Molecular Dynamics Analysis of Atomic Diffusion and Crystallization Behavior of Pure Silver in the Vitreous State under Varied External Pressures
DOI:
https://doi.org/10.51646/jsesd.v14iSI_MSMS2E.406Keywords:
Molecular dynamics, Silver metallic glass, Atomic diffusion, Crystallization, External pressure, Vitreous state.Abstract
This study investigates the atomic diffusion and crystallization behavior of pure silver in the vitreous state under varying external pressures, using molecular dynamics simulations. The primary aim is to assess the effects of pressure on the structural dynamics and stability of silver at the atomic level. The results indicate that increasing pressure leads to a decrease in diffusion coefficients, signifying reduced atomic mobility due to denser atomic packing. Structural analysis through Voronoi tessellation reveals a shift from distorted, mixed-like clusters toward a predominance of crystal-like clusters, suggesting enhanced crystallinity with higher pressures. This is further supported by an increased frequency of 14-coordinated clusters in the coordination number distribution. These findings highlight the impact of pressure on the structural ordering of metallic glass and offer insights into its behavior at different length scales.
Downloads
Metrics
References
T. El Hafi, S. Assouli, O. Bajjou, H. Jabraoui, A. Kotri, M. Mazroui, Y. Lachtioui, Microstructural and mechanical behaviors of Nickel pure metallic glass investigated by molecular dynamics simulations. Proc. 3rd Int. Conf. Innov. Res. Appl. Sci. Eng. Technol. (IRASET), 1 (2023). DOI: 10.1109/iraset57153.2023.10153036 DOI: https://doi.org/10.1109/IRASET57153.2023.10153036
A. El Kharraz, T. El Hafi, S. Assouli, O. Bajjou and Y. Lachtioui, Structural behavior of copper monatomic metallic glass under various cooling conditions investigated by molecular dynamics simulations. E3S Web of Conf. 582, 02004 (2024). DOI: 10.1051/e3sconf/202458202004 DOI: https://doi.org/10.1051/e3sconf/202458202004
Y. Lachtioui, M. Kbirou, K. Saadouni, M. Sajieddine, M. Mazroui, Glass formation and structure evolution in the rapidly solidified monatomic metallic liquid Pt under high pressure. Chem. Phys. 538, 110805 (2020). DOI: 10.1016/j.chemphys.2020.110805 DOI: https://doi.org/10.1016/j.chemphys.2020.110805
W. L. Johnson. Bulk glass-forming metallic alloys: Science and technology. Springer Link 24, 42 (1999). DOI: 10.1557/S0883769400053252 DOI: https://doi.org/10.1557/S0883769400053252
A. Inoue, A. Takeuchi, Recent progress in bulk glassy, nanoquasicrystalline and nanocrystalline alloys. Mater. Sci. Eng. A. 528, 1 (2011). DOI: 10.1016/j.msea.2003.10.159 DOI: https://doi.org/10.1016/j.msea.2003.10.159
M. W. Chen. Mechanical behavior of metallic glasses: Microscopic understanding of strength and ductility. Annu. Rev. Mater. Res. 38, 445 (2008). DOI: 10.1146/annurev.matsci.38.060407.130226 DOI: https://doi.org/10.1146/annurev.matsci.38.060407.130226
T. El Hafi, O. Bajjou, H. Jabraoui, J. Louafi, M. Mazroui, Y. Lachtioui, Effects of cooling rate on the glass formation process and the microstructural evolution of Silver mono-component metallic glass. Chem. Phys. 569, 111873 (2023). DOI: 10.1016/j.chemphys.2023.111873 DOI: https://doi.org/10.1016/j.chemphys.2023.111873
T. El Hafi, H. Jabraoui, O. Bajjou, M. Mazroui, Y. Lachtioui, Exploring structural and dynamic characteristics of supercooled liquid silver under varying hydrostatic pressures: A molecular dynamics investigation. Solid State Commun. 392, 115664 (2024). DOI: 10.1016/j.ssc.2024.115664 DOI: https://doi.org/10.1016/j.ssc.2024.115664
S. Assouli, T. El Hafi, A. El Kharraz, H. Jabraoui, O. Bajjou, Y. Lachtioui, Influence of chromium addition and cooling rate on kinetic and microstructural evolution in FexCr100-x metallic glasses. E3S Web of Conf. 469, 00080 (2023). DOI: 10.1051/e3sconf/202346900080 DOI: https://doi.org/10.1051/e3sconf/202346900080
