Optoelectronic Properties of Doped CaTiO₃ (C, N, Si and P):
A DFT Study for Photovoltaic Applications
DOI:
https://doi.org/10.51646/jsesd.v14iSTR2E.982الكلمات المفتاحية:
CaTiO₃، Ca4Ti4O10Y2، DFT، Bulk modulus derivative، Band structure، electronic structure، optical propertiesالملخص
This study uses density functional theory (DFT) with generalized gradient approximation (GGA) and modified Becke-Johnson potential (mBJ) to analyze the structural, electronic, and optical properties of perovskite materials, where indicates the number of dopant atoms at the oxygen (O) site. In this research, Y represents the elements C, N, Si, and P, which are substituted at oxygen sites with a doping concentration of x = 16%. Firstly, the structural optimization results reveal negative formation energies for both pure and doped CaTiO₃, confirming the stability. Moreover, doping with Y significantly reduces the bandgap energy compared to undoped CaTiO₃ (2.766 eV). Specifically, the band gaps for materials (Y = C, N, Si, and P) are reduced to 0.87, 1.63, 0, and 0.6 eV respectively. In addition, doping with C and N retains the nature of the indirect band gap, with electronic transitions between the Γ and L points of the Brillouin zone, whereas doping with P results in a direct band gap. Additionally, doping with Si reduces the band gap to zero, resulting in metallic behavior. Furthermore, the Fermi level (EF) shifts towards the valence band (VB), indicating p-type semiconductor behavior for the doped systems, except , which exhibits metallic behavior. Finally, analysis of the optical properties shows that doping increases the static dielectric constant, ε₁(0), with specific values for each dopant 7.1 for , 6.72 for , 36.63 for , and 23.69 for . Notably, doping CaTiO₃ with 16% of Y reduces the bandgap, improving optical absorption and conductivity in the visible range, making (Y= C, N, Si, and P) a promising material for photovoltaic cells and optoelectronic applications.
التنزيلات
المقاييس
المراجع
A. Koufi, Y. Ziat, H. Belkhanchi, M. Miri, N. Lakouari, & F. Z. Baghli. A computational study of the structural and thermal conduct of MgCrH3 and MgFeH3 perovskite-type hydrides: FP-LAPW and BoltzTraP insight., E3S Web of Conferences (Vol. 582, p. 02003), 2024. https://doi.org/10.1051/e3sconf/202458202003 DOI: https://doi.org/10.1051/e3sconf/202458202003
A. Raihan, J. Rahman, T. Tanchangtya, M. Ridwan, & S. Islam. An overview of the recent development and prospects of renewable energy in Italy. Renewable and Sustainable Energy, 2(2), 0008 (2024). DOI: https://doi.org/10.55092/rse20240008
D. Gayen, R. Chatterjee, & S. Roy. A review on environmental impacts of renewable energy for sustainable development. International Journal of Environmental Science and Technology, 21(5), 5285-5310 (2024). DOI: https://doi.org/10.1007/s13762-023-05380-z
U. M. Adanma, & E. O. Ogunbiyi. Assessing the economic and environmental impacts of renewable energy adoption across different global regions. Engineering Science & Technology Journal, 5(5), 1767-1793 (2024). DOI: https://doi.org/10.51594/estj.v5i5.1154
C. Acar, I. Dincer, & G. F. Naterer. Review of photocatalytic water‐splitting methods for sustainable hydrogen production. International Journal of Energy Research, 40(11), 1449-1473 (2016). DOI: https://doi.org/10.1002/er.3549
