Solar Photovoltaic Power Prediction Using Statistical Approach-Based Analysis of Variance

Authors

  • Muataz Al Hazza
  • Hussain Attia
  • Khaled Hossin American University of Ras Al Khaimah, Ras Al Khaimah, UAE

DOI:

https://doi.org/10.51646/jsesd.v13i2.181

Keywords:

Solar PV system, Renewable energy forecasting, Statistical modeling, ANOVA, Fit summary.

Abstract

With the increase in global demand for energy and the rise of environmental warnings supported by the United Nations and its sustainable development goals (SDGs) in 2015, transitioning from traditional energy systems to renewable ones, especially solar energy systems, has become necessary. However, this transition should be supported by prediction models that can help forecast these power outputs. This research aims to develop a data-driven model based on a statistical approach. Analysis of variance ANOVA and fit summary were the tools that were used in creating the model. Three input variables, namely Global Radiation, Ambient Relative Humidity, and Ambient Temperature, were utilized alongside one output variable, output power. The model utilized 360 readings during six hours from 10:00 am to 4:00 pm. Stat-ease software was used to develop the model. The quadratic statistical model shows significant results with five statistical terms. The Model’s F-value of 687.89 indicates that the model is highly significant, demonstrating only a small chance of 0.01% that such a large F-value could be caused by random variations. In addition, the P-values for the remaining model terms in the ANOVA table, all being less than 0.0500, confirm their significance. The developed model was validated by comparing the original experimental data with those obtained from the model. The validation showed an average percentage error of 7.35%.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Lo Brano, V., Ciulla, G., and Di Falco, M., “Artificial neural networks to predict the power output of a P.V. panel”, International Journal of Photoenergy, 2014, pp. 1–12, 2014. DOI: https://doi.org/10.1155/2014/193083

Statista, “Cumulative installed solar PV capacity worldwide from 2000 to 2022”, [Online]. Available: https://www.statista.com/statistics/280220/global-cumulative-installed-solar-pv-capacity/ [Accessed: May 12, 2024].

Khatib, T., Mohamed, A., & Sopian, K., “A review of solar energy modeling techniques”, Renewable and Sustainable Energy Reviews, 16(5), pp. 2864-2869, 2012. DOI: https://doi.org/10.1016/j.rser.2012.01.064

Adenle, A., “Assessment of solar energy technologies in Africa-opportunities and challenges in meeting the 2030 agenda and sustainable development goals”, Energy Policy, 137, pp. 111180, 2020. DOI: https://doi.org/10.1016/j.enpol.2019.111180

Obaideen, K., Olabi, A., Al Swailmeen, Y., Shehata, N., Abdelkareem, M., Alami, A., & Sayed, E., “Solar energy: Applications, trends analysis, bibliometric Analysis and research contribution to sustainable development goals (SDGs)”, Sustainability, 15(2), pp. 1418, 2023. DOI: https://doi.org/10.3390/su15021418

Obaideen, K., AlMallahi, M., Alami, A., Ramadan, M., Abdelkareem, M., Shehata, N., & Olabi, A., “On the contribution of solar energy to sustainable development goals: Case study on Mohammed bin Rashid Al Maktoum Solar Park”, International Journal of Thermofluids, 12, pp. 100123, 2021. DOI: https://doi.org/10.1016/j.ijft.2021.100123

Senthil, R., “Recent innovations in solar energy education and research towards sustainable energy development”, Acta Innovations, 42, pp. 27-49, 2022. DOI: https://doi.org/10.32933/ActaInnovations.42.3

Yousef, B., Obaideen, K., AlMallahi, M., Alajmi, N., Radwan, A., Al-Shihabi, S., & Elgendi, M., “On the contribution of concentrated solar power (CSP) to the sustainable development goals (SDGs): A bibliometric analysis”, Energy Strategy Reviews, 52, pp. 101356, 2024. DOI: https://doi.org/10.1016/j.esr.2024.101356

Belgasim, B., Aldali, Y., Abdunnabi, M., Hashem, G., & Hossin, K., “The potential of concentrating solar power (CSP) for electricity generation in Libya”, Renewable and sustainable energy reviews, 90, pp. 1-15, 2018. DOI: https://doi.org/10.1016/j.rser.2018.03.045

