Enhancing the Optoelectronic Properties of TiPbO3 perovskite through Lanthanum Doping
An Insightful Investigation
DOI:
https://doi.org/10.51646/jsesd.v14iSI_MSMS2E.397Keywords:
Perovskite TiPbO3, Electronic propriety, Optical propriety, DOS, PDOS, DRX.Abstract
This article presents a theoretical investigation into the effects of lanthanum doping on the optoelectronic properties of TiPbO3, conducted through first-principles calculations. TiPbO3, a widely used ferroelectric material, is pivotal in various optoelectronic applications due to its high dielectric constant and good optical properties. However, enhancing its properties for tailored applications is necessary to keep pace with the advancing technological frontiers. We analyze the impact of La-doping on the bandgap, absorption coefficient, density of states, and dielectric function, using comprehensive computational simulations. The results indicate significant modifications in the electronic structure and optical behavior of TiPbO3 upon doping, which could result in improved performance in optoelectronic devices. The methodology employed includes density functional theory calculations with CASTEP, utilizing an energy cutoff of 500 eV. The obtained results suggest that La-doped TiPbO3 can be optimized for a variety of optoelectronic applications, offering a pathway towards the development of advanced functional materials.
Downloads
Metrics
References
Y. Ma, H. Chen, F. Pan, Z. Chen, Z. Ma, X. Lin, F. Zheng, X. Ma, Electronic structures and optical properties of Fe/Co–doped cubic BaTiO3 ceramics, Ceram Int 45 (2019) 6303–6311. https://doi.org/10.1016/j.ceramint.2018.12.113.
V.B. Parmar, D. Raval, S.K. Gupta, P.N. Gajjar, A.M. Vora, BaTiO3 perovskite for optoelectronics application: A DFT study, Mater Today Proc (2023). https://doi.org/10.1016/j.matpr.2023.01.410. DOI: https://doi.org/10.1016/j.matpr.2023.01.410
H. Halimi, M. Elgarouaz, L. Lazrak, S. El Daoudi, High-order sliding mode control with hyperbolic evaluation function for improving performances of a squirrel-cage induction motor fed by a two-level inverter, Int J Dyn Control 12 (2024) 2929–2943. https://doi.org/10.1007/s40435-023-01378-0. DOI: https://doi.org/10.1007/s40435-023-01378-0
S. De Lazaro, E. Longo, J.R. Sambrano, A. Beltrán, Structural and electronic properties of PbTiO3 slabs: A DFT periodic study, Surf Sci 552 (2004) 149–159. https://doi.org/10.1016/j.susc.2004.01.041. DOI: https://doi.org/10.1016/j.susc.2004.01.041
N. Hasan, A. Kabir, Theoretical Study of the Structural, Electronic, Mechanical, and Optical of Transition Metal (Mn, Co, and Ni) Doped FrGeI3 Perovskites, n.d.
M. Rizwan, Hajra, I. Zeba, M. Shakil, S.S.A. Gillani, Z. Usman, Electronic, structural and optical properties of BaTiO3 doped with lanthanum (La): Insight from DFT calculation, Optik (Stuttg) 211 (2020). https://doi.org/10.1016/j.ijleo.2020.164611.
A.A.Z. Munio, A.Q. Liboon Jr., Y.J. Lagud, U.B. Patayon, A.A.G. Pido, M. Karouchi, L.C.C. Ambolode II, A Density Functional Theory Study on the Interaction of Cellulose Biopolymer and Atomic Arsenic, Solid State Phenomena 352 (2023) 39–46. https://doi.org/10.4028/p-pPEfx7. DOI: https://doi.org/10.4028/p-pPEfx7
A.P. Aslla-Quispe, R.H. Miwa, J.D.S. Guerra, Role of the rare-earth doping on the multiferroic properties of BaTiO3: First-principles calculation, Physica B Condens Matter 615 (2021). https://doi.org/10.1016/j.physb.2021.413107.
M. Rizwan, Hajra, I. Zeba, M. Shakil, S.S.A. Gillani, Z. Usman, Electronic, structural and optical properties of BaTiO3 doped with lanthanum (La): Insight from DFT calculation, Optik (Stuttg) 211 (2020). https://doi.org/10.1016/j.ijleo.2020.164611. DOI: https://doi.org/10.1016/j.ijleo.2020.164611
W. Li, J. Lee, A.A. Demkov, Extrinsic magnetoelectric effect at the BaTiO3/Ni interface, J Appl Phys 131 (2022). https://doi.org/10.1063/5.0079880. DOI: https://doi.org/10.1063/5.0079880
S.G. Lim, S. Kriventsov, T.N. Jackson, J.H. Haeni, D.G. Schlom, A.M. Balbashov, R. Uecker, P. Reiche, J.L. Freeouf, G. Lucovsky, Dielectric functions and optical bandgaps of high- K dielectrics for metal-oxide-semiconductor field-effect transistors by far ultraviolet spectroscopic ellipsometry, J Appl Phys 91 (2002) 4500–4505. https://doi.org/10.1063/1.1456246. DOI: https://doi.org/10.1063/1.1456246
Z.K. Tang, Z.F. Xu, D.Y. Zhang, S.X. Hu, W.M. Lau, L.M. Liu, Enhanced optical absorption via cation doping hybrid lead iodine perovskites, Sci Rep 7 (2017). https://doi.org/10.1038/s41598-017-08215-3. DOI: https://doi.org/10.1038/s41598-017-08215-3
M. Karouchi, A. Ejjabli, O. Bajjou, J. Guerroum, M. Al-Hattab, M.A. Basyooni-M. Kabatas, K. Rahmani, Y. Lachtioui, Investigating the structural, electronic, and optical properties of the novel double perovskite K2AgBiI6 using DFT, Front Mater 11 (2024). https://doi.org/10.3389/fmats.2024.1448400. DOI: https://doi.org/10.3389/fmats.2024.1448400
C.J. Xiao, C.Q. Jin, X.H. Wang, Crystal structure of dense nanocrystalline BaTiO3 ceramics, Mater Chem Phys 111 (2008) 209–212. https://doi.org/10.1016/j.matchemphys.2008.01.020. DOI: https://doi.org/10.1016/j.matchemphys.2008.01.020
Data retrieved from the Materials Project for TiPbO3 , (n.d.).