J. Ding, D. Ji, Y. Yue, M. M. Smedskjaer, Amorphous Materials for Lithium-Ion and Post-Lithium-Ion Batteries. Small 20, 2304270 (2024). DOI: 10.1002/smll.202304270 DOI: https://doi.org/10.1002/smll.202304270
V . Hasannaeimi, S. Mukherjee, Noble-Metal based Metallic Glasses as Highly Catalytic Materials for Hydrogen Oxidation Reaction in Fuel Cells. Sci Rep. 9, 12136 (2019). DOI: 10.1038/s41598-019-48582-7 DOI: https://doi.org/10.1038/s41598-019-48582-7
Y.C Hu, P.F Guan, Q. Wang, Y. Yang, H.Y Bai, W.H Wang; Pressure effects on structure and dynamics of metallic glass-forming liquid. J. Chem. Phys. 146, 024507 (2017). DOI: 10.1063/1.4973919 DOI: https://doi.org/10.1063/1.4973919
A. Alshahrie, B. Arkook, W. Al-Ghamdi, S. Eldera, T. Alzaidi, H. Bamashmus, E. Shalaan, Electrochemical Performance and Hydrogen Storage of Ni–Pd–P–B Glassy Alloy. Nanomater. 12, 4310 (2022). DOI: 10.3390/nano12234310 DOI: https://doi.org/10.3390/nano12234310
S. Plimpton, Fast Parallel Algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). DOI: 10.1006/jcph.1995.1039 DOI: https://doi.org/10.1006/jcph.1995.1039
H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S. Crozier, P. J. in 't Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, S. J. Plimpton. A flexible simulation tool for particle-based materials modeling at the atomic, meso and continuum scales, Comp. Phys. Comm. 71, 10817 (2022). DOI: 10.1016/j.cpc.2021.108171 DOI: https://doi.org/10.1016/j.cpc.2021.108171
X.W. Zhou, R.A. Johnson, H.N.G. Wadley. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys. Rev. B. 69, 144113 (2004). DOI: 10.1103/PhysRevB.69.144113 DOI: https://doi.org/10.1103/PhysRevB.69.144113
G.J. Martyna, D.J. Tobias, M.L. Klein, Constant pressure molecular dynamics algorithms. J. Chem. Phys. 101, 4177 (1994). DOI: 10.1063/1.467468 DOI: https://doi.org/10.1063/1.467468
H.C. Andersen. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 72, 2384–2393 (1980). DOI: 10.1063/1.439486 DOI: https://doi.org/10.1063/1.439486
S. P. Das. Mode-coupling theory and the glass transition in supercooled liquids. Rev. Mod. Phys. 76, 785 (2004). DOI: 10.1103/RevModPhys.76.785 DOI: https://doi.org/10.1103/RevModPhys.76.785
L. Berthier and G. Biroli. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587 (2011). DOI: 10.1103/RevModPhys.83.587 DOI: https://doi.org/10.1103/RevModPhys.83.587
R.S. Liu, D.W. Qi, S.F. Wang. Subpeaks of structure factors for rapidly quenched metals. Phys. Rev. B 45, 451 (1992). DOI: 10.1103/PhysRevB.45.451 DOI: https://doi.org/10.1103/PhysRevB.45.451
Y.Q. Cheng, E. Ma. Atomic-level structure and structure–property relationship in metallic glasses. Prog. Mater. Sci. 56, 379 (2011). DOI: 10.1016/j.pmatsci.2010.12.002 DOI: https://doi.org/10.1016/j.pmatsci.2010.12.002
J. Finney, Random packings and the structure of simple liquids. I. The geometry of random close packing. Proc. R. Soc. Lond. A 319, 479–493 (1970). DOI: 10.1098/rspa.1970.0189 DOI: https://doi.org/10.1098/rspa.1970.0189
S. Assouli, H. Jabraoui, T. El Hafi, O. Bajjou, A. Kotri, M. Mazroui, Y. Lachtioui, Exploring the impact of cooling rates and pressure on fragility and structural transformations in iron monatomic metallic glasses: Insights from molecular dynamics simulations. J. Non-Crystal. Solids 621, 122623 (2023). DOI: 10.1016/j.jnoncrysol.2023.122623 DOI: https://doi.org/10.1016/j.jnoncrysol.2023.122623
A. EL Kharraz, T. El Hafi, S. Assouli, A. Samiri, A. Kotri, O. Bajjou, Y. Lachtioui, Mechanical and structural properties of monatomic zirconium metallic glass under pressure variations and annealing processes: A molecular dynamics study. Solid State Commun. 392, 115644 (2024). DOI: 10.1016/j.ssc.2024.115644 DOI: https://doi.org/10.1016/j.ssc.2024.115644
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Solar Energy and Sustainable Development Journal
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.