Elia, A., Kamidelivand, M., Rogan, F., & Gallachóir, B., “Impacts of innovation on renewable energy technology cost reductions”, Renewable and sustainable energy reviews, 138, pp. 110488, 2021. DOI: https://doi.org/10.1016/j.rser.2020.110488

Lurwan, S., Mariun, N., Hizam, H., Radzi, M., & Zakaria, A., “Predicting power output of photovoltaic systems with solar radiation model”, In 2014 IEEE International Conference on Power and Energy (PECon), Kuching, Malaysia, pp. 304-308, 2014. doi: 10.1109/PECON.2014.7062461. DOI: https://doi.org/10.1109/PECON.2014.7062461

Hazza, M., Attia, H., & Hossin, K., “Fuzzy Logic approach based predicting power output of P.V. panel in desert environment”, 2023 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, UAE, pp. 1-4, 2023. doi: 10.1109/ASET56582.2023.10180507. DOI: https://doi.org/10.1109/ASET56582.2023.10180507

Perveen, G., Rizwan, M., Goel, N., & Anand, P., “Artificial neural network models for global solar energy and photovoltaic power forecasting over India”, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 15(2), pp. 1-26, 2020. DOI: https://doi.org/10.1080/15567036.2020.1826017

Barrera, J., Reina, A., Maté, A., & Trujillo, J., “Solar energy prediction model based on artificial neural networks and open data”, Sustainability, 12(17), pp. 6915, 2020. DOI: https://doi.org/10.3390/su12176915

Pang, Z., Niu, F., & O'Neill, Z., “Solar radiation prediction using recurrent neural network and artificial neural network: A case study with comparisons”, Renewable Energy, 156, pp. 279-289, 2020. DOI: https://doi.org/10.1016/j.renene.2020.04.042

Elsheikh, A., Sharshir, S., Abd Elaziz, M., Kabeel, A., Guilan, W., & Haiou, Z., “Modeling of solar energy systems using artificial neural network: A comprehensive review”, Solar Energy, 180, pp. 622-639, 2019. DOI: https://doi.org/10.1016/j.solener.2019.01.037

Yaïci, W., Entchev, E., Longo, M., Brenna, M., & Foiadelli, F., “Artificial neural network modelling for performance prediction of solar energy system”, In 2015 International Conference on Renewable Energy Research and Applications (ICRERA), Palermo, Italy, pp. 1147-1151, 2015. doi: 10.1109/ICRERA.2015.7418589. DOI: https://doi.org/10.1109/ICRERA.2015.7418589

Ramedani, Z., Omid, M., & Keyhani, A., “Modeling solar energy potential in a Tehran province using artificial neural networks”, International Journal of Green Energy, 10(4), pp. 427-441, 2013. DOI: https://doi.org/10.1080/15435075.2011.647172

Thulasiram, R., Murugapoopathi, S., Surendarnath, S., Nagappan, B., & Devarajan, Y., “RSM-Based Empirical Modeling and Thermodynamic Analysis of a Solar Flat Plate Collector with Diverse Nanofluids”, Process Integration and Optimization for Sustainability, pp. 1-14, 2024. DOI: https://doi.org/10.1007/s41660-024-00400-y

King, E., Otieno, S., & Standridge, C., “Modeling Solar Energy Data using Periodic Regression”, International Journal of Renewable Energy Research (IJRER), 10(3), pp. 1246-1254, 2020.

