Optimizing CZTS Solar Cell Performance with Advanced Layer Configurations Using SCAPS Simulation
DOI:
https://doi.org/10.51646/jsesd.v14iSI_MSMS2E.399الكلمات المفتاحية:
CZTS solar cells، SCAPS simulation، transition metal dichalcogenides، MoS₂; ZnO، thermal effects، renewable energy.الملخص
This research analyzes the modeling of CZTS (Copper Zinc Tin Sulfide) solar cells, with a focus on advanced layer configuration and thermal management to improve operational efficiency. Using SCAPS-1D software, this investigation seeks to augment cell efficiency by fine-tuning the dimensions of absorptive layers, modifying buffer compositions, and adjusting other critical components. The study evaluates the role of transition metal dichalcogenides (TMDs), specifically MoS₂ as the hole transport layer and ZnO as the window layer, in influencing open-circuit voltage (Voc) and short-circuit current density (Jsc). Furthermore, the research delves into temperature-related effects, demonstrating that elevated temperatures lead to a decrease in Voc and Jsc attributable to bandgap narrowing and heightened recombination processes. Through the optimization of the thicknesses of the CZTS, MoS₂, and WSe₂ layers, this study elucidates the manner in which material adjustments influence Voc, Jsc, fill factor (FF), and overall efficiency (η). In addition, effective thermal management emerges as a critical factor, given that increased temperatures elevate recombination rates, thereby adversely affecting FF and efficiency. The results of this study provide essential information for increasing the performance, durability and stability of CZTS solar cells under various environmental conditions.
التنزيلات
المقاييس
المراجع
. P. Tian, L. Tang, K. S. Teng, J. Xiang, and S. P. Lau, "Recent advances in graphene homogeneous p-n junction for optoelectronics," Adv. Mater. Technol., vol. 4, 2019, Art. no. 1900007, doi: https://doi.org/10.1002/admt.201900007. DOI: https://doi.org/10.1002/admt.201900007
. F. Encinas-Sanz and J. M. Guerra, "Laser-induced hot carrier photovoltaic effects in semiconductor junctions," Prog. Quant. Electron., vol. 27, pp. 267–294, 2003, doi: https://doi.org/10.1016/S0079-6727(03)00002-8. DOI: https://doi.org/10.1016/S0079-6727(03)00002-8
. R. Frisenda, A. J. Molina-Mendoza, T. Mueller, A. Castellanos-Gomez, and H. S. J. van der Zant, "Atomically thin p-n junctions based on two-dimensional materials," Chem. Soc. Rev., vol. 47, pp. 3339–3358, 2018, doi: https://doi.org/10.1039/C7CS00880E. DOI: https://doi.org/10.1039/C7CS00880E
. J. Ramanujam, D. M. Bishop, T. K. Todorov, O. Gunawan, J. Rath, R. Nekovei, E. Artegiani, and A. Romeo, "Flexible CIGS, CdTe and a-Si:H based thin film solar cells: A review," Prog. Mater Sci., vol. 110, 2020, Art. no. 100619, doi: https://doi.org/10.1016/j.pmatsci.2019.100619. DOI: https://doi.org/10.1016/j.pmatsci.2019.100619
. T. D. Lee and A. U. Ebong, "A review of thin film solar cell technologies and challenges," Renew. Sustain. Energy Rev., vol. 70, pp. 1286–1297, 2017, doi: https://doi.org/10.1016/j.rser.2016.12.028. DOI: https://doi.org/10.1016/j.rser.2016.12.028
. I. Massiot, A. Cattoni, and S. Collin, "Progress and prospects for ultrathin solar cells," Nat. Energy, vol. 5, pp. 959–972, 2020, doi: https://doi.org/10.1038/s41560-020-00714-4. DOI: https://doi.org/10.1038/s41560-020-00714-4
. Y. Lee, H. H. Tan, C. Jagadish, and S. K. Karuturi, "Controlled cracking for large-area thin film exfoliation: Working principles, status, and prospects," ACS Appl. Electron. Mater., vol. 3, pp. 145–162, 2021, doi: https://doi.org/10.1021/acsaelm.0c00892. DOI: https://doi.org/10.1021/acsaelm.0c00892
. M. Saifullah, S. Ahn, J. Gwak, S. Ahn, K. Kim, J. Cho, J. H. Park, Y. J. Eo, A. Cho, J. S. Yoo, and J. H. Yun, "Development of semitransparent CIGS thin-film solar cells modified with a sulfurized-AgGa layer for building applications," J. Mater. Chem. A, vol. 4, pp. 10542–10551, 2016, doi: https://doi.org/10.1039/C6TA01909A. DOI: https://doi.org/10.1039/C6TA01909A
. J. Guo, W. H. Zhou, Y. L. Pei, Q. W. Tian, D. X. Kou, Z. J. Zhou, Y. N. Meng, and S. X. Wu, "High efficiency CZTSSe thin film solar cells from pure element solution: A study of additional Sn complement," Sol. Energy Mater. Sol. Cells, vol. 155, pp. 209–215, 2016, doi: https://doi.org/10.1016/j.solmat.2016.06.021. DOI: https://doi.org/10.1016/j.solmat.2016.06.021
. Y. Wei, K. Zhou, X. Meng, X. Sun, Z. Ma, Z. Li, and D. Zhuang, "Improving the performance of solution–based CZTSSe absorber by selenization annealing with selenium powder in argon," J. Alloy. Compd., vol. 976, 2024, Art. no. 173123, doi: https://doi.org/10.1016/j.jallcom.2023.173123. DOI: https://doi.org/10.1016/j.jallcom.2023.173123
. A. D. Saragih, W. Wubet, H. Abdullah, A. K. Abay, and D. H. Kuo, "Characterization of Ag-doped Cu2ZnSnSe4 bulk materials and their application as thin film semiconductor in solar cells," Mater. Sci. Eng. B, vol. 225, pp. 45–53, 2017, doi: https://doi.org/10.1016/j.mseb.2017.08.007.