S. Du, & F. Zhang. General applications of density functional theory in photocatalysis. Chinese Journal of Catalysis, 61, 1-36 (2024). DOI: https://doi.org/10.1016/S1872-2067(24)60006-9
W. Tu, Y. Zhou, & Z. Zou. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state‐of‐the‐art accomplishment, challenges, and prospects. Advanced Materials, 26(27), 4607-4626 (2014). DOI: https://doi.org/10.1002/adma.201400087
X. Chen, C. Li, M. Grätzel, R. Kostecki, & S. S. Mao. Nanomaterials for renewable energy production and storage. Chemical Society Reviews, 41(23), 7909-7937 (2012). DOI: https://doi.org/10.1039/c2cs35230c
A. A. Adewale, A. Chik, T. Adam, O. K. Yusuff, S. A. Ayinde, & Y. K. Sanusi. First principles calculations of structural, electronic, mechanical and thermoelectric properties of cubic ATiO3 (A= Be, Mg, Ca, Sr and Ba) perovskite oxide., Computational Condensed Matter, 28, e00562 (2021). DOI: https://doi.org/10.1016/j.cocom.2021.e00562
S. Dahbi, N. Tahiri, O. El Bounagui, & H. Ez-Zahraouy. Electronic, optical, and thermoelectric properties of perovskite BaTiO3 compound under the effect of compressive strain. Chemical Physics, 544, 111105 (2021). DOI: https://doi.org/10.1016/j.chemphys.2021.111105
N. Tahiri, S. Dahbi, I. Dani, O. El Bounagui, & H. Ez-Zahraouy. Magnetocaloric and thermoelectric properties of the perovskite LaMnO3 material: a DFT study and Monte Carlo technique. Phase Transitions, 94(11), 826-834 (2021). DOI: https://doi.org/10.1080/01411594.2021.1974860
S. Feng, P. Zhang, Y. Zhang, J. Cao, Y. Zheng, J. Wang, L Shi, J Pan, & C. Li. Self-cleaning transparent photovoltaic device in perovskite SrTiO3 quantum dot modified CuGaO2/Zn2SnO4 nanoarrays pn junction via surface plasma modification., Applied Physics Letters, 125(9) (2024). DOI: https://doi.org/10.1063/5.0220456
A. Koufi, Y. Ziat & H. Belkhanchi. Study of the Gravimetric, Electronic and Thermoelectric Properties of XAlH3 (X = Be, Na, K) as hydrogen storage perovskite using DFT and the BoltzTrap Software Package. Solar Energy and Sustainable Development, 53–66 (2024). https://doi.org/10.51646/jsesd.v14iSI_MSMS2E.403. DOI: https://doi.org/10.51646/jsesd.v14iSI_MSMS2E.403
H. S. Magar, A. M. Mansour, & A. B. A. Hammad. Advancing energy storage and supercapacitor applications through the development of Li+-doped MgTiO3 perovskite nano-ceramics. Scientific Reports, 14(1), 1849 (2024). DOI: https://doi.org/10.1038/s41598-024-52262-6
T. A. Otitoju, P. U. Okoye, G. Chen, Y. Li, M. O. Okoye, & S. Li. Advanced ceramic components: Materials, fabrication, and applications. Journal of industrial and engineering chemistry, 85, 34-65 (2020). DOI: https://doi.org/10.1016/j.jiec.2020.02.002
M. Passi, & B. Pal. A review on CaTiO3 photocatalyst: Activity enhancement methods and photocatalytic applications. Powder Technology, 388, 274-304 (2021). DOI: https://doi.org/10.1016/j.powtec.2021.04.056
Q. Zhang, Y. Wang, Y. Jia, W. Yan, Q. Li, J. Zhou, & K. Wu. Engineering the Electronic Structure towards Visible Lights Photocatalysis of CaTiO3 Perovskites by Cation (La/Ce)-Anion (N/S) Co-Doping: A First-Principles Study., Molecules, 28(20), 7134 (2023).