Patrizi, Z., Karami, H., Golpour, I., Kaveh, M., Szymanek, M., Blanco-Marigorta, A. M., ... & Darvishi, Y., “Modeling and optimization of energy and exergy parameters of a hybrid-solar dryer for basil leaf drying using RSM”, Sustainability, 14(14), 8839, 2022. DOI: https://doi.org/10.3390/su14148839

Haitham, O., Jamel, M., & Ihab, S., “Statistical analysis and mathematical modeling of modified single slope solar still”, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 43(21), pp. 2788-2806, 2021. DOI: https://doi.org/10.1080/15567036.2020.1844352

Hossain, M., Rahim, N., Aman, M., & Selvaraj, J., “Application of ANOVA method to study solar energy for hydrogen production”, International Journal of Hydrogen Energy, 44(29), pp. 14571-14579, 2019. DOI: https://doi.org/10.1016/j.ijhydene.2019.04.028

Samy, M., Almamlook, R., Elkhouly, H., & Barakat, S., “Decision-making and optimal design of green energy system based on statistical methods and artificial neural network approaches”, Sustainable Cities and Society, 84, pp. 104015, 2022. DOI: https://doi.org/10.1016/j.scs.2022.104015

Al-Shamisi, M., Assi, A., & Hejase, H., “Estimation of global solar radiation using artificial neural networks in Abu Dhabi city, United Arab Emirates”, Journal of solar energy engineering, 136(2), pp. 024502, 2014. DOI: https://doi.org/10.1115/1.4025826

Rejeb, O., Ghenai, C., Jomaa, M., & Bettayeb, M., “Statistical study of a solar nanofluid photovoltaic thermal collector performance using response surface methodology”, Case Studies in Thermal Engineering, 21, pp. 100721, 2020. DOI: https://doi.org/10.1016/j.csite.2020.100721

Tahir, M., Tzes, A., & Yousaf, M., “Enhancing PV power forecasting with deep learning and optimizing solar PV project performance with economic viability: A multi-case analysis of 10 MW Masdar project in UAE”, Energy Conversion and Management, pp. 311, 118549, 2024 DOI: https://doi.org/10.1016/j.enconman.2024.118549

Hachicha, A., Al-Sawafta, I., & Said, Z., “Impact of dust on the performance of solar photovoltaic (PV) systems under United Arab Emirates weather conditions”, Renewable Energy, 141, pp. 287-297, 2019. DOI: https://doi.org/10.1016/j.renene.2019.04.004

Salimi, M., Hosseinpour, M., & Borhani, T., “Analysis of solar energy development strategies for a successful energy transition in the UAE”, Processes, 10(7), pp. 1338, 2022. DOI: https://doi.org/10.3390/pr10071338

Hossin, K., & Attia, H., “Water-Cooling-Based Approach for P.V. System Performance Enhancement towards UAE Future Energy Efficiency Policies”, International Journal of Energy Economics and Policy, 14(1), pp. 433-440, 2024. DOI: https://doi.org/10.32479/ijeep.15237

Attia, H., Hossin, K., & Al Hazza, M., “Experimental investigation of photovoltaic systems for performance improvement using water cooling”, Clean Energy, 7(4), pp. 721-733, 2023. DOI: https://doi.org/10.1093/ce/zkad034

Westech-Solar Energy, “Solar Module 100Wp, 160Wp, 200Wp Mono CL”, [Online]. Available: https://westech-pv.com/WT-Solarmodul-Mono-100Wp-160Wp-200Wp-20V_1 [Accessed: May 15, 2024].

Montgomery, D. C., “Introduction to statistical quality control”. John Wiley & Sons, 2019.

Das, B., Jha, D., Sahu, S., Yadav, A., Raman, R., & Kartikeyan, M., “Analysis of variance (ANOVA) and design of experiments”, In Concept Building in Fisheries Data Analysis, Singapore: Springer Nature, pp. 119-136, 2022. DOI: https://doi.org/10.1007/978-981-19-4411-6_7

Ya’u, M., Gele, M., Ali, Y., & Alhaji, A., “Global solar radiation models: A review”, Journal of photonic materials and technology, 4(1), pp. 26-32, 2018. DOI: https://doi.org/10.11648/j.jmpt.20180401.15

Downloads

Published

2024-06-27

How to Cite

Al Hazza, M., Attia, H., & Hossin, K. (2024). Solar Photovoltaic Power Prediction Using Statistical Approach-Based Analysis of Variance. Solar Energy and Sustainable Development Journal, 13(2), 45–61. https://doi.org/10.51646/jsesd.v13i2.181

Issue

Section

Articles