Optoelectronic Properties of Doped CaTiO₃ (C, N, Si and P):

A DFT Study for Photovoltaic Applications

Authors

  • Abdellah Bouzaid Engineering and Applied Physics Team (EAPT), Superior School of Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco.
  • Younes Ziat 1Engineering and Applied Physics Team (EAPT), Superior School of Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco. And The Moroccan Asociation of Sciences and Techniques for Sustainable Development (MASTSD), Beni Mellal, Morocco.
  • Hamza Belkhanchi Engineering and Applied Physics Team (EAPT), Superior School of Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco. And The Moroccan Association of Sciences and Techniques for Sustainable Development (MASTSD), Beni Mellal, Morocco.
  • Ayoub Koufi Engineering and Applied Physics Team (EAPT), Superior School of Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco.
  • Mohammed Miri Engineering and Applied Physics Team (EAPT), Superior School of Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco.
  • Hmad Fatihi Laboratory of Research in Physics and Engineering Sciences, Sultan Moulay Slimane University, Polydisciplinary Faculty, Beni Mellal, 23000, Morocco.
  • Charaf Laghlimi The Moroccan Asociation of Sciences and Techniques for Sustainable Development (MASTSD), Beni Mellal, Morocco. And ERCI2A, FSTH, Abdelmalek Essaadi University, Tetouan, Morocco.

DOI:

https://doi.org/10.51646/jsesd.v14iSTR2E.982

Keywords:

CaTiO₃, Ca4Ti4O10Y2, DFT, Bulk modulus derivative, Band structure, electronic structure, optical properties

Abstract

This study uses density functional theory (DFT) with generalized gradient approximation (GGA) and modified Becke-Johnson potential (mBJ) to analyze the structural, electronic, and optical properties of  perovskite materials, where   indicates the number of dopant atoms at the oxygen (O) site. In this research, Y represents the elements C, N, Si, and P, which are substituted at oxygen sites with a doping concentration of x = 16%. Firstly, the structural optimization results reveal negative formation energies for both pure and doped CaTiO₃, confirming the stability. Moreover, doping with Y significantly reduces the bandgap energy compared to undoped CaTiO₃ (2.766 eV). Specifically, the band gaps for  materials (Y = C, N, Si, and P) are reduced to 0.87, 1.63, 0, and 0.6 eV respectively. In addition, doping with C and N retains the nature of the indirect band gap, with electronic transitions between the Γ and L points of the Brillouin zone, whereas doping with P results in a direct band gap. Additionally, doping with Si reduces the band gap to zero, resulting in metallic behavior. Furthermore, the Fermi level (EF) shifts towards the valence band (VB), indicating p-type semiconductor behavior for the doped systems, except , which exhibits metallic behavior.  Finally, analysis of the optical properties shows that doping increases the static dielectric constant, ε₁(0), with specific values for each dopant 7.1 for , 6.72 for , 36.63 for , and 23.69 for . Notably, doping CaTiO₃ with 16% of Y reduces the bandgap, improving optical absorption and conductivity in the visible range, making  (Y= C, N, Si, and P) a promising material for photovoltaic cells and optoelectronic applications.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

A. Koufi, Y. Ziat, H. Belkhanchi, M. Miri, N. Lakouari, & F. Z. Baghli. A computational study of the structural and thermal conduct of MgCrH3 and MgFeH3 perovskite-type hydrides: FP-LAPW and BoltzTraP insight., E3S Web of Conferences (Vol. 582, p. 02003), 2024. https://doi.org/10.1051/e3sconf/202458202003 DOI: https://doi.org/10.1051/e3sconf/202458202003

A. Raihan, J. Rahman, T. Tanchangtya, M. Ridwan, & S. Islam. An overview of the recent development and prospects of renewable energy in Italy. Renewable and Sustainable Energy, 2(2), 0008 (2024). DOI: https://doi.org/10.55092/rse20240008

D. Gayen, R. Chatterjee, & S. Roy. A review on environmental impacts of renewable energy for sustainable development. International Journal of Environmental Science and Technology, 21(5), 5285-5310 (2024). DOI: https://doi.org/10.1007/s13762-023-05380-z

U. M. Adanma, & E. O. Ogunbiyi. Assessing the economic and environmental impacts of renewable energy adoption across different global regions. Engineering Science & Technology Journal, 5(5), 1767-1793 (2024). DOI: https://doi.org/10.51594/estj.v5i5.1154

C. Acar, I. Dincer, & G. F. Naterer. Review of photocatalytic water‐splitting methods for sustainable hydrogen production. International Journal of Energy Research, 40(11), 1449-1473 (2016). DOI: https://doi.org/10.1002/er.3549

