Phosphorus Doping Effects on the Optoelectronic Properties of K₂AgAsBr₆ Double Perovskites for Photovoltaic Applications

Authors

  • Abdelmounaim Laassouli Laboratory of Engineering in Chemistry and Physics of Matter (LICPM), Faculty of Sciences and Technics, Sultan Moulay Slimane University, BP 523, 23000 Beni Mellal, Morocco.
  • Lhouceine Moulaoui Research Laboratory in Physics and Sciences for Engineers (LRPSI), Poly-disciplinary Faculty, Sultan Moulay Slimane University, BP 592, 23000 Beni Mellal, Morocco.
  • Abdelhafid Najim Research Laboratory in Physics and Sciences for Engineers (LRPSI), Poly-disciplinary Faculty, Sultan Moulay Slimane University, BP 592, 23000 Beni Mellal, Morocco.
  • Hamza Errahoui Research Laboratory in Physics and Sciences for Engineers (LRPSI), Poly-disciplinary Faculty, Sultan Moulay Slimane University, BP 592, 23000 Beni Mellal, Morocco.
  • Khalid Rahmani PSES, ERC, Ecole Normale Supérieure, Mohammed V University in Rabat P. O. Box: BP5118 Takkadoum Rabat-10000, Morocco.
  • Youssef Lachtioui PSES, ERC, Ecole Normale Supérieure, Mohammed V University in Rabat P. O. Box: BP5118 Takkadoum Rabat-10000, Morocco.
  • Omar Bajjou UNESCO UNISA Africa Chair in Nanosciences & Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa.

DOI:

https://doi.org/10.51646/jsesd.v14iSI_MSMS2E.407

Keywords:

Double perovskites, phosphorus doping, photoelectric devices, DFT calculations, band gap.

Abstract

This work explores the modifications of optoelectronic properties in K₂AgAsBr₆ double perovskites induced by phosphorus doping. First-principles calculations using the CASTEP code with the PBE functional were carried out based on density functional theory (DFT). Our research investigates the electronic structure and optical behavior of the cubic Fm-3m phase of K₂AgAsBr₆, K₂AgAs₀.₈P₀.₂Br₆, and K₂AgAs₀.₆P₀.₄Br₆ to elucidate the impact of progressive phosphorus (P) substitution. P was chosen for its potential to modify the electronic structure due to its smaller atomic radius and different valence orbital energies compared to As. Our results reveal a systematic narrowing of the band gap with increasing P content, from 0.749 eV for the undoped compound to 0.587 eV for K₂AgAs₀.₈P₀.₂Br₆ and 0.424 eV for K₂AgAs₀.₆P₀.₄Br₆. This trend is attributed to the upward shift of the valence band maximum due to the higher energy of P 3p orbitals compared to As 4p orbitals. Analysis of the density of states confirms increased hybridization between P-p and As-p states at the valence band edge. Optical properties, including absorption coefficient, dielectric function, refractive index, and extinction coefficient, demonstrate a consistent red-shift and broadening of spectral features with P doping. Notably, P-substituted compounds exhibit enhanced absorption in the visible light region, with up to a 20% increase in the absorption coefficient at 550 nm for K₂AgAs₀.₆P₀.₄Br₆ compared to the undoped compound. This study reveals that elemental substitution offers a viable route to tailor optical and electronic properties of double perovskites, paving the way for the design of novel materials for next-generation photovoltaic and photoelectric devices.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells,” J Am Chem Soc, vol. 131, no. 17, pp. 6050–6051, May 2009, doi: 10.1021/ja809598r. DOI: https://doi.org/10.1021/ja809598r

J. Barichello, G. Shankar, P. Mariani, A. Di Carlo, and F. Matteocci, “Unveiling the potential of Cs2AgBiBr6 perovskites for next-generation see-through photovoltaics,” Mater Today Energy, vol. 46, p. 101725, Dec. 2024, doi: 10.1016/j.mtener.2024.101725. DOI: https://doi.org/10.1016/j.mtener.2024.101725

L. Moulaoui et al., “Numerical Simulation of FAPbI3 perovskite based solar cells with graphene oxide as hole transport layer using SCAPS-1D,” in 2023 3rd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), IEEE, May 2023, pp. 1–7. doi: 10.1109/IRASET57153.2023.10153032. DOI: https://doi.org/10.1109/IRASET57153.2023.10153032

N. Al Aqtash et al., “First-principles calculations to investigate structural, mechanical, electronic, optical, and thermoelectric properties of novel cubic double Perovskites X2AgBiBr6 (X=Li, Na, K, Rb, Cs) for optoelectronic devices,” Mol Simul, vol. 49, no. 16, pp. 1561–1572, Nov. 2023, doi: 10.1080/08927022.2023.2251604. DOI: https://doi.org/10.1080/08927022.2023.2251604