D. K. Bhat, H. Bantawal, P. I. Uma, S. P. Kumar & U. S. Shenoy. Designing sustainable porous graphene-CaTiO3 nanocomposite for environmental remediation. Sustainable Chemistry for the Environment, 5, 100071 (2024). DOI: https://doi.org/10.1016/j.scenv.2024.100071
A. Krause, W. M. Weber, D. Pohl, B. Rellinghaus, A. Kersch & T. Mikolajick. Investigation of band gap and permittivity of the perovskite CaTiO3 in ultrathin layers. Journal of Physics D: Applied Physics, 48(41), 415304 (2015). DOI: https://doi.org/10.1088/0022-3727/48/41/415304
X. J. Huang, Y. A. N. Xin, H. Y. Wu, F. A. N. G. Ying, Y. H. Min, W. S. Li, S. Y. Wang & Z. J.Wu. Preparation of Zr-doped CaTiO3 with enhanced charge separation efficiency and photocatalytic activity., Transactions of Nonferrous Metals Society of China, 26(2), 464-471 (2016). DOI: https://doi.org/10.1016/S1003-6326(16)64097-9
M. Rizwan, Z. Usman, M. Shakil, S. S. A. Gillani, S. Azeem, H. B. Jin, C. B. Cao, R. F. Mehmood, G. Nabi & M. A. Asghar. Electronic and optical behaviour of lanthanum doped CaTiO3 perovskite. Materials Research Express, 7(1), 015920 (2020). DOI: https://doi.org/10.1088/2053-1591/ab6802
I. Grinberg, D. V. West, M. Torres, G. Gou, D. M. Stein, L. Wu, G. Chen, E. M. Gallo, A. R. Akbashev, P. K. Davies, J. E. Spanier & A. M. Rappe. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature,, 503(7477), 509-512 (2013). DOI: https://doi.org/10.1038/nature12622
H. Liu, J. Cheng, H. Dong, J. Feng, B. Pang, Z. Tian, S. Ma, F. Xia, C. Zhang & L. Dong. Screening stable and metastable ABO3 perovskites using machine learning and the materials project. Computational Materials Science, 177, 109614 (2020). DOI: https://doi.org/10.1016/j.commatsci.2020.109614
L. Attou, A. Al-Shami, J. Boujemaâ, O. Mounkachi, & H. Ez-Zahraouy. Predicting the structural, optoelectronic, dynamical stability and transport properties of Boron-doped CaTiO3: DFT based study. Physica Scripta, 97(11), 115808 (2022). DOI: https://doi.org/10.1088/1402-4896/ac95d8
S. Chahar, K. K. Mishra, & R. Sharma. Analysing the suitability of CaTiO3/Ca1–xSrxTiO3/SrTiO3 perovskite for fabrication of optoelectronic devices using QuantumATK tool: a study for electronic and optical properties., Physica Scripta, 99(3), 035963 (2024). DOI: https://doi.org/10.1088/1402-4896/ad29cd
P. Blaha, K. Schwarz, G. K. Madsen, D. Kvasnicka & J. Luitz. wien2k. An augmented plane wave+ local orbitals program for calculating crystal properties, 60(1) (2001).
M. Miri, Y. Ziat, H. Belkhanchi, & Y. A. El Kadi. Structural, elastic, and opto-electronic conduct of half Heusler Li (Ca, Mg, Zn) N alloys: Ab initio computation. Solid State Communications, 396, 115765 (2025). https://doi.org/10.1016/j.ssc.2024.115765 DOI: https://doi.org/10.1016/j.ssc.2024.115765
D. Koller, F. Tran, & P. Blaha. Improving the modified Becke-Johnson exchange potential. Physical Review B—Condensed Matter and Materials Physics, 85(15), 155109 (2012). DOI: https://doi.org/10.1103/PhysRevB.85.155109
V. K. Solet, & S. K. Pandey. Assessing the performance of Mg $ _ {2} $ Si and Ca $ _ {2} $ Si from DFT and SLME calculations for solar cell applications. arXiv preprint arXiv:2401.05296 (2024).