S. Du, & F. Zhang. General applications of density functional theory in photocatalysis. Chinese Journal of Catalysis, 61, 1-36 (2024). DOI: https://doi.org/10.1016/S1872-2067(24)60006-9

W. Tu, Y. Zhou, & Z. Zou. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state‐of‐the‐art accomplishment, challenges, and prospects. Advanced Materials, 26(27), 4607-4626 (2014). DOI: https://doi.org/10.1002/adma.201400087

X. Chen, C. Li, M. Grätzel, R. Kostecki, & S. S. Mao. Nanomaterials for renewable energy production and storage. Chemical Society Reviews, 41(23), 7909-7937 (2012). DOI: https://doi.org/10.1039/c2cs35230c

A. A. Adewale, A. Chik, T. Adam, O. K. Yusuff, S. A. Ayinde, & Y. K. Sanusi. First principles calculations of structural, electronic, mechanical and thermoelectric properties of cubic ATiO3 (A= Be, Mg, Ca, Sr and Ba) perovskite oxide., Computational Condensed Matter, 28, e00562 (2021). DOI: https://doi.org/10.1016/j.cocom.2021.e00562

S. Dahbi, N. Tahiri, O. El Bounagui, & H. Ez-Zahraouy. Electronic, optical, and thermoelectric properties of perovskite BaTiO3 compound under the effect of compressive strain. Chemical Physics, 544, 111105 (2021). DOI: https://doi.org/10.1016/j.chemphys.2021.111105

N. Tahiri, S. Dahbi, I. Dani, O. El Bounagui, & H. Ez-Zahraouy. Magnetocaloric and thermoelectric properties of the perovskite LaMnO3 material: a DFT study and Monte Carlo technique. Phase Transitions, 94(11), 826-834 (2021). DOI: https://doi.org/10.1080/01411594.2021.1974860

S. Feng, P. Zhang, Y. Zhang, J. Cao, Y. Zheng, J. Wang, L Shi, J Pan, & C. Li. Self-cleaning transparent photovoltaic device in perovskite SrTiO3 quantum dot modified CuGaO2/Zn2SnO4 nanoarrays pn junction via surface plasma modification., Applied Physics Letters, 125(9) (2024). DOI: https://doi.org/10.1063/5.0220456

A. Koufi, Y. Ziat & H. Belkhanchi. Study of the Gravimetric, Electronic and Thermoelectric Properties of XAlH3 (X = Be, Na, K) as hydrogen storage perovskite using DFT and the BoltzTrap Software Package. Solar Energy and Sustainable Development, 53–66 (2024). https://doi.org/10.51646/jsesd.v14iSI_MSMS2E.403. DOI: https://doi.org/10.51646/jsesd.v14iSI_MSMS2E.403

H. S. Magar, A. M. Mansour, & A. B. A. Hammad. Advancing energy storage and supercapacitor applications through the development of Li+-doped MgTiO3 perovskite nano-ceramics. Scientific Reports, 14(1), 1849 (2024). DOI: https://doi.org/10.1038/s41598-024-52262-6

T. A. Otitoju, P. U. Okoye, G. Chen, Y. Li, M. O. Okoye, & S. Li. Advanced ceramic components: Materials, fabrication, and applications. Journal of industrial and engineering chemistry, 85, 34-65 (2020). DOI: https://doi.org/10.1016/j.jiec.2020.02.002

M. Passi, & B. Pal. A review on CaTiO3 photocatalyst: Activity enhancement methods and photocatalytic applications. Powder Technology, 388, 274-304 (2021). DOI: https://doi.org/10.1016/j.powtec.2021.04.056

Q. Zhang, Y. Wang, Y. Jia, W. Yan, Q. Li, J. Zhou, & K. Wu. Engineering the Electronic Structure towards Visible Lights Photocatalysis of CaTiO3 Perovskites by Cation (La/Ce)-Anion (N/S) Co-Doping: A First-Principles Study., Molecules, 28(20), 7134 (2023).