. Y. Zhang, D. Jiang, Y. Sui, Y. Wu, Z. Wang, L. Yang, F. Wang, S. Lv, and B. Yao, "Synthesis and investigation of environmental protection and earth-abundant kesterite Cu2MgxZn1-xSn(S,Se)4 thin films for solar cells," Ceram. Int., 2018, doi: https://doi.org/10.1016/j.ceramint.2018.05.167. DOI: https://doi.org/10.1016/j.ceramint.2018.05.167
. A. D. Saragih, W. Wubet, H. Abdullah, A. K. Abay, and D. H. Kuo, "Characterization of Ag-doped Cu2ZnSnSe4 bulk materials and their application as thin film semiconductor in solar cells," Mater. Sci. Eng. B, vol. 225, pp. 45–53, 2017, doi: https://doi.org/10.1016/j.mseb.2017.08.007. DOI: https://doi.org/10.1016/j.mseb.2017.08.007
. M. He, K. Sun, M. P. Suryawanshi, J. Li, and X. Hao, "Interface engineering of p-n heterojunction for kesterite photovoltaics: A progress review," J. Energy Chem., vol. 60, pp. 1–8, 2021, doi: https://doi.org/10.1016/j.jechem.2020.12.019. DOI: https://doi.org/10.1016/j.jechem.2020.12.019
. A. Ait Abdelkadir and M. Sahal, "Theoretical development of the CZTS thin-film solar cell by SCAPS-1D software based on experimental work," Mater. Sci. Eng. B, vol. 296, 2023, Art. no. 116710, doi: https://doi.org/10.1016/j.mseb.2023.116710. DOI: https://doi.org/10.1016/j.mseb.2023.116710
. Sadanand, D. K. Dwivedi, F. A. Alharthi, and A. El Marghany, "One-step hydrothermal synthesis of Cu2ZnSn(S,Se)4 nanoparticles: Structural and optical properties," Nanosci. Nanotechnol. Lett., vol. 12, pp. 338–344, 2020, doi: https://doi.org/10.1166/nnl.2020.3121. DOI: https://doi.org/10.1166/nnl.2020.3121
. R. Kotipalli, O. Poncelet, G. Li, Y. Zeng, L. A. Francis, B. Vermang, and D. Flandre, "Addressing the impact of rear surface passivation mechanisms on ultra-thin Cu(In, Ga)Se2 solar cell performances using SCAPS 1-D model," Sol. Energy, vol. 157, pp. 603–613, 2017, doi: https://doi.org/10.1016/j.solener.2017.08.055. DOI: https://doi.org/10.1016/j.solener.2017.08.055
. A. Kannaujiya, S. Kannaujiya, and R. K. Chauhan, "Effect of gate metal work function on leakage current in single pocket FDSOI 28 nm transistor," in 2021 Int. Conf. on Computational Science and Network Technology (CSNT), 2021, pp. 241–246, doi: https://doi.org/10.1109/csnt51715.2021.9509715. DOI: https://doi.org/10.1109/CSNT51715.2021.9509715
. M. Burgelman, K. Decock, S. Khelifi, and A. Abass, "Advanced electrical simulation of thin film solar cells," Thin Solid Films, vol. 535, pp. 296–301, 2013, doi: https://doi.org/10.1016/j.tsf.2012.10.032. DOI: https://doi.org/10.1016/j.tsf.2012.10.032
. O. Belhaidouri, R. Moultif, L. Mouakkir, M. Karim, A. Hader, Y. Lachtioui, and O. Bajjou, "Optimizing CZTS solar cells efficiency using eco-friendly layers by SCAPS simulation," J. Adv. Res. Fluid Mech. Therm. Sci., vol. 119, no. 2, pp. 79–90, 2024, doi: https://doi.org/10.37934/arfmts.119.2.7990. DOI: https://doi.org/10.37934/arfmts.119.2.7990
. J. B. You, X. W. Zhang, J. J. Dong, X. M. Song, Z. G. Yin, N. F. Chen, and H. Yan, "Localized-surface-plasmon enhanced the 357 nm forward emission from ZnMgO films capped by Pt nanoparticles," Nanoscale Res. Lett., vol. 4, pp. 1121–1125, 2009, doi: https://doi.org/10.1007/s11671-009-9366-y. DOI: https://doi.org/10.1007/s11671-009-9366-y
. S. Tripathi, Sadanand, and P. Lohia, "Contribution to sustainable and environmental friendly non-toxic CZTS solar cell with an innovative hybrid buffer layer," Sol. Energy, vol. 204, pp. 748–760, 2020, doi: https://doi.org/10.1016/j.solener.2020.05.033. DOI: https://doi.org/10.1016/j.solener.2020.05.033
