Determining the Least Risky Solar Radiation Transposition Model for Estimating Global Inclined Solar Irradiation
DOI:
https://doi.org/10.51646/jsesd.v14iFICTS-2024.440الكلمات المفتاحية:
Transposition models، Global horizontal solar irradiation، Isotropic models، Anisotropic models، Global inclined solar irradiation.الملخص
Solar energy is considered one of the most important energy resources and a key component in addressing major energy challenges worldwide. Therefore, solar radiation data is crucial for many solar energy applications. Due to the lack of measurements at times due to logistical challenges, mathematical transposition models are often used to compensate for this deficiency. This paper presents an analytical study to identify the least risky transposition model for estimating solar radiation on inclined surfaces among six commonly used models in scientific literature, for several regions around the world (Berlin, Rome, Tripoli, N'Djamena, Yandou). Total horizontal solar radiation intensity data was obtained from the Solargis platform for the study regions, carefully selected to represent latitude variations and longitudinal alignment. The proposed approach was applied to these regions for six transposition models and multiple different tilt angles ranging from (90°-10°) to determine the least risky model for use in each region at each solar panel tilt angle. The study results show significant variation among the studied regions, with a notable difference in annual inclined solar radiation values between regions using transposition models, with the discrepancy increasing at higher latitudes. The results indicate that the Perez model is the least risky and dominant model in Tripoli, while in Berlin, the Liu & Jordan model was the least risky at tilt angles between 40°-10°, with the Perez model being the least risky at tilt angles greater than 40°. This study is expected to enhance the accuracy of solar radiation estimation, thus bolstering confidence in assessing the economic and environmental efficiency of solar energy systems.
التنزيلات
المقاييس
المراجع
Y. Nassar, K. Aissa, and S. Alsadi, “Air Pollution Sources in Libya,” J. Ecol. Environ. Sci., vol. 6, no. 1, p. 17, 2018.
Y. Nassar, M. Salem, K. Iessa, I. AlShareef, K. Ali, and M. Fakher, “Estimation of CO2 emission factor for the energy industry sector in libya: a case study,” Environ. Dev. Sustain., vol. 23, no. 9, pp. 13998–14026, Sep. 2021, doi: 10.1007/s10668-021-01248-9. DOI: https://doi.org/10.1007/s10668-021-01248-9
Y. Nassar, K. Aissa, and S. Alsadi, “Estimation of Environmental Damage Costs from CO2e Emissions in Libya and the Revenue from Carbon Tax Implementation,” Low Carbon Econ., vol. 08, no. 04, pp. 118–132, 2017, doi: 10.4236/lce.2017.84010. DOI: https://doi.org/10.4236/lce.2017.84010
M. Andeef et al., “The Role of Renewable Energies in Achieving a More Secure and Stable Future,” Int. J. Electr. Eng. Sustain. IJEES, vol. 1, p. 10, 2023.
A. Steynor, L. Pasquini, A. Thatcher, and B. Hewitson, “Understanding the Links Between Climate Change Risk Perceptions and the Action Response to Inform Climate Services Interventions,” Risk Anal., vol. 41, 2021. DOI: https://doi.org/10.1111/risa.13683
S. Yousif, A. Salem, Y. Fathi, and I. F. Bader, “Investigation of pollutants dispersion from power stations,” Int. J. Energy Res., vol. 30, no. 15, pp. 1352–1362, 2006. DOI: https://doi.org/10.1002/er.1225
M. Obaid and A. Jaber, “A Review on Plane to Array Solar Radiation Transposition Models,” Int. J. Res. Anal. Rev., vol. 9, no. 2, 2022.
K. Amer et al., “Power Losses on PV Solar Fields: Sensitivity Analysis and A Critical Review,” Int. J. Eng. Res., vol. 9, no. 09, 2020.
L. Atwoli, G. E. Erhabor, and A. A. Gbakima, “COP27 Climate Change Conference: Urgent action needed for Africa and the world,” Health SA Gesondheid, p. 3, 2022. DOI: https://doi.org/10.1001/jamahealthforum.2022.4566
G. Ziervogel, M. New, E. Archer van Garderen, G. Midgley, A. Taylor, and R. Hamann, “Climate change impacts and adaptation in South Africa,” WIREs Clim. Change, vol. 5, p. 16, 2014. DOI: https://doi.org/10.1002/wcc.295
N. Yasser, et al., "Regression Model for Optimum Solar Collectors' Tilt Angles in Libya," in The 8th International Engineering Conference on Renewable Energy & Sustainability (ieCRES 2023), Gaza Strip, Palestine, May 8-9, 2023.