D. K. Bhat, H. Bantawal, P. I. Uma, S. P. Kumar & U. S. Shenoy. Designing sustainable porous graphene-CaTiO3 nanocomposite for environmental remediation. Sustainable Chemistry for the Environment, 5, 100071 (2024). DOI: https://doi.org/10.1016/j.scenv.2024.100071

A. Krause, W. M. Weber, D. Pohl, B. Rellinghaus, A. Kersch & T. Mikolajick. Investigation of band gap and permittivity of the perovskite CaTiO3 in ultrathin layers. Journal of Physics D: Applied Physics, 48(41), 415304 (2015). DOI: https://doi.org/10.1088/0022-3727/48/41/415304

X. J. Huang, Y. A. N. Xin, H. Y. Wu, F. A. N. G. Ying, Y. H. Min, W. S. Li, S. Y. Wang & Z. J.Wu. Preparation of Zr-doped CaTiO3 with enhanced charge separation efficiency and photocatalytic activity., Transactions of Nonferrous Metals Society of China, 26(2), 464-471 (2016). DOI: https://doi.org/10.1016/S1003-6326(16)64097-9

M. Rizwan, Z. Usman, M. Shakil, S. S. A. Gillani, S. Azeem, H. B. Jin, C. B. Cao, R. F. Mehmood, G. Nabi & M. A. Asghar. Electronic and optical behaviour of lanthanum doped CaTiO3 perovskite. Materials Research Express, 7(1), 015920 (2020). DOI: https://doi.org/10.1088/2053-1591/ab6802

I. Grinberg, D. V. West, M. Torres, G. Gou, D. M. Stein, L. Wu, G. Chen, E. M. Gallo, A. R. Akbashev, P. K. Davies, J. E. Spanier & A. M. Rappe. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature,, 503(7477), 509-512 (2013). DOI: https://doi.org/10.1038/nature12622

H. Liu, J. Cheng, H. Dong, J. Feng, B. Pang, Z. Tian, S. Ma, F. Xia, C. Zhang & L. Dong. Screening stable and metastable ABO3 perovskites using machine learning and the materials project. Computational Materials Science, 177, 109614 (2020). DOI: https://doi.org/10.1016/j.commatsci.2020.109614

L. Attou, A. Al-Shami, J. Boujemaâ, O. Mounkachi, & H. Ez-Zahraouy. Predicting the structural, optoelectronic, dynamical stability and transport properties of Boron-doped CaTiO3: DFT based study. Physica Scripta, 97(11), 115808 (2022). DOI: https://doi.org/10.1088/1402-4896/ac95d8

S. Chahar, K. K. Mishra, & R. Sharma. Analysing the suitability of CaTiO3/Ca1–xSrxTiO3/SrTiO3 perovskite for fabrication of optoelectronic devices using QuantumATK tool: a study for electronic and optical properties., Physica Scripta, 99(3), 035963 (2024). DOI: https://doi.org/10.1088/1402-4896/ad29cd

P. Blaha, K. Schwarz, G. K. Madsen, D. Kvasnicka & J. Luitz. wien2k. An augmented plane wave+ local orbitals program for calculating crystal properties, 60(1) (2001).

M. Miri, Y. Ziat, H. Belkhanchi, & Y. A. El Kadi. Structural, elastic, and opto-electronic conduct of half Heusler Li (Ca, Mg, Zn) N alloys: Ab initio computation. Solid State Communications, 396, 115765 (2025). https://doi.org/10.1016/j.ssc.2024.115765 DOI: https://doi.org/10.1016/j.ssc.2024.115765

D. Koller, F. Tran, & P. Blaha. Improving the modified Becke-Johnson exchange potential. Physical Review B—Condensed Matter and Materials Physics, 85(15), 155109 (2012). DOI: https://doi.org/10.1103/PhysRevB.85.155109

V. K. Solet, & S. K. Pandey. Assessing the performance of Mg $ _ {2} $ Si and Ca $ _ {2} $ Si from DFT and SLME calculations for solar cell applications. arXiv preprint arXiv:2401.05296 (2024).

F. D. Murnaghan. The compressibility of media under extreme pressures. Proceedings of the National Academy of Sciences, 30(9), 244-247 (1944). DOI: https://doi.org/10.1073/pnas.30.9.244

P. H. Mott, J. R. Dorgan & C. M. Roland. The bulk modulus and Poisson's ratio of “incompressible” materials. Journal of Sound and Vibration, 312(4-5), 572-575 (2008). DOI: https://doi.org/10.1016/j.jsv.2008.01.026

R. Ali, & M. Yashima. Space group and crystal structure of the perovskite CaTiO3 from 296 to 1720 K. Journal of Solid State Chemistry, 178(9), 2867-2872 (2005). DOI: https://doi.org/10.1016/j.jssc.2005.06.027

B. J. Kennedy, C. J. Howard, & B. C. Chakoumakos. Phase transitions in perovskite at elevated temperatures-a powder neutron diffraction study. Journal of Physics: Condensed Matter, 11(6), 1479 (1999). DOI: https://doi.org/10.1088/0953-8984/11/6/012