F. D. Murnaghan. The compressibility of media under extreme pressures. Proceedings of the National Academy of Sciences, 30(9), 244-247 (1944). DOI: https://doi.org/10.1073/pnas.30.9.244
P. H. Mott, J. R. Dorgan & C. M. Roland. The bulk modulus and Poisson's ratio of “incompressible” materials. Journal of Sound and Vibration, 312(4-5), 572-575 (2008). DOI: https://doi.org/10.1016/j.jsv.2008.01.026
R. Ali, & M. Yashima. Space group and crystal structure of the perovskite CaTiO3 from 296 to 1720 K. Journal of Solid State Chemistry, 178(9), 2867-2872 (2005). DOI: https://doi.org/10.1016/j.jssc.2005.06.027
B. J. Kennedy, C. J. Howard, & B. C. Chakoumakos. Phase transitions in perovskite at elevated temperatures-a powder neutron diffraction study. Journal of Physics: Condensed Matter, 11(6), 1479 (1999). DOI: https://doi.org/10.1088/0953-8984/11/6/012
Q. Mahmood, M. Yaseen, B. U. Haq, A. Laref, & A. Nazir. The study of mechanical and thermoelectric behavior of MgXO3 (X= Si, Ge, Sn) for energy applications by DFT. Chemical Physics, 524, 106-112 (2019). DOI: https://doi.org/10.1016/j.chemphys.2019.05.009
H. Fatihi, M. Agouri, H. Ouhenou, H. Benaali, A. Zaghrane, A. Abbassi, M. El Idrissi, S. Taj & B. Manaut. Enhancing Solar Cell Efficiency: A Comparative Study of Lead-Free Double Halide Perovskites $$ Rb_ {2} CuAsBr_ {6} $$ and, $$ Rb_ {2} TlAsBr_ {6} $$ using DFT and SLME Methods. Journal of Inorganic and Organometallic Polymers and Materials, 1-14 (2024). DOI: https://doi.org/10.1007/s10904-024-03330-x
A. Bouzaid, Y. Ziat, H. Belkhanchi, H. Hamdani, A. Koufi, M. Miri, C. Laghlimi, Z. Zarhri. Ab initio study of the structural, electronic, and optical properties of MgTiO3 perovskite materials doped with N and P. E3S Web of Conferences, (Vol. 582, p. 02006), (2024) https://doi.org/10.1051/e3sconf/202458202006 DOI: https://doi.org/10.1051/e3sconf/202458202006
X. Zhou, J. Shi, & C. Li. Effect of metal doping on electronic structure and visible light absorption of SrTiO3 and NaTaO3 (Metal= Mn, Fe, and Co). The Journal of Physical Chemistry C, 115(16), 8305-8311. 2011.. DOI: https://doi.org/10.1021/jp200022x
H. Bentour, M. Boujnah, M. Houmad, M. El Yadari, A. Benyoussef, & A. El Kenz. DFT study of Se and Te doped SrTiO 3 for enhanced visible-light driven phtocatalytic hydrogen production. Optical and Quantum Electronics, 53, 1-13. 2021.. DOI: https://doi.org/10.1007/s11082-021-03214-1
D. E. Vanpoucke, P. Bultinck, S. Cottenier, V. Van Speybroeck, & I. Van Driessche. Aliovalent doping of CeO₂: DFT study of oxidation state and vacancy effects. (2014). DOI: https://doi.org/10.1039/C4TA02449D
Q. Zhang, Y. Wang, Y. Jia, W. Yan, Q. Li, J. Zhou, & K. Wu. Engineering the Electronic Structure towards Visible Lights Photocatalysis of CaTiO3 Perovskites by Cation (La/Ce)-Anion (N/S) Co-Doping: A First-Principles Study., Molecules, 28(20), 7134 (2023). DOI: https://doi.org/10.3390/molecules28207134
A. Bouzaid, Y. Ziat, H. Belkhanchi. Prediction the effect of (S, Se, Te) doped MgTiO3 on optoelectronic, catalytic, and pH conduct as promised candidate photovoltaic device: Ab initio framework. International Journal of Hydrogen Energy,, 100, 20-32 (2025) https://doi.org/10.1016/j.ijhydene.2024.12.284 DOI: https://doi.org/10.1016/j.ijhydene.2024.12.284
U. Balachandran, B. Odekirk, & N. G. Eror. Electrical conductivity in calcium titanate. Journal of Solid State Chemistry, 41(2), 185-194. 1982.. DOI: https://doi.org/10.1016/0022-4596(82)90201-8
Y. Ziat, H. Belkhanchi & Z. Zarhri. DFT Analysis of Structural, Electrical, and Optical Properties of S, Si, and F-Doped GeO2 Rutile: Implications for UV-Transparent Conductors and Photodetection. Solar Energy and Sustainable Development , 14(1), 74–89 (2025). https://doi.org/10.51646/jsesd.v14i1.232. DOI: https://doi.org/10.51646/jsesd.v14i1.232
R. Majumder, M. M. Hossain, & D. Shen. First-principles study of structural, electronic, elastic, thermodynamic and optical properties of LuPdBi half-Heusler compound. Modern Physics Letters B, 33(30), 1950378 (2019). DOI: https://doi.org/10.1142/S0217984919503780
Y. Ziat, Z. Zarhri, H. Belkhanchi, O. Ifguis, A. D. Cano. Effect of Be and P doping on the electron density, electrical and optoelectronic conduct of half-Heusler LiMgN within ab initio scheme. Physica Scripta, 97(10), 105802 (2022). https://iopscience.iop.org/article/10.1088/1402-4896/ac8b40/meta DOI: https://doi.org/10.1088/1402-4896/ac8b40
L. De, R. Kronig. On the theory of dispersion of x-rays. Journal of the Optical Society of America, 12(6), 547-557 (1926). DOI: https://doi.org/10.1364/JOSA.12.000547
J. S. Toll. Causality and the dispersion relation: logical foundations. Physical review, 104(6), 1760 (1956). DOI: https://doi.org/10.1103/PhysRev.104.1760
C. M. Okoye. Theoretical study of the electronic structure, chemical bonding and optical properties of KNbO3 in the paraelectric cubic phase. Journal of Physics: Condensed Matter, 15(35), 5945 (2003). DOI: https://doi.org/10.1088/0953-8984/15/35/304