K. Bakouri, et al., Learning Lessons from Murzuq-Libya Meteorological Station: Evaluation criteria and improvement recommendations. Solar Energy and Sustainable Development Journal, vol.12, no.2, 2023, 30-48. DOI: https://doi.org/10.51646/jsesd.v12i1.149
Y. Nassar, A. Hafez, and S. Alsadi, “Multi-Factorial Comparison for 24 Distinct Transposition Models for Inclined Surface Solar Irradiance Computation in the State of Palestine: A Case Study,” Front. Energy Res., vol. 7, p. 163, Feb. 2020, doi: 10.3389/fenrg.2019.00163. DOI: https://doi.org/10.3389/fenrg.2019.00163
]14[ H. El- Khozondar, et al., "Standalone hybrid PV/Wind/Diesel electric generator system for a COVID-19 Quarantine Center," Environ Prog Sustainable Energy, pp. 1-18, 2022. DOI: https://doi.org/10.1002/ep.14049
H. Quan and D. Yang, “Probabilistic solar irradiance transposition models,” Renew. Sustain. Energy Rev., vol. 125, p. 109814, Jun. 2020, doi: 10.1016/j.rser.2020.109814. DOI: https://doi.org/10.1016/j.rser.2020.109814
Y. Nassar, S. Alsadi, H. El-Khozondar, and S. Refaat, “Determination of the Most Accurate Horizontal to Tilted Sky-Diffuse Solar Irradiation Transposition Model for the Capital Cities in MENA Region,” in 2022 3rd International Conference on Smart Grid and Renewable Energy (SGRE), Doha, Qatar: IEEE, Mar. 2022, pp. 1–6. doi: 10.1109/SGRE53517.2022.9774146. DOI: https://doi.org/10.1109/SGRE53517.2022.9774146
M. Munoz, E. Ballantyne, D. Stone, "Development and evaluation of empirical models for the estimation of hourly horizontal diffuse solar irradiance in the United Kingdom," Energy, vol. 241, no. 2, 2022, p. 122820, https://doi.org/10.1016/j.energy.2021.122820. DOI: https://doi.org/10.1016/j.energy.2021.122820
Hong Cai, Wenmin Qin, Lunche Wang, Bo Hu, Ming Zhang, "Hourly clear-sky solar irradiance estimation in China: Model review and validations," Solar Energy, vol. 226, no. 8, 2021, pp. 468-482, https://doi.org/10.1016/j.solener.2021.08.066. DOI: https://doi.org/10.1016/j.solener.2021.08.066
T. Frimpong, E. Kwaku Anto, E. Ramde, and L. Dzifa Mensah, “Determination of Optimum Tilt Angle for Rooftop Solar Photovoltaic System Installation for KikuKinderhaus in Kumasi,” Int. J. Energy Environ. Sci., vol. 5, no. 1, p. 7, 2020, doi: 10.11648/j.ijees.20200501.12. DOI: https://doi.org/10.11648/j.ijees.20200501.12
A. Barbón, C. Bayón-Cueli, L. Bayón, and C. Rodríguez-Suanzes, “Analysis of the tilt and azimuth angles of photovoltaic systems in non-ideal positions for urban applications,” Appl. Energy, vol. 305, p. 117802, Jan. 2022, doi: 10.1016/j.apenergy.2021.117802. DOI: https://doi.org/10.1016/j.apenergy.2021.117802
Y. Nassar, "Analytical-numerical computation of view factor for several arrangements of two rectangular surfaces with non-common edge," International journal of heat and mass transfer, vol. 159, no. 10, 2020, p. 120130. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120130 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2020.120130
Y. Nassar and S. Alsadi, "View factors of flat solar collectors array in flat, inclined, and step-like solar fields," Journal of Solar Energy Engineering, vol. 138, no. 6, 2016, p.061005. https://doi.org/10.1115/1.4034549 DOI: https://doi.org/10.1115/1.4034549
Y. Nassar, et al., "View factors in horizontal plane fixed-mode solar PV fields," Frontiers in Energy Research, vol. 10, no. 5, 2022, p. 859075. https://doi.org/10.3389/fenrg.2022.859075 DOI: https://doi.org/10.3389/fenrg.2022.859075