Q. Mahmood, M. Yaseen, B. U. Haq, A. Laref, & A. Nazir. The study of mechanical and thermoelectric behavior of MgXO3 (X= Si, Ge, Sn) for energy applications by DFT. Chemical Physics, 524, 106-112 (2019). DOI: https://doi.org/10.1016/j.chemphys.2019.05.009

H. Fatihi, M. Agouri, H. Ouhenou, H. Benaali, A. Zaghrane, A. Abbassi, M. El Idrissi, S. Taj & B. Manaut. Enhancing Solar Cell Efficiency: A Comparative Study of Lead-Free Double Halide Perovskites $$ Rb_ {2} CuAsBr_ {6} $$ and, $$ Rb_ {2} TlAsBr_ {6} $$ using DFT and SLME Methods. Journal of Inorganic and Organometallic Polymers and Materials, 1-14 (2024). DOI: https://doi.org/10.1007/s10904-024-03330-x

A. Bouzaid, Y. Ziat, H. Belkhanchi, H. Hamdani, A. Koufi, M. Miri, C. Laghlimi, Z. Zarhri. Ab initio study of the structural, electronic, and optical properties of MgTiO3 perovskite materials doped with N and P. E3S Web of Conferences, (Vol. 582, p. 02006), (2024) https://doi.org/10.1051/e3sconf/202458202006 DOI: https://doi.org/10.1051/e3sconf/202458202006

X. Zhou, J. Shi, & C. Li. Effect of metal doping on electronic structure and visible light absorption of SrTiO3 and NaTaO3 (Metal= Mn, Fe, and Co). The Journal of Physical Chemistry C, 115(16), 8305-8311. 2011.. DOI: https://doi.org/10.1021/jp200022x

H. Bentour, M. Boujnah, M. Houmad, M. El Yadari, A. Benyoussef, & A. El Kenz. DFT study of Se and Te doped SrTiO 3 for enhanced visible-light driven phtocatalytic hydrogen production. Optical and Quantum Electronics, 53, 1-13. 2021.. DOI: https://doi.org/10.1007/s11082-021-03214-1

D. E. Vanpoucke, P. Bultinck, S. Cottenier, V. Van Speybroeck, & I. Van Driessche. Aliovalent doping of CeO₂: DFT study of oxidation state and vacancy effects. (2014). DOI: https://doi.org/10.1039/C4TA02449D

Q. Zhang, Y. Wang, Y. Jia, W. Yan, Q. Li, J. Zhou, & K. Wu. Engineering the Electronic Structure towards Visible Lights Photocatalysis of CaTiO3 Perovskites by Cation (La/Ce)-Anion (N/S) Co-Doping: A First-Principles Study., Molecules, 28(20), 7134 (2023). DOI: https://doi.org/10.3390/molecules28207134

A. Bouzaid, Y. Ziat, H. Belkhanchi. Prediction the effect of (S, Se, Te) doped MgTiO3 on optoelectronic, catalytic, and pH conduct as promised candidate photovoltaic device: Ab initio framework. International Journal of Hydrogen Energy,, 100, 20-32 (2025) https://doi.org/10.1016/j.ijhydene.2024.12.284 DOI: https://doi.org/10.1016/j.ijhydene.2024.12.284

U. Balachandran, B. Odekirk, & N. G. Eror. Electrical conductivity in calcium titanate. Journal of Solid State Chemistry, 41(2), 185-194. 1982.. DOI: https://doi.org/10.1016/0022-4596(82)90201-8

Y. Ziat, H. Belkhanchi & Z. Zarhri. DFT Analysis of Structural, Electrical, and Optical Properties of S, Si, and F-Doped GeO2 Rutile: Implications for UV-Transparent Conductors and Photodetection. Solar Energy and Sustainable Development , 14(1), 74–89 (2025). https://doi.org/10.51646/jsesd.v14i1.232. DOI: https://doi.org/10.51646/jsesd.v14i1.232

R. Majumder, M. M. Hossain, & D. Shen. First-principles study of structural, electronic, elastic, thermodynamic and optical properties of LuPdBi half-Heusler compound. Modern Physics Letters B, 33(30), 1950378 (2019). DOI: https://doi.org/10.1142/S0217984919503780

Y. Ziat, Z. Zarhri, H. Belkhanchi, O. Ifguis, A. D. Cano. Effect of Be and P doping on the electron density, electrical and optoelectronic conduct of half-Heusler LiMgN within ab initio scheme. Physica Scripta, 97(10), 105802 (2022). https://iopscience.iop.org/article/10.1088/1402-4896/ac8b40/meta DOI: https://doi.org/10.1088/1402-4896/ac8b40