H. Liu, J. Feng, and L. Dong, “Quick screening stable double perovskite oxides for photovoltaic applications by machine learning,” Ceram Int, vol. 48, no. 13, pp. 18074–18082, Jul. 2022, doi: 10.1016/j.ceramint.2022.02.258. DOI: https://doi.org/10.1016/j.ceramint.2022.02.258

A. Laassouli, O. Bajjou, Y. Lachtioui, A. Najim, L. Moulaoui, and K. Rahmani, “DFT investigation on the electronic and optical properties of Br-doped CH3NH 3 SnI3 perovskite,” in 2023 3rd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), IEEE, May 2023, pp. 1–6. doi: 10.1109/IRASET57153.2023.10153066. DOI: https://doi.org/10.1109/IRASET57153.2023.10153066

A. Ejjabli, M. Karouchi, M. Al-Hattab, O. Bajjou, K. Rahmani, and Y. Lachtioui, “Investigation of Lead-Free Halide K2AgSbBr6 Double Perovskite’s Structural, Electronic, and Optical Properties Using DFT Functionals,” Chemical Physics Impact, p. 100656, Jun. 2024, doi: 10.1016/j.chphi.2024.100656. DOI: https://doi.org/10.1016/j.chphi.2024.100656

H. Errahoui et al., “Impact of Calcium Doping on the Electronic and Optical Characteristics of Strontium Hydride (SrH2): A DFT Study,” Atoms, vol. 12, no. 11, p. 55, Oct. 2024, doi: 10.3390/atoms12110055. DOI: https://doi.org/10.3390/atoms12110055

A. Kumar, S. K. Tripathi, Mohd. Shkir, A. Alqahtani, and S. AlFaify, “Prospective and challenges for lead-free pure inorganic perovskite semiconductor materials in photovoltaic application: A comprehensive review,” Applied Surface Science Advances, vol. 18, p. 100495, Dec. 2023, doi: 10.1016/j.apsadv.2023.100495. DOI: https://doi.org/10.1016/j.apsadv.2023.100495

M. Karouchi et al., “Increasing Electro-Optical Properties of Perovskite FAPbI 3 Under the Effect of Doping by Sn,” in 2023 3rd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), IEEE, May 2023, pp. 1–7. doi: 10.1109/IRASET57153.2023.10152963. DOI: https://doi.org/10.1109/IRASET57153.2023.10152963

A. Najim, O. Bajjou, A. Bakour, and K. Rahmani, “Electronic and optical properties of SWCNTs and spin-orbit coupling effect on their electronic structures: First-principle computing,” J Electron Spectros Relat Phenomena, vol. 265, p. 147321, May 2023, doi: 10.1016/j.elspec.2023.147321. DOI: https://doi.org/10.1016/j.elspec.2023.147321

L. Moulaoui, O. Bajjou, A. Najim, and K. Rahmani, “The study of electronic and optical properties of perovskites CH 3 NH 3 PbCl 3 and CH 3 NH 3 PbBr 3 using first-principle,” E3S Web of Conferences, vol. 336, p. 00015, Jan. 2022, doi: 10.1051/e3sconf/202233600015. DOI: https://doi.org/10.1051/e3sconf/202233600015

L. Moulaoui et al., “Theoretical investigations on the electronic and optical properties of Na-doped CH 3 NH 3 PbI 3 perovskite,” E3S Web of Conferences, vol. 469, p. 00086, Dec. 2023, doi: 10.1051/e3sconf/202346900086. DOI: https://doi.org/10.1051/e3sconf/202346900086

A. Najim, O. Bajjou, A. Bakour, M. Boulghallat, and K. Rahmani, “A fundamental study on the electronic and optical properties of graphene oxide under an external electric field,” Modern Physics Letters B, vol. 38, no. 10, Apr. 2024, doi: 10.1142/S0217984924500325. DOI: https://doi.org/10.1142/S0217984924500325

U. Saha, K. Debnath, and S. Satapathi, “Screening of potential double perovskite materials for photovoltaic applications using agglomerative hierarchical clustering,” Nov. 2021.