. A. Redinger and T. Unold, "High surface recombination velocity limits Quasi-Fermi level splitting in kesterite absorbers," Sci. Rep., vol. 8, Art. no. 19798, 2018, doi: https://doi.org/10.1038/s41598-018-19798-w. DOI: https://doi.org/10.1038/s41598-018-19798-w
. T. Ghorbani, M. Zahedifar, M. Moradi, and E. Ghanbari, "Influence of affinity, band gap and ambient temperature on the efficiency of CIGS solar cells," Optik, vol. 223, 2020, Art. no. 165541, doi: https://doi.org/10.1016/j.ijleo.2020.165541. DOI: https://doi.org/10.1016/j.ijleo.2020.165541
. D. K. Dwivedi and Sadanand, "Modeling of CZTSSe solar photovoltaic cell for window layer optimization," Optik, vol. 222, 2020, Art. no. 165407, doi: https://doi.org/10.1016/j.ijleo.2020.165407. DOI: https://doi.org/10.1016/j.ijleo.2020.165407
. V. Selamneni, S. K. Ganeshan, N. Nerurkar, T. Akshaya, and P. Sahatiya, "Facile fabrication of MoSe2 on paper as an electromechanical piezoresistive pressure-strain sensor," IEEE Trans. Instrum. Meas., vol. 70, 2021, doi: https://doi.org/10.1109/TIM.2020.3038003.
. H. B. Michaelson, "The work function of the elements and its periodicity," J. Appl. Phys., vol. 48, pp. 4729–4733, 1977, doi: https://doi.org/10.1063/1.323539.
. M. A. Green, "General temperature dependence of solar cell performance and implications for device modelling," Prog. Photovoltaics Res. Appl., vol. 11, pp. 333–340, 2003, doi: https://doi.org/10.1002/pip.496. DOI: https://doi.org/10.1002/pip.496
. K. Pandey, A. K. Patel, R. Mishra, "Numerical study on performance enhancement of CZTSSe solar cells with Cu₂O and MoTe₂ as hole transport layer," Journal of Computational Electronics, vol. 21, no. 4, pp. 895–904, 2022, doi: https://doi.org/10.1016/j.micrna.2022.207356. DOI: https://doi.org/10.1007/s10825-022-01900-1
. S. Mishra, K. Bhargava, D. Deb, "Numerical simulation of potential induced degradation (PID) in different thin-film solar cells using SCAPS-1D," Solar Energy, vol. 188, pp. 353–360, 2019, doi: https://doi.org/10.1016/J.SOLENER.2019.05.077. DOI: https://doi.org/10.1016/j.solener.2019.05.077
. Z. Yan, G. Li, T. Li, S. Zhao, K. Yang, S. Zhang, M. Fan, L. Guo, B. Zhang, "Passively Q-switched Ho,Pr:LiLuF4 laser at 2.95 μm using MoSe2," IEEE Photonics Journal, vol. 9, 2017, doi: https://doi.org/10.1109/JPHOT.2017.2749328. DOI: https://doi.org/10.1109/JPHOT.2017.2749328
. H. B. Michaelson, "The work function of the elements and its periodicity," Journal of Applied Physics, vol. 48, pp. 4729–4733, 1977, doi: https://doi.org/10.1063/1.323539. DOI: https://doi.org/10.1063/1.323539
. V. Selamneni, S. K. Ganeshan, N. Nerurkar, T. Akshaya, P. Sahatiya, "Facile fabrication of MoSe₂ on paper as an electromechanical piezoresistive pressure-strain sensor," IEEE Transactions on Instrumentation and Measurement, vol. 70, 2021, doi: https://doi.org/10.1109/TIM.2020.3038003. DOI: https://doi.org/10.1109/TIM.2020.3038003
. J. Zhang, L. Shao, "Cu₂ZnSnS₄ thin films prepared by sulfurizing different multilayer metal precursors," Science in China Series E: Technological Sciences, vol. 52, pp. 269–272, 2009, doi: https://doi.org/10.1007/s11431-009-0013-8. DOI: https://doi.org/10.1007/s11431-009-0013-8
. A. Kumar, A. D. Thakur, "Improvement of efficiency in CZTSSe solar cell by using back surface field," in IOP Conference Series: Materials Science and Engineering, vol. 360, p. 012027, IOP Publishing, 2018, doi: https://doi.org/10.1088/1757-899X/360/1/012027. DOI: https://doi.org/10.1088/1757-899X/360/1/012027
التنزيلات
منشور
كيفية الاقتباس
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2024 Solar Energy and Sustainable Development Journal
هذا العمل مرخص بموجب Creative Commons Attribution-NonCommercial 4.0 International License.