A.P. Aslla-Quispe, R.H. Miwa, J.D.S. Guerra, Role of the rare-earth doping on the multiferroic properties of BaTiO3: First-principles calculation, Physica B Condens Matter 615 (2021). https://doi.org/10.1016/j.physb.2021.413107. DOI: https://doi.org/10.1016/j.physb.2021.413107
A. Ejjabli, M. Karouchi, H. Errahoui, O. Bajjou, J. Guerroum, A. Elhajji, K. Rahmani, Y. Lachtioui, Electronic and Optical Properties of Double Perovskite Oxide LaFeWO 6 : A Theoretical Understanding from DFT Calculations, E3S Web of Conferences 582 (2024) 02001. https://doi.org/10.1051/e3sconf/202458202001. DOI: https://doi.org/10.1051/e3sconf/202458202001
Y. Ma, H. Chen, F. Pan, Z. Chen, Z. Ma, X. Lin, F. Zheng, X. Ma, Electronic structures and optical properties of Fe/Co–doped cubic BaTiO3 ceramics, Ceram Int 45 (2019) 6303–6311. https://doi.org/10.1016/j.ceramint.2018.12.113. DOI: https://doi.org/10.1016/j.ceramint.2018.12.113
C.E. Nebel, Surface-Conducting Diamond, Science (1979) 318 (2007) 1391–1392. https://doi.org/10.1126/science.1151314. DOI: https://doi.org/10.1126/science.1151314
L. Bendaoudi, T. Ouahrani, A. Daouli, B. Rerbal, R.M. Boufatah, A. Morales-García, R. Franco, Z. Bedrane, M. Badawi, D. Errandonea, Electronic and electrocatalytic properties of PbTiO3: unveiling the effect of strain and oxygen vacancy, Dalton Transactions 52 (2023) 11965–11980. https://doi.org/10.1039/d3dt01478a. DOI: https://doi.org/10.1039/D3DT01478A
P.O. Berge, J.R. Shipman, Power supply for the measurement of the charge-to-mass ratio of the electron, Am J Phys 45 (1977) 495–496. https://doi.org/10.1119/1.11013. DOI: https://doi.org/10.1119/1.11013
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys Rev B 54 (1996) 11169–11186. https://doi.org/10.1103/PhysRevB.54.11169. DOI: https://doi.org/10.1103/PhysRevB.54.11169
M. Karouchi et al., “Increasing Electro-Optical Properties of Perovskite FAPbI3 Under the Effect of Doping by Sn,” 2023 3rd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), (n.d.). DOI: https://doi.org/10.1109/IRASET57153.2023.10152963
A. Ejjabli, M. Karouchi, M. Al-Hattab, O. Bajjou, K. Rahmani, Y. Lachtioui, Investigation of lead-free halide K2AgSbBr6 double Perovskite’s structural, electronic, and optical properties using DFT functionals, Chemical Physics Impact 9 (2024). https://doi.org/10.1016/j.chphi.2024.100656. DOI: https://doi.org/10.1016/j.chphi.2024.100656
P.Y. Yu, M. Cardona, Fundamentals of Semiconductors, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. https://doi.org/10.1007/978-3-642-00710-1. DOI: https://doi.org/10.1007/978-3-642-00710-1
S.A. Dar, R. Sharma, V. Srivastava, U.K. Sakalle, Investigation on the electronic structure, optical, elastic, mechanical, thermodynamic and thermoelectric properties of wide band gap semiconductor double perovskite Ba 2 InTaO 6, RSC Adv 9 (2019) 9522–9532. https://doi.org/10.1039/C9RA00313D. DOI: https://doi.org/10.1039/C9RA00313D
W. Li, C.M. Landis, A.A. Demkov, Domain morphology and electro-optic effect in Si-integrated epitaxial BaTi O3 films, Phys Rev Mater 6 (2022). https://doi.org/10.1103/PhysRevMaterials.6.095203. DOI: https://doi.org/10.1103/PhysRevMaterials.6.095203
A. Sohail, S.A. Aldaghfag, M. KButt, M. Zahid, J. Iqbal, M. Ishfaq, A. Dahshan, Half metallic ferromagnetism and optoelectronic characteristics of V doped BaTiO 3 compound: a DFT study, n.d.
R.F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, Springer US, Boston, MA, 2011. https://doi.org/10.1007/978-1-4419-9583-4. DOI: https://doi.org/10.1007/978-1-4419-9583-4
H. Errahoui, M. Karouchi, A. Ejjabli, A. El haji, A. Laassouli, O. Ait El Alia, S. Chaji, Y. Lachtioui, O. Bajjou, Impact of Calcium Doping on the Electronic and Optical Characteristics of Strontium Hydride (SrH2): A DFT Study, Atoms 12 (2024) 55. https://doi.org/10.3390/atoms12110055. DOI: https://doi.org/10.3390/atoms12110055
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Solar Energy and Sustainable Development Journal
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.