critical features, while Extra Trees prioritized Wind Direction, Minute, and Humidity, reflecting model-specific feature importance. Collectively, these models illustrate the benefits of integrating feature engineering with advanced machine learning for renewable energy optimization, with XGBoost and MLP demonstrating particular efficacy for accurate solar radiation forecasting. This study underscores the potential of machine learning in enhancing solar energy management, facilitating a more efficient transition to sustainable energy sources.
Downloads
Metrics
References
Ahmad, I., Al-Turki, Y. A., Siddiqui, M. U., et al. (2015). Solar energy prediction using machine learning. Renewable and Sustainable Energy Reviews, 52, 1436-1444.
Inman, R. H., Pedro, H. T. C., & Coimbra, C. F. M. (2013). Solar forecasting methods for renewable energy integration. Progress in Energy and Combustion Science, 39(6), 535-576. DOI: https://doi.org/10.1016/j.pecs.2013.06.002
Obando, E. D., Carvajal, S. X., & Agudelo, J. P. (2019). Solar radiation prediction using machine learning techniques: A review. IEEE Latin America Transactions, 17(04), 684-697. DOI: https://doi.org/10.1109/TLA.2019.8891934
Bamisile, O., Oluwasanmi, A., Ejiyi, C., Yimen, N., Obiora, S., & Huang, Q. (2022). Comparison of machine learning and deep learning algorithms for hourly global/diffuse solar radiation predictions. International Journal of Energy Research, 46(8), 10052-10073. [1] M.N. Luis, H.D. Jones, and E.F. Edward, "Journal article title", Journal Name, vol. 1, no. 3, pp. 625–30, Jun. 2000. DOI: https://doi.org/10.1002/er.6529
Guermoui, M., Melgani, F., Gairaa, K., & Mekhalfi, M. L. (2020). A comprehensive review of hybrid models for solar radiation forecasting. Journal of Cleaner Production, 258, 120357.
Phan, Q. T., Wu, Y. K., & Phan, Q. D. (2021, November). Short-term solar power forecasting using xgboost with numerical weather prediction. In 2021 IEEE International Future Energy Electronics Conference (IFEEC) (pp. 1-6). IEEE. DOI: https://doi.org/10.1109/IFEEC53238.2021.9661874
Voyant, C., Notton, G., Kalogirou, S., Nivet, M. L., Paoli, C., Motte, F., & Fouilloy, A. (2017). Machine learning methods for solar radiation forecasting: A review. Renewable energy, 105, 569-582. DOI: https://doi.org/10.1016/j.renene.2016.12.095
Castangia, M., Aliberti, A., Bottaccioli, L., Macii, E., & Patti, E. (2021). A compound of feature selection techniques to improve solar radiation forecasting. Expert Systems with Applications, 178, 114979. DOI: https://doi.org/10.1016/j.eswa.2021.114979
Wang, L., Kisi, O., Zounemat-Kermani, M., Salazar, G. A., Zhu, Z., & Gong, W. (2016). Solar radiation prediction using different techniques: model evaluation and comparison. Renewable and Sustainable Energy Reviews, 61, 384-397. DOI: https://doi.org/10.1016/j.rser.2016.04.024
Guermoui, M., Melgani, F., Gairaa, K., & Mekhalfi, M. L. (2020). A comprehensive review of hybrid models for solar radiation forecasting. Journal of Cleaner Production, 258, 120357. DOI: https://doi.org/10.1016/j.jclepro.2020.120357
Faceira, J., Afonso, P., & Salgado, P. (2015). Prediction of solar radiation using artificial neural networks. In CONTROLO'2014–Proceedings of the 11th Portuguese Conference on Automatic Control (pp. 397-406). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-10380-8_38
Ren, Y., Suganthan, P. N., & Srikanth, N. (2015). Ensemble methods for wind and solar power forecasting—A state-of-the-art review. Renewable and Sustainable Energy Reviews, 50, 82-91. DOI: https://doi.org/10.1016/j.rser.2015.04.081
Bairy, S. P., Nagula, S. T., Rahul, D., & Dileep, P. (2024). PREDICTING SOLAR POWER OUTPUT USING MACHINE LEARNING TECHNIQUES. International Journal of Information Technology and Computer Engineering, 12(1), 269-275.
Hedar, A. R., Almaraashi, M., Abdel-Hakim, A. E., & Abdulrahim, M. (2021). Hybrid machine learning for solar radiation prediction in reduced feature spaces. Energies, 14(23), 7970. DOI: https://doi.org/10.3390/en14237970
Mohamed, M., Mahmood, F. E., Abd, M. A., Chandra, A., & Singh, B. (2022). Dynamic forecasting of solar energy microgrid systems using feature engineering. IEEE Transactions on Industry Applications, 58(6), 7857-7869. DOI: https://doi.org/10.1109/TIA.2022.3199182
Hole, Shreyas Rajendra, and Agam Das Goswami. "EPCMSDB: Design of an ensemble predictive control model for solar PV MPPT deployments via dual bioinspired optimizations." Science and Technology for Energy Transition 79 (2024): 8. DOI: https://doi.org/10.2516/stet/2024002
Rajendra Hole, Shreyas, and Agam Das Goswami. "Design GA & PSO-Based High-Efficiency SEPIC DC-DC Converter for Context-Aware Duty Cycle Control." Electric Power Components and Systems (2023): 1-20. DOI: https://doi.org/10.1080/15325008.2023.2275702
Hole, Shreyas Rajendra, and Agam Das Goswami. "Design of a novel hybrid soft computing model for passive components selection in multiple load Zeta converter topologies of solar PV energy system." Energy Harvesting and Systems 11.1 (2024): 20230029. DOI: https://doi.org/10.1515/ehs-2023-0029
Hole, Shreyas Rajendra, and Agam Das Goswami. "Analysis and performance of solar photovoltaic energy system in India: case study." 2022 4th International Conference on Inventive Research in Computing Applications (ICIRCA). IEEE, 2022. DOI: https://doi.org/10.1109/ICIRCA54612.2022.9985490
Hole, Shreyas R., and Agam Das Goswami. "Design of an efficient MPPT optimization model via accurate shadow detection for solar photovoltaic." Energy Harvesting and Systems 10.2 (2023): 377-383. DOI: https://doi.org/10.1515/ehs-2022-0151
Goswami, Agam Das, and Shreyas R. Hole. "Analysis and Comparison of the DC-DC converter with soft Computing algorithm." EAI Endorsed Transactions on Scalable Information Systems 11.2 (2024). DOI: https://doi.org/10.4108/eetsis.4050
Hole, Shreyas Rajendra, and Agam Das Goswami. "Quantitative analysis of DC–DC converter models: a statistical perspective based on solar photovoltaic power storage." Energy Harvesting and Systems 9.1 (2022): 113-121. DOI: https://doi.org/10.1515/ehs-2021-0027

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Solar Energy and Sustainable Development Journal

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.