L. De, R. Kronig. On the theory of dispersion of x-rays. Journal of the Optical Society of America, 12(6), 547-557 (1926). DOI: https://doi.org/10.1364/JOSA.12.000547

J. S. Toll. Causality and the dispersion relation: logical foundations. Physical review, 104(6), 1760 (1956). DOI: https://doi.org/10.1103/PhysRev.104.1760

C. M. Okoye. Theoretical study of the electronic structure, chemical bonding and optical properties of KNbO3 in the paraelectric cubic phase. Journal of Physics: Condensed Matter, 15(35), 5945 (2003). DOI: https://doi.org/10.1088/0953-8984/15/35/304

C. Ambrosch-Draxl, & R. Abt. The calculation of optical properties within WIEN97. ICTP Lecture Notes. (1998).

M. Kumar, R. P. Singh, & A. Kumar. Opto-electronic properties of HfO2: a first principle-based spin-polarized calculations. Optik, 226, 165937 (2021). DOI: https://doi.org/10.1016/j.ijleo.2020.165937

S. Saha, T. P. Sinha, & A. Mookerjee. Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO 3. Physical Review B, 62(13), 8828 (2000). DOI: https://doi.org/10.1103/PhysRevB.62.8828

M. Miri, Y. Ziat, H. Belkhanchi, Z. Zarhri, Y. A. El Kadi. Structural and optoelectronic properties of LiYP (Y= Ca, Mg, and Zn) half-Heusler alloy under pressure: A DFT study. Physica B: Condensed Matter, 667, 415216 (2023). https://doi.org/10.1016/j.physb.2023.415216 DOI: https://doi.org/10.1016/j.physb.2023.415216

A. Delin, O. Eriksson, R. Ahuja, B. Johansson, M. S. S. Brooks, T. Gasche, S. Auluck & J. M. Wills. Optical properties of the group-IVB refractory metal compounds. Physical Review B, 54(3), 1673 (1996). DOI: https://doi.org/10.1103/PhysRevB.54.1673

M. Rizwan, A. Ayub, M. Shakil, Z. Usman, S. S. A. Gillani, H. B. Jin, & C. B. Cao. Putting DFT to trial: For the exploration to correlate structural, electronic and optical properties of M-doped (M= Group I, II, III, XII, XVI), lead free high piezoelectric c-BiAlO3. Materials Science and Engineering: B, 264, 114959 (2021). DOI: https://doi.org/10.1016/j.mseb.2020.114959

E. Zahedi, M. Hojamberdiev, & M. F. Bekheet. Electronic, optical and photocatalytic properties of three-layer perovskite Dion–Jacobson phase CsBa 2 M 3 O 10 (M= Ta, Nb): a DFT study., Rsc Advances, 5(108), 88725-88735 (2015). DOI: https://doi.org/10.1039/C5RA13763B

S. Dahbi, N. Tahiri, O. El Bounagui, & H. Ez-Zahraouy. The new eco-friendly lead-free zirconate perovskites doped with chalcogens for solar cells: Ab initio calculations. Optical Materials, 109, 110442 (2020). DOI: https://doi.org/10.1016/j.optmat.2020.110442

B. Mouhib, S. Dahbi, A. Douayar, N. Tahiri, O. El Bounagui, & H. Ez-Zahraouy. Theoretical investigations of electronic structure and optical properties of S, Se or Te doped perovskite ATiO3 (A= Ca, Ba, and Sr) materials for eco-friendly, solar cells. Micro and Nanostructures, 163, 107124 (2022). DOI: https://doi.org/10.1016/j.spmi.2021.107124

A. Ilyas, S. A. Khan, K. Liaqat, & T. Usman. Investigation of the structural, electronic, magnetic, and optical properties of CsXO3 (X= Ge, Sn, Pb) perovskites: A first-principles calculations. Optik, 244, 167536., (2021). DOI: https://doi.org/10.1016/j.ijleo.2021.167536

Downloads

Published

2025-10-30

How to Cite

Bouzaid , A., Ziat, Y., Belkhanchi, H., Koufi , A., Miri , M., Fatihi , H., & Laghlimi , C. (2025). Optoelectronic Properties of Doped CaTiO₃ (C, N, Si and P): : A DFT Study for Photovoltaic Applications. Solar Energy and Sustainable Development Journal, 14(STR2E), 134–150. https://doi.org/10.51646/jsesd.v14iSTR2E.982

Issue

Section

SI-STR2E