S. Alsadi, Y. Nassar, "Estimation of solar irradiance on solar fields: an analytical approach and experimental results," IEEE transactions on sustainable energy, vol. 8, no. 4, 2017, pp. 1601-1608. https://doi.org/10.1109/TSTE.2017.2697913 DOI: https://doi.org/10.1109/TSTE.2017.2697913
Y. Nassar, et al., "Analysis of the View Factors in Rooftop PV Solar," In the 3 rd International Conference on Smart Grid and Renewable Energy (SGRE), 20-22 March 2022, Doha, Qatar. https://doi.org/10.1109/SGRE53517.2022.9774104 DOI: https://doi.org/10.1109/SGRE53517.2022.9774104
T. Chen, et al., "Leveraging MPPT capability for solar irradiance estimation: H-INC-IBS-based assessment of explicit models under real-world climatic conditions," Computers and Electrical Engineering, vol. 118, no. 8, p. 109366, 2024. https://doi.org/10.1016/j.compeleceng.2024.109366 DOI: https://doi.org/10.1016/j.compeleceng.2024.109366
N. Lukac, D. Mongus, B. Žalik, G. Štumberger, M. Bizjak, "Novel GPU-accelerated high-resolution solar potential estimation in urban areas by using a modified diffuse irradiance model," Applied Energy, vol. 353, no. 1, 2024, p. 122129, https://doi.org/10.1016/j.apenergy.2023.122129. DOI: https://doi.org/10.1016/j.apenergy.2023.122129
Y Fathi. Solar energy engineering, active applications, a book of 528 pages, Sebha university publications, Libya, 2006. https://www.researchgate.net/publication/374471974_ktab_altaqt_alshmsyt
B. Liu and R. Jordan, “The long-term average performance of flat-plate solar-energy collectors,” Sol. Energy, vol. 7, no. 2, pp. 53–74, Apr. 1963. DOI: https://doi.org/10.1016/0038-092X(63)90006-9
J. Bugler, “The Determination of Hourly Insoiation on an inclined plane using a diffuse irradiance model based on hourly measured global horizontac insolation,” Sol. Energy, vol. 19, 1976. DOI: https://doi.org/10.1016/0038-092X(77)90103-7
J. Hay. "Calculating solar radiation for inclined surfaces: practical approaches." Renew. Energy 3, 373–380, 1993. https://doi.org/10.1016/0960-1481(93) 90104-O DOI: https://doi.org/10.1016/0960-1481(93)90104-O
]32[ D. Reindl, W. Beckman, and J. Dufte, “Eualuation of Hourly Tilted Surface Radiation Models,” Sol. Energy, vol. 47, 1990. DOI: https://doi.org/10.1016/0038-092X(90)90061-G
T. Muneer, "Solar radiation models for Europe." Build. Serv. Eng. Res. Technol. 11, 153–163, 1993. https://doi.org/10.1177/014362449001100405 DOI: https://doi.org/10.1177/014362449001100405
R. Perez, R. Seals, P. Ineichen, R. Stewart, and J. Michalsky, "Modelling daylight availability and irradiance components from direct and global irradiance." Solar Energy 44, 271–289, 1990. https://doi.org/10.1016/0038-092X(90)90055-H DOI: https://doi.org/10.1016/0038-092X(90)90055-H
N. Yasser, N. Abuhamoud, G. Miskeen, H. El-Khozondar, S. Alsadi, and O. Ahwidi, “Investigating the Applicability of Horizontal to Tilted Sky-Diffuse Solar Irradiation Transposition Models for Key Libyan Cities,” Int. Maghreb Meet. Conf. Sci., 2022, doi: 10.1109.
D. Paul, G. De Michele, B. Najafi, S. Avesani, " Benchmarking clear sky and transposition models for solar irradiance estimation on vertical planes to facilitate glazed facade design," Energy and Buildings, vol. 255, no. 1, 2022, p.111622, https://doi.org/10.1016/j.enbuild.2021.111622 DOI: https://doi.org/10.1016/j.enbuild.2021.111622
التنزيلات
منشور
كيفية الاقتباس
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2025 Solar Energy and Sustainable Development Journal
هذا العمل مرخص بموجب Creative Commons Attribution-NonCommercial 4.0 International License.