C. Ambrosch-Draxl, & R. Abt. The calculation of optical properties within WIEN97. ICTP Lecture Notes. (1998).
M. Kumar, R. P. Singh, & A. Kumar. Opto-electronic properties of HfO2: a first principle-based spin-polarized calculations. Optik, 226, 165937 (2021). DOI: https://doi.org/10.1016/j.ijleo.2020.165937
S. Saha, T. P. Sinha, & A. Mookerjee. Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO 3. Physical Review B, 62(13), 8828 (2000). DOI: https://doi.org/10.1103/PhysRevB.62.8828
M. Miri, Y. Ziat, H. Belkhanchi, Z. Zarhri, Y. A. El Kadi. Structural and optoelectronic properties of LiYP (Y= Ca, Mg, and Zn) half-Heusler alloy under pressure: A DFT study. Physica B: Condensed Matter, 667, 415216 (2023). https://doi.org/10.1016/j.physb.2023.415216 DOI: https://doi.org/10.1016/j.physb.2023.415216
A. Delin, O. Eriksson, R. Ahuja, B. Johansson, M. S. S. Brooks, T. Gasche, S. Auluck & J. M. Wills. Optical properties of the group-IVB refractory metal compounds. Physical Review B, 54(3), 1673 (1996). DOI: https://doi.org/10.1103/PhysRevB.54.1673
M. Rizwan, A. Ayub, M. Shakil, Z. Usman, S. S. A. Gillani, H. B. Jin, & C. B. Cao. Putting DFT to trial: For the exploration to correlate structural, electronic and optical properties of M-doped (M= Group I, II, III, XII, XVI), lead free high piezoelectric c-BiAlO3. Materials Science and Engineering: B, 264, 114959 (2021). DOI: https://doi.org/10.1016/j.mseb.2020.114959
E. Zahedi, M. Hojamberdiev, & M. F. Bekheet. Electronic, optical and photocatalytic properties of three-layer perovskite Dion–Jacobson phase CsBa 2 M 3 O 10 (M= Ta, Nb): a DFT study., Rsc Advances, 5(108), 88725-88735 (2015). DOI: https://doi.org/10.1039/C5RA13763B
S. Dahbi, N. Tahiri, O. El Bounagui, & H. Ez-Zahraouy. The new eco-friendly lead-free zirconate perovskites doped with chalcogens for solar cells: Ab initio calculations. Optical Materials, 109, 110442 (2020). DOI: https://doi.org/10.1016/j.optmat.2020.110442
B. Mouhib, S. Dahbi, A. Douayar, N. Tahiri, O. El Bounagui, & H. Ez-Zahraouy. Theoretical investigations of electronic structure and optical properties of S, Se or Te doped perovskite ATiO3 (A= Ca, Ba, and Sr) materials for eco-friendly, solar cells. Micro and Nanostructures, 163, 107124 (2022). DOI: https://doi.org/10.1016/j.spmi.2021.107124
A. Ilyas, S. A. Khan, K. Liaqat, & T. Usman. Investigation of the structural, electronic, magnetic, and optical properties of CsXO3 (X= Ge, Sn, Pb) perovskites: A first-principles calculations. Optik, 244, 167536., (2021). DOI: https://doi.org/10.1016/j.ijleo.2021.167536