A. Najim, O. Bajjou, M. Boulghallat, K. Rahmani, and L. Moulaoui, “DFT study on electronic and optical properties of graphene under an external electric field,” E3S Web of Conferences, vol. 336, p. 00006, Jan. 2022, doi: 10.1051/e3sconf/202233600006. DOI: https://doi.org/10.1051/e3sconf/202233600006

Y. Zhang et al., “Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities,” Phys Rep, vol. 795, pp. 1–51, Mar. 2019, doi: 10.1016/j.physrep.2019.01.005. DOI: https://doi.org/10.1016/j.physrep.2019.01.005

X. Zhou, J. Jankowska, H. Dong, and O. V. Prezhdo, “Recent theoretical progress in the development of perovskite photovoltaic materials,” Journal of Energy Chemistry, vol. 27, no. 3, pp. 637–649, May 2018, doi: 10.1016/j.jechem.2017.10.010. DOI: https://doi.org/10.1016/j.jechem.2017.10.010

A. Najim et al., “Effects of lithium intercalation on the electronic and optical properties of graphene: Density Functional Theory (DFT) computing,” in 2023 3rd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), IEEE, May 2023, pp. 1–5. doi: 10.1109/IRASET57153.2023.10153044. DOI: https://doi.org/10.1109/IRASET57153.2023.10153044

Md. A. Rahman et al., “First principles study on the structural, elastic, electronic, optical and thermal properties of lead-free perovskites CsCaX3(X=F, Cl, Br),” Physica B Condens Matter, vol. 669, p. 415260, Nov. 2023, doi: 10.1016/j.physb.2023.415260. DOI: https://doi.org/10.1016/j.physb.2023.415260

M. R. Filip and F. Giustino, “Computational Screening of Homovalent Lead Substitution in Organic–Inorganic Halide Perovskites,” The Journal of Physical Chemistry C, vol. 120, no. 1, pp. 166–173, Jan. 2016, doi: 10.1021/acs.jpcc.5b11845. DOI: https://doi.org/10.1021/acs.jpcc.5b11845

C. N. Savory, A. Walsh, and D. O. Scanlon, “Can Pb-Free Halide Double Perovskites Support High-Efficiency Solar Cells?,” ACS Energy Lett, vol. 1, no. 5, pp. 949–955, Nov. 2016, doi: 10.1021/acsenergylett.6b00471. DOI: https://doi.org/10.1021/acsenergylett.6b00471

B. Yang et al., “Lead-Free Direct Band Gap Double-Perovskite Nanocrystals with Bright Dual-Color Emission,” J Am Chem Soc, vol. 140, no. 49, pp. 17001–17006, Dec. 2018, doi: 10.1021/jacs.8b07424. DOI: https://doi.org/10.1021/jacs.8b07424

G. Nazir, A. Ahmad, M. F. Khan, and S. Tariq, “Putting DFT to the trial: First principles pressure dependent analysis on optical properties of cubic perovskite SrZrO3,” Computational Condensed Matter, vol. 4, pp. 32–39, Sep. 2015, doi: 10.1016/j.cocom.2015.07.002. DOI: https://doi.org/10.1016/j.cocom.2015.07.002

H. Lashgari, A. Boochani, A. Shekaari, S. Solaymani, E. Sartipi, and R. T. Mendi, “Electronic and optical properties of 2D graphene-like ZnS: DFT calculations,” Appl Surf Sci, vol. 369, pp. 76–81, Apr. 2016, doi: 10.1016/j.apsusc.2016.02.042. DOI: https://doi.org/10.1016/j.apsusc.2016.02.042

M. Roknuzzaman et al., “Electronic and optical properties of lead-free hybrid double perovskites for photovoltaic and optoelectronic applications,” Sci Rep, vol. 9, no. 1, p. 718, Jan. 2019, doi: 10.1038/s41598-018-37132-2. DOI: https://doi.org/10.1038/s41598-018-37132-2

W. Meng, X. Wang, Z. Xiao, J. Wang, D. B. Mitzi, and Y. Yan, “Parity-Forbidden Transitions and Their Impact on the Optical Absorption Properties of Lead-Free Metal Halide Perovskites and Double Perovskites,” J Phys Chem Lett, vol. 8, no. 13, pp. 2999–3007, Jul. 2017, doi: 10.1021/acs.jpclett.7b01042. DOI: https://doi.org/10.1021/acs.jpclett.7b01042

A. H. Slavney, T. Hu, A. M. Lindenberg, and H. I. Karunadasa, “A Bismuth-Halide Double Perovskite with Long Carrier Recombination Lifetime for Photovoltaic Applications,” J Am Chem Soc, vol. 138, no. 7, pp. 2138–2141, Feb. 2016, doi: 10.1021/jacs.5b13294. DOI: https://doi.org/10.1021/jacs.5b13294

Downloads

Published

2024-12-27

How to Cite

Laassouli, A., Moulaoui, L., Najim, A., Errahoui, H., Rahmani, K., Lachtioui, Y. ., & Omar Bajjou, O. B. (2024). Phosphorus Doping Effects on the Optoelectronic Properties of K₂AgAsBr₆ Double Perovskites for Photovoltaic Applications. Solar Energy and Sustainable Development Journal, 14(SI_MSMS2E), 1–11. https://doi.org/10.51646/jsesd.v14iSI_MSMS2E.407